

Revision 1

Certain figures in this Report contain sensitive, securityrelated information protected from public disclosure by Federal and State law. This Report is suitable for public disclosure only after these figures are removed.

HYDROGEOLOGIC INVESTIGATION REPORT

FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Prepared For: Exelon Generation Company, LLC

DISCLAIMER:

SOME FORMATTING CHANGES MAY HAVE OCCURRED WHEN THE ORIGINAL DOCUMENT WAS PRINTED TO PDF; HOWEVER, THE ORIGINAL CONTENT REMAINS UNCHANGED.

SEPTEMBER 2006 REF. NO. 045136 (15) Prepared by: Conestoga-Rovers & Associates

651 Colby Drive Waterloo, Ontario Canada N2V 1C2

Office: (519) 884-0510 Fax: (519) 884-0525

web: http:\\www.CRAworld.com

TABLE OF CONTENTS

			Page
EXEC	CUTIVE SUN	MMARY	i
1.0	INTRODU	JCTION	1
2.0	STATION	DESCRIPTION	2
	2.1	STATION LOCATION	
	2.2	OVERVIEW OF COOLING WATER OPERATION	
	2.3	SURROUNDING LAND USE	
	2.4	STATION SETTING	
	2.4.1	TOPOGRAPHY AND SURFACE WATER FEATURES	
	2.4.2	GEOLOGY	6
	2.4.3	HYDROGEOLOGY	
	2.5	AREA GROUNDWATER USE	8
3.0	AREAS FO	OR FURTHER EVALUATION	10
	3.1	SYSTEMS EVALUATIONS	10
	3.2	HISTORICAL RELEASES	13
	3.3	STATION INVESTIGATIONS	13
	3.3.1	POWER PLANT DOCUMENTS-UFSAR REPORT	13
	3.3.2	RETEC GROUNDWATER INVESTIGATION STUDY	13
	3.3.3	GROUNDWATER MONITORING PROGRAM	14
	3.3.4	RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM	14
	3.4	IDENTIFIED AREAS FOR FURTHER EVALUATION	15
4.0	FIELD ME	ETHODS	18
	4.1	SURFACE WATER ELEVATION MONITORING POINTS	18
	4.2	GROUNDWATER MONITORING WELL INSTALLATION	18
	4.3	GROUNDWATER MONITORING WELL DEVELOPMENT	19
	4.4	SURVEY	20
	4.5	GROUNDWATER AND SURFACE WATER ELEVATION MEASUREMENTS	20
	1.6	GROUNDWATER AND SURFACE WATER SAMPLE COLLECTION	
	4.6 4.7	DATA QUALITY OBJECTIVES	
	4.7	SAMPLE IDENTIFICATION	
	4.0 4.9	CHAIN-OF-CUSTODY RECORD	
	4.10	QUALITY CONTROL SAMPLES	
	4.10	ANALYSES	
5.0		SUMMARY	
	5.1	STATION GEOLOGY	
	5.2	STATION HYDROGEOLOGY	
	5.2.1	GROUNDWATER FLOW DIRECTIONS	
	5.2.2	MAN-MADE INFLUENCE ON GROUNDWATER FLOW	29

TABLE OF CONTENTS

			<u>Page</u>
	5.2.3	VERTICAL HYDRAULIC GRADIENTS	31
	5.2.4	LATERAL GROUNDWATER FLOW AND VELOCITY	32
	5.3	GROUNDWATER QUALITY	32
	5.3.1	SUMMARY OF BETA-EMITTING RADIONUCLIDES	
		ANALYTICAL RESULTS	33
	5.3.2	SUMMARY OF GAMMA-EMITTING RADIONUCLIDES	
		ANALYTICAL RESULTS	34
	5.3.3	SUMMARY OF FIELD MEASUREMENTS	34
	5.4	SURFACE WATER QUALITY	34
	5.4.1	SUMMARY OF BETA-EMITTING RADIONUCLIDES	
		ANALYTICAL RESULTS	35
	5.4.2	SUMMARY OF GAMMA-EMITTING RADIONUCLIDES	
		ANALYTICAL RESULTS	35
6.0	RADIO	NUCLIDES OF CONCERN AND SOURCE AREAS	36
	6.1	GAMMA-EMITTING RADIONUCLIDES	36
	6.2	BETA-EMITTING RADIONUCLIDES	36
	6.3	TRITIUM	37
	6.3.1	GENERAL CHARACTERISTICS	37
	6.3.2	DISTRIBUTION IN STATION GROUNDWATER	38
	6.3.3	DISTRIBUTION IN STATION SURFACE WATER	42
	6.3.4	CONCEPTUAL MODEL OF TRITIUM RELEASE	
		AND MIGRATION	42
	6.4	STRONTIUM	44
	6.4.1	GENERAL CHARACTERISTICS	44
	6.4.2	DISTRIBUTION IN STATION GROUNDWATER	44
	6.4.3	DISTRIBUTION IN STATION SURFACE WATER	46
7.0	EXPOS	URE PATHWAY ASSESSMENT	47
	7.1	HEALTH EFFECTS OF TRITIUM	47
	7.2	BACKGROUND CONCENTRATIONS OF TRITIUM	48
	7.2.1	GROUNDWATER	48
	7.2.2	PRECIPITATION DATA	48
	7.2.3	SURFACE WATER DATA	49
	7.2.4	DRINKING WATER DATA	50
	7.2.5	EXPECTED TRITIUM BACKGROUND FOR THE STATION	51
	7.3	IDENTIFICATION OF POTENTIAL EXPOSURE	
		PATHWAYS AND POTENTIAL RECEPTORS	52
	7.3.1	POTENTIAL GROUNDWATER MIGRATION TO	
		DRINKING WATER USERS AT THE STATION PROPERTY	52
	7.3.2	POTENTIAL GROUNDWATER MIGRATION TO	
		DRINKING WATER USERS OFF THE STATION PROPERTY	53

TABLE OF CONTENTS

			<u>Page</u>
	7.3.3	POTENTIAL GROUNDWATER MIGRATION TO SURFACE	
		WATER USERS OFF THE STATION PROPERTY	53
	7.3.4	POTENTIAL SURFACE WATER MIGRATION TO	
		GROUNDWATER AND SURFACE WATER OFF	
		THE STATION PROPERTY	54
	7.4	SUMMARY OF POTENTIAL TRITIUM EXPOSURE PATHWAYS	54
	7.5	OTHER RADIONUCLIDES	55
8.0	CONCLU	SIONS	56
9.0	RECOMM	IENDATIONS	61
	9.1	FILL DATA GAPS	61
	9.2	GROUNDWATER MONITORING	61
10.0	REFEREN	ICFS	62

LIST OF FIGURES (Following Text)

FIGURE 1.1	STATION LOCATION MAP
FIGURE 2.1	STATION BOUNDARIES AND FEATURES
FIGURE 2.2	COOLING WATER FLOW DIAGRAM
FIGURE 2.3	REGIONAL GEOLOGIC CROSS-SECTION
FIGURE 3.1	AREAS FOR FURTHER EVALUATION
FIGURE 4.1	SURFACE WATER MONITORING LOCATIONS
FIGURE 4.2	GROUNDWATER MONITORING LOCATIONS
FIGURE 5.1	LOCAL GEOLOGIC CROSS-SECTION LOCATIONS
FIGURE 5.2	LOCAL GEOLOGIC CROSS-SECTION A-A'
FIGURE 5.3	LOCAL GEOLOGIC CROSS-SECTION B-B'
FIGURE 5.4	POTENTIOMETRIC SURFACE CONTOURS AUGUST 2006 - SHALLOW GROUNDWATER ZONE
FIGURE 5.5	POTENTIOMETRIC SURFACE CONTOURS AUGUST 2006 - INTERMEDIATE GROUNDWATER ZONE
FIGURE 5.6	TRITIUM CONCENTRATIONS - SHALLOW GROUNDWATER ZONE
FIGURE 5.7	TRITIUM CONCENTRATIONS - INTERMEDIATE GROUNDWATER ZONE
FIGURE 5.8	RADIONUCLIDE CONCENTRATIONS - SHALLOW GROUNDWATER ZONE AUGUST 2006
FIGURE 5.9	RADIONUCLIDE CONCENTRATIONS - INTERMEDIATE GROUNDWATER ZONE AUGUST 2006

LIST OF FIGURES (Following Text)

FIGURE 6.1	HYDROGEOLOGIC PROFILE - A-A
FIGURE 6.2	HYDROGEOLOGIC PROFILE - B-B'
FIGURE 6.3	HYDROGEOLOGIC PROFILE - C-C

LIST OF TABLES (Following Text)

TABLE 4.1	SUMMARY OF MONITORING WELL INSTALLATION DETAILS
TABLE 4.2	SUMMARY OF MONITORING WELL DEVELOPMENT PARAMETERS
TABLE 4.3	SUMMARY OF GROUNDWATER ELEVATIONS
TABLE 4.4	SUMMARY OF SURFACE WATER ELEVATIONS
TABLE 4.5	SUMMARY OF MONITORING WELL PURGING PARAMETERS
TABLE 4.6	SAMPLE KEY
TABLE 5.1	SUMMARY OF CALCULATED VERTICAL GRADIENTS
TABLE 5.2	ANALYTICAL RESULTS SUMMARY - TRITIUM IN GROUNDWATER
TABLE 5.3	ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER
TABLE 5.4	ANALYTICAL RESULTS SUMMARY - TRITIUM IN SURFACE WATER
TABLE 5.5	ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN SURFACE WATER

LIST OF APPENDICES

APPENDIX A MONITORING WELL LOGS

APPENDIX B WATER SUPPLY WELL INVENTORY

APPENDIX C QUALITY ASSURANCE PROGRAM - TELEDYNE BROWN

ENGINEERING, INC.

APPENDIX D LABORATORY ANALYTICAL REPORTS

APPENDIX E DATA VALIDATION MEMORANDUM

EXECUTIVE SUMMARY

This Hydrogeologic Investigation Report (HIR) documents the results of Conestoga-Rovers & Associates' (CRA's) May to August 2006 hydrogeologic investigation pertaining to the Dresden Generating Station (Station). CRA prepared this HIR for Exelon as part of its Fleetwide Program to determine whether groundwater at and in the vicinity of its nuclear power generating facilities has been adversely impacted by any releases of radionuclides.

CRA collected and analyzed information on any historical releases, the structures, components, and areas of the Station that have the potential to release tritium or other radioactive liquids to the environment and past hydrogeologic investigations at the Station. CRA used this information, combined with its understanding of groundwater flow at the Station to identify Areas for Further Evaluation (AFEs) for the Station.

CRA collected 68 groundwater samples and six surface water samples at the Station. CRA also collected two full rounds of water levels from the newly installed (with the exception of the wells installed in August) and existing wells and measured surface water levels. All groundwater and surface water samples were analyzed for tritium, strontium-89/90, and gamma-emitting radionuclides.

The results of the hydrogeologic investigation are:

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective Lower Limits of Detection (LLDs) in any of the groundwater or surface water samples obtained and analyzed during the course of this investigation;
- Strontium-90 was not detected in groundwater at concentrations greater than the United States Environmental Protection Agency drinking water standard of 8.0 pCi/L;
- Tritium was not detected at concentrations greater than the United States Environmental Protection Agency drinking water standard of 20,000 pCi/L in any of the groundwater or surface water samples obtained and analyzed during the course of this investigation;
- Tritium was detected in the shallow and intermediate groundwater zones at concentrations greater than the LLD of 200 pCi/L, which is considered background, but well below the applicable drinking water standard;
- These tritium concentrations ranged from $210 \pm 124 \text{ pCi/L}$, to $13,200 \pm 319 \text{ pCi/L}$;

i

- Strontium-90 was not detected at concentrations greater than the United States Environmental Protection Agency drinking water standard of 8.0 pCi/L in any of the groundwater or surface water samples obtained and analyzed during the course of this investigation;
- Strontium-90 was detected in a single intermediate well (MW-DN-108I) at concentrations greater than the Lower Limit of Detection of 2.0 pCi/L, which is well below the applicable drinking water standard;
- The strontium-90 concentration from MW-DN-108I was 2.17 ± 0.783 pCi/L;
- Based on the results of this investigation, tritium originating from the Station is not migrating off the Station property at detectable concentrations;
- Based on the results of this investigation, there is no current risk of exposure to radionuclides associated with licensed plant operations through any of the identified potential exposure pathways; and
- Based upon the results of this investigation, there are no known active releases into the groundwater at the Station.

Based on the information collected to date, CRA recommends that Exelon conduct periodic monitoring of selected sample locations.

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this Hydrogeologic Investigation Report (HIR) for Exelon Generation Company, LLC (Exelon) as part of its Fleetwide Program to determine whether groundwater at and near its nuclear power generating facilities has been adversely impacted by any releases of radionuclides. This report documents the results of CRA's May 2006 Hydrogeologic Investigation Work Plan (Work Plan) as well as several other investigative tasks recommended by CRA during the course of the investigation. These investigations pertain to Exelon's Dresden Generating Station in Morris, Illinois (Station) (see Figure 1.1). The Station is defined as all property, structures, systems, and components owned and operated by Exelon LLC located at 6500 North Dresden Road in Morris, Illinois.

Pursuant to the Work Plan, CRA assessed groundwater quality at the Station in locations designated as Areas for Further Evaluation (AFEs). The process by which CRA identified AFEs is discussed in Section 3.0 of this report.

The objectives of the Work Plan were to:

- characterize the geologic and hydrogeologic conditions within the Station, including subsurface soil types, the presence or absence of confining layers, and the direction and rate of groundwater flow;
- characterize the groundwater/surface water interaction at the Station, including a determination of the surface water flow regime;
- evaluate groundwater quality at the Station, including the vertical and horizontal extent, quantity, concentration, and source of tritium and other radionuclides in the groundwater, if any;
- define the probable sources of any radionuclides released at the Station;
- evaluate potential human, ecological, or environmental receptors of any radionuclides that might have been released to the groundwater; and
- evaluate whether interim response activities are warranted.

2.0 STATION DESCRIPTION

The following section presents a general summary of the Station location and definition, overview of Station operations, surrounding land use, and an overview of both regional and Station-specific topography, surface water features, geology, hydrogeology, and groundwater flow conditions. This section also presents an overview of groundwater use in the area.

2.1 <u>STATION LOCATION</u>

The Station consists of approximately 1,600 acres, of which approximately 400 acres are used for the generating facilities. The other approximately 1,284 acres of property encompass the Industrial Cooling Pond (Pond). The Station is located near the City of Morris, in Grundy County. The Station is located at the junction of the Kankakee and Des Plaines Rivers that merge to form the Illinois River. The Station address is 6500 North Dresden Road, Morris, Illinois. The Station is owned and operated by Exelon. Figure 2.1 presents the Station Boundaries and Features map, which includes key features. The Protected Area (PA) of the Station is the fenced-in area surrounding the Reactor and Turbine Buildings and other critical facilities related to the operation of the Station.

The Pond is located to the south of the Station and serves as the Station's storage and thermal loss point for cooling water used to condense the steam generated during normal operation of the two reactors. Two man-made, unlined canals run between the power generation buildings within the PA and the Pond and are known respectively as the Hot and Cold Canals.

2.2 OVERVIEW OF COOLING WATER OPERATION

The Station's generating system consists of a three-unit nuclear generating facility, capable of generating 1,824 gross megawatts of electricity. The generating station consists of one permanently shut down reactor (Unit 1) and two operating reactors (Units 2/3). Historically, Unit 1 began commercial operation in 1960. Unit 1 was subsequently shut down in October 1978 and is being decommissioned under the Nuclear Regulatory Commission's (NRC's) SAFSTOR program. The Station Unit 1 Operating License number is DPR-2. Units 2/3 are boiling water reactors (BWRs) and began commercial operation in 1970 and 1971, respectively. The Station's Unit 2

Operating License number is DPR-19. The Station's Unit 3 Operating License number is DPR-25.

A BWR plant consists of two separate loops of fluids. Each loop is designed to avoid mixing the fluids of one loop with the fluids of another. The loops are called the primary loop and the secondary loop.

The main purpose of the primary loop is to transfer the energy generated from fission in the fuel to the turbine to produce electricity. It is a closed loop system. Nuclear fission creates heat in the fuel. This heat is removed by the flow of reactor coolant water through the reactor vessel to the turbine. Steam is generated as a result and is used to power the turbine, transferring kinetic energy to the generator to produce electricity. The steam is then condensed on one side of the condenser and the water is pumped back to the reactor vessel to be heated by the fuel again.

The main purpose of the secondary loop cooling water is to cool the other side of the condenser, cooling the primary loop steam, and transferring the heat to the environment.

Cooling water for the Station is withdrawn from the Kankakee River by way of the Units 2/3 Intake Canal. Units 2/3 were originally designed to operate in a direct open cycle. Cooling water was routed from the Kankakee River to the Units 2/3 Cribhouse, through the condensers, and discharged directly to a canal routed to the Illinois River.¹

Just after initial startup of Units 2/3, the Pond was constructed about 2 miles south of the Station. The clay dike encloses 1,284 acres. A 'Hot Canal' was cut from the discharge of Units 2/3 to the Pond Lift Station. Cooling water is lifted 22 feet and routes around the Pond back to weir gates or a Spillway, constructed just south of the Lift Station. The Return Canal ('Cold Canal') routes parallel to the Hot Canal back to the plant. The Cold Canal ends at a Flow Regulating Station with large gates that can divert the cooling water back to the plant (Closed Cycle operation) or discharge it to the Illinois River (Indirect Open Cycle). The Pond and both Hot and Cold Canals reduce thermal impact from dual unit operation.

The cooling water passes through the Units 2/3 Cribhouse and into the condensers. Once it passes through the condensers it exits the Turbine Building and is discharged to the Hot Canal and routes to the Pond. Cooling water is routed through the Pond in such

The Kankakee River is where the Intake point is located, whereas, the Illinois River is where the Discharge point is located (see Figure 2.1).

a way as to maximize the heat loss. After passing through the Pond, the cooling water is routed back to the Station via the Cold Canal. During the hotter summer months, the cooling water, from either the Hot or Cold Canals, also passes through a series of cooling towers. This allows the Station to increase its efficiency in the summer months. It enables the Station to comply with the thermal limits of its National Pollutant Discharge Elimination System (NPDES) Permit IL0002224. Due to the Station's differing demand for cooling water throughout the day, the water levels in the canals fluctuate markedly on a daily basis. There are two cooling cycles employed at the Station as discussed below.

From October 1 through June 14 of each year, the Station operates in a Closed Cycle mode during which a majority of the cooling water is recirculated, and discharge to the Illinois River is limited. In this mode, the Flow Regulating Gates divert cooling water from the Pond back to the Cribhouse Intake structure. In the Closed Cycle mode, 50,000 gallons per minute (gpm) are discharged (blowdown) to the Illinois River through a permitted outfall.

From June 15 through September 30 of each year, the Dresden NPDES Permit allows the Station to operate in the Indirect Open Cycle mode. In this mode, the Flow Regulating Gates divert all the cooling water flow to the Illinois River through a permitted outfall.

Figure 2.2 provides an overview of the Station's cooling water cycles.

2.3 SURROUNDING LAND USE

Land surrounding the Station is primarily used for residential, agricultural, and limited industrial purposes. The Illinois River lies to the north of the Station, with residences located on the northern banks of a bluff on the river, overlooking the Station. To the east of the Station is the Kankakee River. Residential lots are located immediately south of the Station along the banks of the Kankakee River. To the west of the Station is vacant land owned by Exelon, with a General Electric Fuel Processing Facility further beyond. To the southwest of the Station is Goose Lake Prairie State Park, which is owned and operated by the Illinois Department of Natural Resources (Illinois DNR). The nearest urbanized area is the town of Channahon, which is approximately 3 miles to the northeast of the Station, across the Illinois River. Agricultural land is located further south and west of the Station.

2.4 STATION SETTING

The following section presents a general summary of the topography, surface water features, geology, hydrogeology, and groundwater flow conditions near the Station. The information was primarily gathered from the Dresden Station Updated Final Safety Analysis Report (UFSAR), Revision 6, dated June 2005, and the Final Environmental Statement (FES), dated November 1973. The main references the UFSAR relies upon are listed in Section 10.0 of this HIR. CRA checked and verified all UFSAR references that apply to this HIR.

2.4.1 TOPOGRAPHY AND SURFACE WATER FEATURES

The Station is located within the Kankakee River Basin adjacent to the confluence of the Kankakee River and Des Plaines River forming the Illinois River (Willman and Frye, 1969; Frye et al., 1969). In general, the topography of the area slopes downward toward the Kankakee and Illinois Rivers (see Figure 1.1 and United States Geological Topographic Quadrangle Map – Dresden Mosaic, Illinois dated 1994).

Figure 2.1 presents portions of some of the relevant surface water features at the Station such as the Pond, and Hot and Cold Canals. The topography at the Station is generally flat, with a gentle slope down to the Kankakee and Illinois Rivers. Any surface water flows via storm drains and man-made ditches.

There are four rock (rip-rap) lined storm drain basins at the Station that originate in the vicinity of the Units 2/3 Reactor Building. For the purposes of this report, the storm drain basins are the East Drainage Basin, West Drainage Basin, Southwest Drainage Basin, and Southeast Drainage Basin.

The East Drainage Basin drains the area around the southeastern and northeastern perimeter of the Turbine Building, and a portion of the Station area located between Unit 1 and the Kankakee River. The East Drainage Basin discharges to the Unit 1 Intake Canal.

The West Drainage Basin drains the area around the western perimeter of the Turbine Building, as well as the area to the northwest. The West Drainage Basin discharges to the Units 2/3 Discharge Canal through a point located in the west side of the canal.

The Southwest Drainage Basin is located further to the south and west of the Turbine Building and drains storm water via a drainage ditch located on the south edge of the PA. The Southwest Drainage Basin, during times of heavy rainfall, discharges to the Hot Canal.

The Southeast Drainage Basin is located further to the south and east of the Turbine Building and drains storm water via a drainage ditch located on the southeast edge of the PA. The Southeast Drainage Basin, during times of heavy rainfall, discharges to the Kankakee River (RETEC, 2005).

The primary surface water features within the area of the Station include the Illinois River to the north, the Des Plaines River to the east, and the Kankakee River to the southeast. The Station is located to the south of the intersection of the Kankakee and Des Plaines River that converge to form the Illinois River. Man-made surface water features include two Intake Canals (Unit 1 and Units 2/3) leading from the Kankakee River, two Discharge Canals (Unit 1 and Units 2/3) leading to the Illinois River, the Pond, and two canals leading to and from the Pond known as the Hot and Cold Canals, respectively. There are also small lakes and wetlands to the south and southwest of the Station.

2.4.2 GEOLOGY

Figure 2.3 presents a stratigraphic section of the Station area geology. The geology near the Station is comprised of these stratigraphic units:

- Overburden and Fill Material;
- Pottsville Sandstone;
- Divine Limestone;
- Maquoketa Shale; and
- Galena Dolomite.

Regionally, the overburden typically consists of a Quaternary Age sand and gravel unit and a glacial till unit with some lenses of coarse-grained glacial drift (Frye, 1969; RETEC, 2005). However, in locations bordering major rivers, overburden deposits of alluvial origin exhibiting variable composition and thickness are expected to be predominant. At the Station, overburden deposits are of limited areal extent and consist of highly organic dark brown to black sandy clay with some gravel (RETEC, 2005). Where present at the Station, the thickness of these deposits is typically less than 5 feet. Fill material, consisting of gravel and sand, is present to depths of up to 30 feet below ground surface (bgs) in certain areas within the PA due to construction of the Station.

At the Station, the overburden deposits, where present, are underlain by the Pennsylvanian-aged Pottsville Sandstone. The Pottsville Sandstone is exposed at ground surface in areas where overburden deposits are absent. Regionally, the Pottsville Sandstone exhibits prominent cross bedding, which was observed in the outcrops along the Hot and Cold Canals at the Station (Harza, 1991, 1995; RETEC, 2005). The sandstone is absent north of the Station, and in areas to the west and southeast of the Station according to residential and State well logs. The thickness of the sandstone, where present, near the Station ranges from 25 to 30 feet.

The Ordovician-aged Divine Limestone unconformably underlies the Pennsylvanian-aged Pottsville Sandstone beneath the Station (i.e., intermediary Silurianand Devonian-aged units are absent) (Harza, 1991, 1995). Regionally, the Divine Limestone is considered part of the Maquoketa Shale Group and has a regional dip to the southeast of approximately 25 feet per mile (Willman, 1975; Harza, 1991, 1995). The Divine Limestone is widely distributed throughout Illinois; however, in some areas it becomes interbedded with shale and can be inseparable from the shales below (Willman, 1975). This is depicted in many of the intermediate well boring logs (Appendix A) at approximately 35 to 40 feet bgs, where a transitional limestone/shale layer was noted. The thickness of the Divine Limestone varies from 25 to 30 feet thick across the Station (Harza, 1991, 1995).

The Ordovician-aged Maquoketa Shale is also part of the Maquoketa Shale Group and consists of dark gray to dark green dolomitic shale (Willman, 1975). The regional thickness of the Maquoketa Shale consistently ranges between 65 and 70 feet; however, the elevation of the shale surface varies significantly. Based on the three deep wells installed by RETEC in March 2005 (DSP-157D, DSP-158D, and DSP-159D), the thickness of the shale at the Station ranged from 64 to 68 feet. Similar to the Divine Limestone, the Maquoketa Shale has a regional dip to the southeast of approximately 25 feet per mile (Willman, 1975; Harza, 1991, 1995).

Beneath the Maquoketa Shale Group lies the Ordovician-aged Galena Dolomite. Regionally, the Galena Dolomite consists of limestone and dolomite formations (Willman, 1975; Burch, 2002; Buschbach, 1964). At the Station, according to RETEC logs (Appendix A), this unit consists of a light-brownish gray to pinkish-white crystalline dolomite.

7

2.4.3 HYDROGEOLOGY

The hydrogeologic units underlying the Station include the:

- Water table aquifer consisting of the Pottsville Sandstone and Divine Limestone; and
- Deep Aquifer consisting of the Galena Dolomite.

The water table is the uppermost groundwater aquifer. Groundwater in the water table aquifer occurs under unconfined conditions under the Station, and is found within the Pottsville Sandstone and Divine Limestone. The upper flow zone of the water table is defined in the Pottsville Sandstone and the lower flow zone of the water table is defined in the Divine Limestone. The depth to groundwater varies across the Station, ranging from approximately 3 feet bgs to 16 feet bgs (Harza, 1991, 1995; RETEC, 2005). The water table aquifer is monitored by shallow monitoring wells screened within the upper portion of the water table aquifer in the sandstone (20 to 25 feet deep), and intermediate wells (35 and 50 feet deep) screened within the water table aquifer in the limestone.

The Maquoketa Shale is the lower confining unit to the water table aquifer and hydraulically separates the water table aquifer from the lower aquifers at the Station (Harza, 1991, 1995). Regional hydrogeologic reports indicate that vertical migration downward from the water table aquifer is impeded where the Maquoketa Shale is present due to its low permeability acting as an aquitard (Harza, 1991, 1995; RETEC, 2005).

Beneath the impermeable Maquoteka Shale, the Galena Dolomite is the next water-bearing unit and is considered the Deep Aquifer at the Station. The upper portion of the Galena Dolomite is unsaturated as indicated by the apparent dry conditions in the deep wells (RETEC, 2005).

2.5 AREA GROUNDWATER USE

CRA conducted an area wide well inventory of all private, institutional, and public wells within approximately 2 miles of the Station and a total of 109 wells were identified (Appendix B). There are 13 domestic (private) wells, one institutional well, four unknown usage wells, and one well owned by the Station that obtain their water from the deeper (i.e., well depth of 600 feet or greater) bedrock aquifers (see Figure B.1). CRA was unable to confirm all well locations using the Illinois State Geologic Survey's online well database. Regional water supplies at towns to the west and northeast obtain their water supplies from deep aquifers at depths over 600 feet below the Maquoketa Shale.

This shale aquitard prevents water from migrating vertically downward to the production wells.

The groundwater beneath the Station is used for potable purposes. The Station obtains water from one 1,500-foot deep well and one 788-foot deep well completed in the deep bedrock below the Maquoketa Shale. The groundwater withdrawn from these wells is stored in a 100,000-gallon domestic water tank, and is used for potable purposes and to produce demineralized water.

3.0 AREAS FOR FURTHER EVALUATION

CRA considered all Station operations in assessing groundwater quality at the Station. During this process, CRA identified areas at the Station that warranted further evaluation or "AFEs". This section discusses the process by which AFEs were selected.

CRA's identification of AFEs involved the following components:

- Station inspection on March 22 and 23, 2006;
- interviews with Station personnel;
- evaluation of Station systems;
- investigation of confirmed and unconfirmed releases of radionuclides; and
- review of previous Station investigations.

CRA analyzed the information collected from these components combined with information obtained from CRA's study of hydrogeologic conditions at the Station to identify those areas where groundwater potentially could be impacted from operations at the Station.

CRA then designed an investigation to determine whether any confirmed or potential releases or any other release of radionuclides adversely affected groundwater. This entailed evaluating whether existing Station groundwater monitoring systems were sufficient to assess the groundwater quality at the AFEs. If the systems were not sufficient to adequately investigate groundwater quality associated with any AFE, additional monitoring wells were installed by CRA.

The following sections describe the above considerations and the identification of AFEs. The results of CRA's investigation are discussed in Section 5.0.

3.1 SYSTEMS EVALUATIONS

Exelon launched an initiative to systematically assess the structures, systems and components that store, use, or convey potentially radioactively contaminated liquids. Maps depicting each of these systems were developed and provided to CRA for review. The locations of these systems are presented on Figure 3.1. The Station identified a total of 18 systems that contain or could contain potentially radioactively contaminated liquids. The following presents a list of these systems.

System Identification	Description
Unit 1	
13	Emergency Condenser
19	Fuel Pool Cooling
20	Radwaste
33	Condensate
39	Service Water
54	Off Gas
57	Heating Steam
Units 2/3	
13	Isolation Condenser
19	Fuel Pool Cooling
20	Radwaste
23	High Pressure Coolant Injection (HPCI) System
33	Condensate
44	Circulating Water
48	Reactor Building Equipment Drains Sumps
49	Turbine Building Equipment Drains Sumps
54	Off Gas
57	Heating Steam
89	High Radiation Sampling System

After these systems were identified, Exelon developed a list of the various structures, components and areas of the systems (e.g., piping, tanks, process equipment) that handle or could potentially handle any radioactively contaminated liquid. The structures, components, and areas may include:

- aboveground storage tanks;
- condensate vents;
- areas where confirmed or potential historical releases, spills, or accidental discharges may have occurred;
- pipes;
- pools;
- sumps;
- surface water bodies (i.e., basins, pits, ponds, or lagoons);
- trenches;
- underground storage tanks; and
- vaults.

The Station then individually evaluated the various system components to determine the potential for any release of radioactively contaminated liquid to enter the environment. Each structure or identified component was evaluated against the following seven primary criteria:

- location of the component (i.e., basement or second floor of building);
- component construction material (i.e., stainless steel or steel tanks);
- construction methodologies (i.e., welded or mechanical pipe joints);
- concentration of radioactively contaminated liquid stored or conveyed;
- amount of radioactively contaminated liquid stored or conveyed;
- existing controls (i.e., containment and detection); and
- maintenance history.

System components, which were located inside a building or that otherwise had some form of secondary containment, such that a release of radioactively contaminated liquid would not be discharged directly to the environment, were eliminated from further evaluation. System components that are not located within buildings or did not have some other form of secondary containment were retained for further qualitative evaluation of the risk of a release of radioactively contaminated liquid to the environment and potential magnitude of any release.

Exelon's risk evaluation took into consideration factors such as:

- the potential concentration of radionuclides;
- the volume of liquid stored or managed;
- the probabilities of the systems actually containing radioactively contaminated liquid; and
- the potential for a release of radioactively contaminated liquid from the system component.

These factors were then used to rank the systems and system components according to the risk for a potential release of a radioactively contaminated liquid to the environment. The evaluation process resulted in the identification of structures, components, and areas to be considered for further evaluation.

3.2 HISTORICAL RELEASES

CRA also reviewed information concerning confirmed or potential historical releases of radionuclides at the Station, including reports and documentation previously prepared by Exelon and compiled for CRA's review. CRA evaluated this information in identifying AFEs. Any historical releases identified during the course of this assessment, which may have a current impact on Station conditions, are further discussed in Section 3.4.

3.3 STATION INVESTIGATIONS

CRA considered previous Station investigations in the process of selecting the AFEs for the Station. This section presents a summary of the Station's Radiological Environmental Monitoring Program (REMP) and past Station investigations.

3.3.1 POWER PLANT DOCUMENTS-UFSAR REPORT

During the construction of the Station, a series of comprehensive investigations of regional and local geology, surface water, and groundwater conditions were conducted. These studies were performed for a number of purposes including geotechnical evaluations of the underlying bedrock, engineering designs for the Station around the Pond, present and future sources of groundwater, present and future groundwater use, and other engineering and environmental purposes. These studies are documented in the UFSAR and FES for the Station.

3.3.2 RETEC GROUNDWATER INVESTIGATION STUDY

In response to tritium detected in July 2004 groundwater samples collected by the Station, RETEC was contracted to characterize the nature of groundwater flow at the facility and to evaluate the extent of the tritium. RETEC reviewed historical data, installed additional monitoring wells, conducted geophysical logging, completed two rounds of water level measurements, performed slug tests, and sampled groundwater for tritium.

RETEC's groundwater investigation report (dated December 7, 2005) concluded that elevated tritium concentrations were detected in groundwater samples from wells located near the Condensate Storage Tank (CST) System, the Unit 1 Spent Fuel Pool,

Unit 1 Reactor Building, and the Radwaste discharge piping location for Units 2/3. RETEC's investigation revealed that the bulk of the tritium discharged to the groundwater from the CST system and flowed toward the east and northwest under the influence of the local hydraulic gradient. The tritium plume was not likely to move in a southeasterly direction, toward residential wells. On November 30, 2005, Exelon submitted this report to Illinois EPA.

3.3.3 GROUNDWATER MONITORING PROGRAM

The Station has a monitoring program that has identified approximately 54 sampling locations (storm drain system catchbasins, groundwater monitoring wells, and surface water sampling locations), some of which are sampled as often as every day.

3.3.4 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

The REMP at the Station was initiated in 1966. The REMP includes the collection of multi-media samples including air, surface water, groundwater, fish, sediment, vegetation, local cow milk, and residential potable water. The samples are analyzed for beta and gamma-emitting radionuclides, tritium, iodine-131, and/or strontium as established in the procedures developed for the REMP. The samples are collected at established locations, identified as stations, so that trends in the data can be monitored.

Surface water samples and groundwater samples are collected, as part of REMP at a total of five locations. Surface water samples are collected at two locations upstream of the Station on the Kankakee (D-54) and Des Plaines (D-52) Rivers, and at one location downstream of the Station on the Illinois River (D-51). Groundwater samples are collected from a residential well "RW-1" (D-23), and at the Dresden Island Lock and Dam well (D-35).

In 2005, surface water tritium concentrations in the Kankakee River ranged from the Lower Limit of Detection (LLD) of 200 pCi/L to 720 pCi/L and are considered an upstream source.

An annual report is prepared providing a description of the activities performed and the results of the analysis of the samples collected from the various media. The latest report generated was prepared by Station personnel and is entitled "Dresden Nuclear Power Station Units 1, 2, and 3 Annual Radiological Environmental Operating Report, 1 January through 31 December 2005". This report concluded that the operation of the

Station had no adverse radiological impact on the environment. The annual report is submitted to the NRC.

3.4 IDENTIFIED AREAS FOR FURTHER EVALUATION

CRA used the information contained herein along with its understanding of the hydrogeology at the Station to identify AFEs, which were a primary consideration in the development of the scope of work in the Work Plan. The establishment of AFEs is a standard planning practice in hydrogeologic investigations to focus the investigation activities at areas where there is the greatest potential for impact to groundwater.

Specifically, AFEs were identified based on these six considerations:

- systems evaluations;
- risk evaluations;
- review of confirmed and/or potential releases;
- review of documents;
- review of the hydrogeologic conditions; and
- Station inspection completed on March 22 and 23, 2006.

Prior to CRA completing its analysis and determination of AFEs, Station personnel completed an exhaustive review of all historic and current management of systems that may contain potentially radioactively contaminated liquids.

CRA reviewed the systems identified by the Station, which have the potential for the release of radioactively contaminated liquids to the environment, and groundwater flow at the Station. This evaluation allowed CRA to become familiar with Station operations and potential systems that may impact groundwater. CRA then evaluated information concerning historic releases as provided by the Station. This information, along with a review of the results from historic investigations, was used to refine CRA's understanding of areas likely to have the highest possibility of impacting groundwater. Where at-risk systems or identified historical releases were located in close proximity or were located in areas, which could not be evaluated separately, the systems and historical releases were combined into a single AFE. At times, during the Station investigation, separate AFEs were combined into one or were otherwise altered based on additional information and consideration.

Finally, CRA used its understanding of known hydrogeologic conditions (prior to this investigation) to identify AFEs. Groundwater flow was an important factor in deciding whether to combine systems or historical releases into a single AFE or create separate AFEs. For example, groundwater flow beneath several systems that contain radioactively contaminated liquid that flows toward a common discharge point were likely combined into a single AFE.

Based upon its review of information concerning confirmed or potential historical releases, historic investigations, and the systems at the Station that have the potential for release of radioactively contaminated liquids to the environment combined with its understanding of groundwater flow at the Station, CRA has identified the following as the only AFEs (see Figure 3.1).

AFE-Dresden-1: CST System HPCI Piping for Units 2/3

This AFE was established based on information regarding historical releases of tritiated water in this area. In 1994 there was a leak from the HPCI return piping to the CST. The piping was isolated and repaired. Shallow groundwater monitoring wells were installed at that time. In August of 2004, the wells outside the Units 2/3 Reactor Building identified elevated tritium concentrations resulting from a leak in the HPCI suction piping. The piping was isolated and repaired. In January 2006, the Station personnel identified higher than expected concentrations of tritium in this area as part of its groundwater monitoring program. The HPCI piping in this area was suspect and isolated. The HPCI piping replacement is currently in progress.

AFE-Dresden-2: Unit 1 Spent Fuel Pool

This AFE was established based on information regarding the historical releases in this area consisting of a spent fuel pool overflow. Specifically, in 1989, radioactively contaminated water overflowed from the Unit 1 Fuel Pool. Available data showed soil was removed from the area.

AFE-Dresden-3: Radwaste Discharge Lines for Units 2/3

This AFE was established based on information regarding historical releases in this area, including those in 1984 and 1986. In October 1984 and July 1986 leaks occurred in the Units 2/3 Radwaste discharge piping. Most notably, in November 1999, a leak occurred on Units 2/3 Radwaste River Discharge Canal pipe. The piping was excavated and subsequently replaced.

AFE-Dresden-4: Piping from CST System and Storm Drain to Unit 1 Intake Canal

This AFE was established based on information regarding a historical release in this area due to a leak in an underground contaminated demineralized water (CDW) pipe. The water flowed into a storm drain that led to the Unit 1 Intake Canal.

4.0 FIELD METHODS

The field investigations completed for this HIR were completed in May and June 2006. Supplemental field activities were completed in July and August 2006. CRA supervised the installation of monitoring wells, collected samples from the newly-installed and existing monitoring wells, and collected samples from surface water locations. The field investigations were completed in accordance with the methodologies presented in the Work Plan (CRA, 2006).

4.1 SURFACE WATER ELEVATION MONITORING POINTS

Water levels in surface water bodies were measured from four surface water elevation monitoring points (SW-DN-101, SW-DN-102, SW-DN-103, and SW-DN-106) in June 2006 using a portable water level meter from fixed locations on bridges. During the August 2006 supplemental field activities, surface water elevations were measured from seven surface water elevation monitoring points (SW-DN-101, -102, -103, -104, -105, -106, and -107). The surface water elevation monitoring points are presented on Figure 4.1. Staff gauges were not installed at the Station due to safety concerns. Surface water elevations at locations SW-DN-104, -105, and -107 were not collected in May 2006 due to safety concerns at that time.

4.2 GROUNDWATER MONITORING WELL INSTALLATION

Sixteen new monitoring wells were installed for the fleetwide hydrogeologic investigation in May 2006. An additional 21 new monitoring wells were installed in July 2006 for the fleetwide hydrogeologic investigation. The additional wells were installed to further characterize the groundwater flow system and to determine the impact of surface water in the canals on groundwater flow directions. Monitoring well construction logs are provided in Appendix A. Figure 4.2 presents the locations of the 37 new monitoring wells and the existing monitoring wells at the Station. These locations were selected based on a review of all data provided, the hydrogeology at the Station, the existing well locations, and current understanding of identified AFEs. Table 4.1 summarizes the well completion details. The shallow boreholes were advanced into the bedrock from approximately 20 feet bgs to 42 feet bgs based upon the depth of the Pottsville Sandstone Formation, with the exception of locations MW-DN-102S (15 feet bgs) and MW-DN-107S (15 feet bgs). MW-DN-102S could not be advanced beyond 15 feet bgs due to complications with drilling and MW-DN-107S was only set on top of the bedrock and screened within the fill material at the Station. The

intermediate boreholes were advanced into the bedrock from approximately 50 feet bgs to 61 feet bgs depending upon the depth to the Maquoketa Shale Formation.

Prior to completing any ground penetration activities, CRA completed subsurface utility clearance procedures to minimize the potential of injury to workers and/or damage to subsurface utility structures. The subsurface clearance procedures consisted of completing an electronic survey within a minimum of 10-foot radius of the proposed location utilizing electromagnetic and ground penetrating radar technology. Additionally, an air knife was utilized to verify utilities were not present at the proposed location to a depth to 10 feet bgs.

Specific installation protocols for the shallow and intermediate monitoring wells are described below:

- the borehole was advanced to the target depth by an air rotary drill equipped with a 6-inch outer diameter drill bit;
- a nominal 2-inch diameter (No. 10 slot) PVC screen, 10 feet in length, attached to a sufficient length of 2-inch diameter schedule 40 PVC riser pipe to extend to the surface, was placed into the borehole through the augers;
- a filter sand pack consisting of silica sand was installed to a minimum height of 2 feet above the top of the screen as the augers were removed;
- a minimum 2-foot thick seal consisting of 3/8-inch diameter bentonite pellets or chips was placed on top of the sand pack and hydrated using potable water;
- the remaining borehole annulus was sealed to within 3 feet of the surface using pure bentonite chips; and
- the remaining portion of the annulus was filled with concrete and a 6-inch diameter protective above-grade casing. The wellhead was fitted with a watertight, lockable cap.

4.3 GROUNDWATER MONITORING WELL DEVELOPMENT

In order to establish good hydraulic communication with the aquifer and reduce the volume of sediment in the newly installed monitoring wells, monitoring well development was conducted in accordance with the procedure outlined below:

• monitoring wells were surged using a pre-cleaned surge block or bailer for a period of at least 10 minutes;

- water was purged from the monitoring well using an electric submersible or peristaltic pump;
- groundwater was collected at regular intervals and the pH, temperature, and conductivity were measured using field instruments. These instruments were calibrated daily according to the manufacturer's specifications. Additionally, observations such as color, odor, and turbidity of the purged water were recorded; and
- development continued until the turbidity and silt content of the monitoring wells were significantly reduced and three consistent readings of pH, temperature, and conductivity were recorded, or a maximum of ten well volumes were purged.

Thirty-six of 37 newly installed monitoring wells were developed in accordance with this monitoring well development procedure. Monitoring well MW-DN-123S was dry upon installation and was therefore not developed.

A summary of monitoring well development parameters is provided in Table 4.2.

4.4 SURVEY

The new monitoring wells and surface water sampling locations were surveyed to establish reference elevations relative to mean sea level. The top of each well casing was surveyed to the nearest 0.01 foot relative to the North American Vertical Datum, 1988 (NAVD 88), and the survey point was marked on the well casing. The survey included the ground elevation at each well to the nearest 0.10 foot relative to the NAVD 88, and the well location to the nearest 1.0 foot. A reference point was also marked on the bridge surface or railing.

4.5 GROUNDWATER AND SURFACE WATER ELEVATION MEASUREMENTS

On May 22, 2006 and again on August 7, 2006, CRA collected a round of water level measurements from the monitoring wells and surface water elevation monitoring points at the Station in accordance with the Work Plan. Based on the measured depth to water from the reference point and the surveyed elevation of the reference point, the groundwater or surface water elevation was calculated. A summary of groundwater elevations for the event is provided in Table 4.3. A summary of surface water elevations for the event is provided in Table 4.4.

Prior to the water level measurements, the wells were identified and located. Once the wells were identified, CRA completed a thorough inspection of each well and noted any deficiencies. Water level measurements were collected using an electronic depth-to-water probe accurate to $\pm\,0.01$ foot. The measurements were made from the designated location on the inner riser or steel casing of each monitoring well, and on the reference point for each surface water elevation monitoring point. The water level measurements were obtained using the following procedures:

- the proper elevation of the meter was checked by inserting the tip into water and noting if the contact was registering correctly;
- the tip was dried, and then slowly lowered into the well until contact with the water was indicated;
- the tip was slowly raised until the light and/or buzzer just began to activate. This indicated the static water level;
- the reading at the reference point was noted to the nearest hundredth of a foot;
- the reading was then re-checked; and
- the water level was then recorded, and the water level meter decontaminated prior to use at the next well location.

4.6 GROUNDWATER AND SURFACE WATER SAMPLE COLLECTION

CRA conducted one round of groundwater sampling during the completion of the Work Plan for these hydrogeologic investigations. A total of 45 monitoring wells were sampled between May 23 and June 2, 2006. Of the 45 monitoring wells sampled, 16 were newly installed. In addition, between August 7, 2006 to August 14, 2006, CRA conducted a supplemental round of groundwater sampling of 21 newly installed wells (installed in July 2006) and one previously installed groundwater well. The sampling for each event was scheduled to allow for 2 weeks to elapse between well development and groundwater sample collection. The existing wells were selected for inclusion in this investigation based on their proximity to AFEs.

At the monitoring well locations, CRA conducted the sampling using pneumatic bladder pumps or peristaltic pumps and dedicated polyethylene tubing to employ low flow purging techniques as described in Puls and Barcelona (1996).

The groundwater in the monitoring wells was sampled by the following low-flow procedures:

- the wells were located and the well identification numbers were verified;
- a water level measurement was taken;
- the well was sounded by carefully lowering the water level tape to the bottom of the
 well (so as to minimize penetration and disturbance of the well bottom sediment),
 and comparing the sounded depth to the installed depth to assess the presence of
 any excess sediment or drill cuttings;
- the pump or tubing was lowered slowly into the well and fixed into place such that
 the Intake was located at the mid-point of the well screen, or a minimum of 2 feet
 above the well bottom/sediment level;
- the purging was conducted using a pumping rate between 100 to 500 milliliters per minute. Initial purging began using the lower end of this range. The groundwater level was monitored to ensure that a drawdown of less than 0.3 foot occurred. If this criterion was met, the pumping rate was increased dependent on the behavior of the well. During purging, the pumping rate and groundwater level were measured and recorded approximately every 10 minutes;
- the field parameters [pH, temperature, conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity] were monitored during the purging to evaluate the stabilization of the purged groundwater. Stabilization was considered to be achieved when three consecutive readings for each parameter, taken at 5-minute intervals, were within the following limits:

pH ± 0.1 pH units of the average value of the three readings,

Temperature ± 3 percent of the average value of the three readings,

Conductivity ± 0.005 milliSiemen per centimeter (mS/cm) of the average value

of the three readings for conductivity <1 mS/cm and $\pm 0.01 \text{ mS/cm}$ of the average value of the three readings for

conductivity >1 mS/cm,

ORP ± 10 millivolts (mV) of the average value of the three readings,

DO \pm 10 percent of the average value of the three readings, and

Turbidity ± 10 percent of the average value of the three readings, or a final

value of less than 5 nephelometric turbidity units (NTUs);

• once purging was complete, the groundwater samples were collected directly from the pump/tubing directly into the sample containers; and

 in the event that the groundwater recharge to the monitoring well was insufficient to conduct the low-flow procedure, the well was pumped dry and allowed to sufficiently recharge prior to sampling.

All groundwater samples were labeled with a unique sample number, the date and time, the parameters to be analyzed, the job number, and the sampler's initials. For the May and June 2006 sampling event, the samples were screened by the Station for shipment to Teledyne Brown Engineering Inc. (Teledyne Brown). For the August 2006 sampling event, groundwater samples were shipped to Teledyne Brown based on screening results obtained during well development activities.

Due to the limited volume of water available for collection in monitoring well MW-DN-123S, the monitoring well was not purged and a bailer was used to collect a groundwater sample for tritium only (insufficient volume of groundwater remained to sample for strontium-89/90 or gamma-emitting radionuclides).

Field measurements for the hydrogeologic investigation are presented in Table 4.5 and a sample key is provided in Table 4.6.

CRA containerized the water purged from the monitoring wells during the sampling, as well as the water purged from all of the wells during the hydrogeologic investigation. The water was placed into 55-gallon drums, which will be processed by the Station in accordance with its NPDES permit.

Surface water samples were collected from May 23 to June 2, 2006 at the Units 2/3 Intake Canal (SW-DN-101), Units 2/3 Discharge Canal (SW-DN-102), Recycling Canal (SW-DN-103), Hot Canal (SW-DN-104), Cold Canal (SW-DN-105) and the Pond (SW-DN-106). The surface water sampling locations are presented on Figure 4.1.

The surface water samples were collected by directly filling the sample container from the composite samplers at the determined locations until completely filled. A sample key is presented in Table 4.6.

4.7 DATA QUALITY OBJECTIVES

CRA has validated the analytical data to establish the accuracy and completeness of the data reported. Teledyne Brown provided the analytical services. The Quality Assurance Program for the laboratory is described in Appendix C. Analytical data for groundwater and surface water samples collected in accordance with the Work Plan are

presented in Appendix D. Data validation reports are presented in Appendix E. The data validation included the following information and evaluations:

- sample preservation;
- sample holding times;
- laboratory method blanks;
- laboratory control samples;
- laboratory duplicates;
- verification of laboratory qualifiers; and
- field quality control (field blanks and duplicates).

Following the completion of field activities, CRA compiled and reviewed the geologic, hydrogeologic, and analytical data.

The data were reviewed using the following techniques:

- data tables and databox figures;
- hydrogeologic cross-sections; and
- hydraulic analyses.

4.8 <u>SAMPLE IDENTIFICATION</u>

Systematic sample identification codes were used to uniquely identify all samples. The identification code format used in the field was: WG - DN - DSP-152 - 052306 - JH - 001. A summary of sample identification numbers is presented in Table 4.6.

WG - Sample matrix - groundwaterWS - Sample matrix - surface waterRB - Sample matrix - rinse blank

DN - Station code DSP-152 - Well location

052306 - Date

JH - Sampler initial001 - Sample number

4.9 CHAIN-OF-CUSTODY RECORD

The samples were delivered to Station personnel under chain-of-custody protocol. Subsequently, the Station shipped the samples under chain-of-custody protocol to Teledyne Brown for analyses.

4.10 QUALITY CONTROL SAMPLES

Quality control samples were collected to evaluate the sampling and analysis process.

Field Duplicates

Field duplicates were collected to verify the accuracy of the analytical laboratory by providing two samples collected at the same location and then comparing the analytical results for consistency. Field duplicate samples were collected at a frequency of one duplicate for every ten samples collected. A total of four duplicate samples were collected. The locations of duplicate samples were selected in the field during the performance of sample collection activities. The duplicate samples were collected simultaneously with the actual sample and were analyzed for the same parameters as the actual samples.

Split Samples

During the May/June 2006 sampling event, split samples were collected for the NRC for tritium simultaneously with the actual sample at every sample location. Split samples were delivered to the Station personnel and made available to the NRC and Illinois Environmental Protection Agency (EPA).

During the August 2006 sampling event, split samples were collected for the NRC and for the Illinois Emergency Management Agency (IEMA) for tritium simultaneously with the actual sample at every sample location. Split samples were delivered to the Station personnel and made available to the NRC, IEMA, and Illinois EPA.

4.11 ANALYSES

Groundwater and surface water samples were analyzed for tritium and gamma-emitting radionuclides as listed in NUREG-1302 and strontium-89/90 as listed in 40 CFR 141.25.

5.0 RESULTS SUMMARY

This section provides a summary of Station-specific geology and hydrogeology, along with a discussion of hydraulic gradients, groundwater elevations, and flow directions in the vicinity of the Station. This section also presents and evaluates the analytical results obtained from activities performed in accordance with the Work Plan.

5.1 STATION GEOLOGY

The geology encountered during the monitoring well installation activities is consistent with the geology described in Section 2.4.2 and the geology described by RETEC (RETEC, 2005). The geology beneath the Station consists of a relatively thin overburden deposit that overlies layers of sandstone, limestone, shale, and dolomite. Geologic cross-section locations are shown on Figure 5.1 and the geologic lines of sections are shown on Figures 5.2 and 5.3, respectively. Geological units at the Station consist of the following:

- Thin layer of overburden and fill;
- Pottsville Sandstone Formation;
- Divine Limestone Formation:
- Maquoketa Shale; and
- Galena Dolomite Formation.

Where present, the overburden ranges between 0 and 5 feet thick at the Station and consists of highly organic dark brown to black sandy clay with some gravel. During construction of the Station, fill consisting of gravel and sand was used to replace the overburden within the PA. At monitoring well MW-DN-108I, fill was encountered to a depth of approximately 26 feet bgs. According to Station personnel, MW-DN-108I was drilled over the abandoned intake trough for the Unit 1 cooling water from the Unit 1 Cribhouse. There is approximately 12 feet of fill along the east bank of the Hot Canal near well cluster DSP-159; the fill was placed several years ago during construction. Monitoring well MW-DN-107S was also installed in the fill in the PA.

The Pottsville Sandstone Formation is a hard, gray to yellowish-brown, medium- to coarse-grained sandstone. The Pottsville Sandstone Formation is prevalent beneath the entire area of the Station as shown on Figures 5.2 and 5.3. The thickness of the sandstone near the Station ranges from 25 to 30 feet. Monitoring wells MW-DN-101S to -106S, -109S to -116S, and -118S to -123S are all screened within the Pottsville Sandstone

Formation. According to RETEC, the Pottsville Sandstone Formation was not encountered during drilling activities to the south of the Station at well clusters DSP-158 or DSP-159.

The Divine Limestone Formation is below the Pottsville Sandstone Formation and is a hard, light-gray crystalline limestone. A transitional zone was noted between the Divine Limestone and the underlying Maquoketa Shale at approximately 40 to 55 feet bgs where the Divine Limestone Formation had interbedded layers of shale and traces of chert present. The thickness of the Divine Limestone Formation across the Station is approximately 15 to 30 feet. Monitoring wells MW-DN-101I, -102I, -103I, -108I to -117I, and -119I to -123I are all screened within the Divine Limestone Formation.

The Maquoketa Shale is below the Divine Limestone Formation and is a hard, pale-green to gray shale with some locations having trace amounts of sandstone and limestone. The Maquoketa Shale acts as a confining layer and aquitard at the Station, separating the water table aquifer from the Deep Aquifer below. To identify the bottom of the water table aquifer, the boring was advanced approximately 2 feet into the top of the Maquoketa Shale during installation of intermediate monitoring wells. The depth to the top of the shale ranged from 45 to 55 feet.

Underneath the Maquoketa Shale is the Galena Dolomite Formation; however, it was not encountered during the HIR drilling because none of the newly installed wells penetrated the overlying Maquoketa Shale. The existing monitoring wells at the Station that are set into the upper portion of the Galena Dolomite Formation (DSP-157D, DSP-158D, and DSP-159D) were dry when monitored during the HIR.

Two geologic cross-sections were generated employing the stratigraphic data collected during this investigation. The geologic cross-section locations are shown on Figure 5.1 and the geologic lines-of-sections trending north-south and east-west are shown on Figures 5.2 and 5.3, respectively.

Geologic cross-section A-A' (Figure 5.2) is a north-south section running through the center of the Units 2/3 Reactor and Turbine Building and depicts the approximate depth and location of the buildings with respect to the surrounding wells. This cross-section begins to the north of the PA (DSP-149) and terminates to the south of the PA (DSP-157M). This cross-section transects through the middle of the Radwaste Discharge Piping for Units 2/3 and portions of the CST System HPCI Piping.

Geologic cross-section B-B' (Figure 5.3) is a west-east section through the northern section of the Station. This cross-section begins at the western end of the PA

(MW-DN-110I) at the Station and terminates near the northeastern end of the Station close to the fence line bordering the Unit 1 Intake Canal (MW-DN-101I). This cross-section transects through the Radwaste Discharge Piping for Units 2/3 and the northern portions of the Unit 1 Spent Fuel Pool and the CDW Piping from the CST System.

5.2 STATION HYDROGEOLOGY

The water table aquifer at the Station has been divided into two zones, shallow and intermediate. Groundwater contour maps for shallow and intermediate groundwater zones at the Station are illustrated on Figures 5.4 and 5.5, respectively. These figures are discussed further in the section below.

The shallow groundwater zone at the Station represents the saturated portion of the Pottsville Sandstone Formation and extends to the top of the Divine Limestone Formation.

The intermediate groundwater zone at the Station represents the Divine Limestone Formation and extends to the top of the Maquoketa Shale.

The Maquoketa Shale acts as an aquitard, impeding the vertical movement of groundwater and preventing the migration of groundwater downward to the deeper aquifers.

5.2.1 GROUNDWATER FLOW DIRECTIONS

Generally, groundwater flow in both the shallow and intermediate zones at the Station is radially outward from the Station, and is influenced by the Kankakee River, the Illinois River, and the canal network.

The direction of groundwater flow towards the Kankakee and Illinois Rivers is consistent with the description of regional groundwater flow in Section 2.4.3. Both shallow and intermediate groundwater flow have been influenced by the Station's construction, which includes features such as the Unit 1 and Units 2/3 Buildings and the canal network, as discussed in Section 5.2.2.

As indicated in the preceding discussion, the hydrogeologic framework at the Station is influenced by zones of recharge (i.e., area between the canal network and Kankakee

River) and discharge (i.e., Kankakee River and canal network), fracturing (both natural and man-made during Station construction), building foundations, and the canal network.

Shallow Groundwater Zone

The groundwater flow contours on Figure 5.4 were generated using groundwater elevation data from monitoring wells completed in the Pottsville Sandstone Formation and from water levels in the canals. The groundwater flow pattern and water levels in the canal network in the shallow groundwater flow zone are primarily controlled by the location of recharge and discharge zones, and secondarily by man-made structures and fracture distribution and orientation. The shallow groundwater contours parallel the surface water bodies, indicating that the surface water bodies control the groundwater flow patterns in this zone.

A groundwater mound exists to the south of the Units 2/3 Buildings with a high point located at DSP-157S (515.84 feet AMSL) as shown on Figure 5.4.

Intermediate Groundwater Zone

The groundwater flow contours shown on Figure 5.5 were generated using groundwater elevation data from monitoring wells completed in the Divine Limestone Formation. The groundwater flow patterns in the Divine Limestone Formation are primarily controlled by fracture distribution and orientation, and the location of recharge and discharge zones. Secondary influences include man-made structures such as the Station's foundations.

As in the shallow groundwater zone, groundwater in the intermediate zone flows radially outward from the center of the Station. A northwest-southeast oriented groundwater divide is evident and is defined by the groundwater elevation in monitoring wells DSP-125 (513.11 feet AMSL) and DSP-152 (513.02 feet AMSL), which are located south of the PA.

5.2.2 MAN-MADE INFLUENCE ON GROUNDWATER FLOW

Station Structures

Groundwater flow in the shallow zone is generally radially outward from the center of the Station. The groundwater flow is influenced by the presence of the Unit 1 Sphere, Units 2/3 Reactor and Turbine Buildings, and associated structures including the Unit 1 and Units 2/3 Radwaste Buildings, the Units 2/3 Off-gas Filter Building, the Unit 1 and Units 2/3 Cribhouses, and the Unit 1 Fuel Pool and Fuel Handling Buildings. Worksheets depicting building depths were provided by Station personnel during the completion of this HIR. These buildings were constructed through bedrock (sandstone and limestone) to a depth of approximately 45 to 50 feet bgs and were cast on top of the confining shale layer (Maquoketa Shale) (see Figure 5.2).

As a result, groundwater flows laterally around these structures. There is little variation in geology around the Unit 1 Sphere; however, the groundwater contours for both shallow and intermediate groundwater zones show a slight deflection to the north on the eastern side of the Unit 1 Sphere. The Unit 1 Turbine Building was also constructed through bedrock, but not cast on top of Maquoketa Shale. The depth of its foundations is approximately 26 feet bgs. Therefore, groundwater in the intermediate zone of the water table aquifer flows beneath the Unit 1 Turbine Building.

Canal System

The Canal System at the Station also influences groundwater flow. Both the Hot and Cold Canals are unlined flumes, 8 feet deep and 55 feet wide, which were blasted into the bedrock. Therefore, the base of the canals, especially at the northern end, is within the Pottsville Sandstone.

The canal system flow regimes are controlled by Flow Regulating Gates. Water levels within the canals, especially the Hot Canal, may vary as much as 1 to 2 feet during the day based on the Station's need for cooling water. Water levels in the canals are also influenced by the operation of the cooling towers located along their banks and to the southwest of the PA. The pumps and discharge flumes that are associated with these systems are cycled on and off as needed. Monitoring wells located near the canal and the Cooling Tower Pumps and Discharge Flumes include DSP-127, MW-DN-110S/I, MW-DN-103S/I, MW-DN-121S, MW-DN-123S/I, DSP-159S/M, and DSP-126. These wells will be influenced by the varying water levels in the canals and the accompanying surface water discharge to groundwater.

The Units 2/3 Intake Canal also has an effect on the groundwater levels at the Station as shown on Figure 5.5. There is a groundwater low point to the north of the PA in this area. This low point is attributable to the fact that surface water from the Kankakee River is being pumped into the Units 2/3 Cribhouse within the unlined Units 2/3 Intake Canal, and groundwater is being influenced by the pumping of surface water in this area.

Industrial Cooling Pond

The Hot and Cold Canals run generally north-south to the Industrial Cooling Pond (Pond). The Pond, which covers approximately 1,284 acres, is over 8,700 feet south of the PA (Figure 2.1). The Pond was formed by constructing a clay dike around a low lying area. Approximately 100 drain tiles were installed to drain water from the low lying areas to the Kankakee River. When the pond was constructed these drain tiles were filled with concrete.

The Pond is not lined and is located along the west bank of the Kankakee River. The surface water in the Hot Canal flows south to the Pond and then water from the Pond flows back to the north through the Cold Canal.

Dresden Island Lock and Dam

The normal pool elevation for the Kankakee and Des Plaines Rivers, which join to form the Illinois River, is 505 feet AMSL. Dresden Island Lock and Dam, located approximately 3,000 feet northwest of the Station, control the pool elevation. This lock and dam (which is controlled by the Army Corps of Engineers) also controls the surface water elevations in the Unit 1 and Units 2/3 Intake Canals and the Unit 1 Discharge Canal.

5.2.3 <u>VERTICAL HYDRAULIC GRADIENTS</u>

Groundwater elevation data from several monitoring well nests installed at the Station have been used to calculate the vertical hydraulic gradient between the shallow and intermediate groundwater zones. The calculated hydraulic gradients for the Station are provided in Table 5.1. A moderate downward vertical gradient (0.062 feet/foot) was calculated to the west of the Units 2/3 Building. A moderate downward vertical gradient (0.0215 feet/foot) was also calculated for the well clusters east of the Unit 1 Turbine Building. At the MW-DN-114 well cluster, which is located south of the turbine buildings in a cove between the Unit 2/3 and Unit 1 Turbine Buildings, a strong upward gradient (-0.332 feet/foot) was calculated. A strong upward gradient was also calculated for well cluster MW-DN-123 (-0.566 feet/foot). The average calculated vertical gradient at the Station is approximately -0.02 feet/foot, which indicates that there is an upward gradient across the Station.

5.2.4 LATERAL GROUNDWATER FLOW AND VELOCITY

Shallow Groundwater Zone

Groundwater flow velocity for the shallow zone was calculated using a hydraulic conductivity (slug test methodology) of 34.3 feet per day (RETEC, 2005), a porosity of 30 percent for the Pottsville Sandstone, and a hydraulic gradient of 0.002 to 0.009 foot per foot (based on August 2006 water elevations). The groundwater flow velocity for the shallow zone was calculated to range from 87 to 355 feet per year (ft/yr).

Intermediate Groundwater Zone

Groundwater flow velocity for the intermediate zone was calculated using a hydraulic conductivity (slug test methodology) of 0.67 feet per day (RETEC 2005), a porosity of 10 percent for the Divine Limestone, and a hydraulic gradient of 0.007 to 0.09 foot per foot (based on August 2006 water elevations). The groundwater flow velocity for the intermediate zone was calculated to range from 17 to 225 ft/yr.

The horizontal velocities are representative of the area south of the Units 2/3 Turbine Building since the wells used by RETEC to develop the hydraulic conductivities are located in that area.

5.3 GROUNDWATER QUALITY

CRA personnel collected groundwater samples from 66 monitoring wells at the Station. The samples were analyzed for tritium and additional radionuclides. Teledyne Brown provided the analytical services. The Quality Assurance Program for the laboratory is described in Appendix C. The analytical data reports are provided in Appendix D.

The analytical data presented herein has been subjected to CRA's data validation process. CRA has used the data with appropriate qualifiers where necessary.

The data reported in the figures and tables does not include the results of recounts that the laboratory completed, except if those results ultimately replaced an initial report. The tables and figures, therefore, include only the first analysis reported by the laboratory. Where multiple samples were collected over time, then the most recent result has been used in the discussion, below.

5.3.1 SUMMARY OF BETA-EMITTING RADIONUCLIDES ANALYTICAL RESULTS

A summary of the tritium results for the groundwater samples collected during this investigation is provided in Table 5.2 and shown on Figures 5.6 and 5.7.

All tritium concentrations were less than the United States Environmental Protection Agency (USEPA) drinking water standard of 20,000 pCi/L. Tritium was detected at concentrations greater than the LLD of 200 pCi/L.

All strontium-90 concentrations were less than the USEPA drinking water standard of 8.0~pCi/L.

Tritium was detected in groundwater samples from nine locations in the shallow groundwater zone at concentrations ranging from 220 ± 114 pCi/L to $4,250 \pm 475$ pCi/L.

Tritium was detected in groundwater samples from twenty-one wells in the intermediate groundwater zone at concentrations ranging from 210 ± 124 pCi/L to $13,200 \pm 319$ pCi/L. The highest concentration was detected in the groundwater sample collected from DSP-123, which was installed in the intermediate groundwater zone to the north of the Unit 1 Sphere.

A summary of the strontium-89/90 results for the groundwater samples collected as part of the investigation that is the subject of this HIR is provided in Table 5.3 and shown on Figures 5.8 and 5.9. Strontium-89/90 was detected in one monitoring well (MW-DN-108I) at a concentration greater than the LLD of 2.0 pCi/L. In August 2006, a sample was collected from this well, and strontium-89/90 was detected at a concentration of 2.72 ± 1.01 pCi/L. This sample was further analyzed for strontium-90, which was detected at a concentration of 2.17 ± 0.783 pCi/L. Furthermore, a duplicate of this sample was analyzed for total strontium and strontium-90. Since the strontium-90 results exceeded the sum of the total strontium in the duplicate sample, it has been concluded that the results of this sample are invalid.

In May 2006, a sample was collected from this monitoring well (MW-DN-108I). Analyses in July 2006 detected strontium-89/90 at a concentration of 4.42 ± 1.23 pCi/L. In July 2006, this sample was further analyzed for strontium-90, which was detected at a concentration of 4.37 ± 0.66 pCi/L. In July 2006, the sample was re-analyzed and strontium-89/90 was detected at a concentration of 3.39 ± 0.774 pCi/L. In July 2006, this sample was further analyzed for strontium-90, which was detected at a concentration of 2.72 ± 1.29 pCi/L. Because the total strontium from these two samples varied by almost

40 percent and the margin of error was nearly 50 percent, it became necessary to run a third analysis to verify what, if any, detectable concentration existed. This could not be completed for the May 2006 samples due to the samples becoming contaminated at the analytical laboratory. Normal protocol for an anomalous positive result is to perform a confirmatory sampling and analysis of the respective well. Consequently, the well MW-DN-108I was re-sampled in August 2006, as discussed above.

5.3.2 SUMMARY OF GAMMA-EMITTING RADIONUCLIDES ANALYTICAL RESULTS

Gamma-emitting target radionuclides were not detected at concentrations greater than their respective LLDs. A summary of the gamma-emitting radionuclides results for the groundwater samples collected as part of the investigation that is the subject of this HIR is provided in Table 5.3 and shown on Figures 5.8 and 5.9.

Other non-targeted radionuclides were also included in the tables but excluded from discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

5.3.3 SUMMARY OF FIELD MEASUREMENTS

Table 4.5 presents of a summary of field measurements collected during the well purging and sampling activities. These field measurements included pH, dissolved oxygen, conductivity, turbidity and temperature. The field parameters were typical of a shallow aquifer with carbonate source rock (i.e., the underlying Divine Limestone Formation and Maquoketa Shale). As such, the pH values were found to be above 7.0 and the conductivity was indicative of a shallow water table system subject to surface water recharge.

5.4 **SURFACE WATER QUALITY**

Six surface water samples were collected from the locations shown on Figure 4.1. The samples were analyzed for tritium, gamma-emitting radionuclides, and strontium-89/90. Teledyne Brown provided the analytical services. The Quality

Assurance Program for the laboratory is described in Appendix C. The analytical data reports are provided in Appendix D.

5.4.1 SUMMARY OF BETA-EMITTING RADIONUCLIDES ANALYTICAL RESULTS

Tritium was not detected at concentrations greater than the LLD of 200 pCi/L. A summary of the tritium results for the surface water samples collected in this investigation is provided in Table 5.4 and shown on Figure 5.6.

Strontium-89/90 was not detected at concentrations greater than the LLD of 2.0 pCi/L. A summary of the strontium-89/90 analytical results for the surface water samples collected in this investigation is provided in Table 5.5 and shown on Figure 5.8.

5.4.2 SUMMARY OF GAMMA-EMITTING RADIONUCLIDES ANALYTICAL RESULTS

Gamma-emitting target radionuclides were not detected at concentrations greater than their respective LLDs. A summary of the gamma-emitting radionuclides results for the surface water samples collected in this investigation is provided in Table 5.5 and shown on Figure 5.8.

Other non-targeted radionuclides were also included in the tables but excluded from discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

6.0 RADIONUCLIDES OF CONCERN AND SOURCE AREAS

This section discusses radionuclides evaluated in this investigation, potential sources of the radionuclides detected, and their distribution.

6.1 GAMMA-EMITTING RADIONUCLIDES

Gamma-emitting target radionuclides were not detected at concentrations greater than their respective LLDs. Other non-targeted radionuclides were also included in the tables but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

6.2 <u>BETA-EMITTING RADIONUCLIDES</u>

Strontium-89/90 was detected in one monitoring well (MW-DN-108I) at a concentration greater than the LLD of 2.0 pCi/L. In August 2006, a sample was collected from this well, and strontium-89/90 was detected at a concentration of 2.72 ± 1.01 pCi/L. This sample was further analyzed for strontium-90, which was detected at a concentration of 2.17 ± 0.783 pCi/L. Furthermore, a duplicate of this sample was analyzed for total strontium and strontium-90. Since the strontium-90 results exceeded the sum of the total strontium in the duplicate sample, it has been concluded that the results of this sample are invalid.

In May 2006, a sample was collected from this monitoring well (MW-DN-108I). Analyses in July 2006 detected strontium-89/90 at a concentration of 4.42 ± 1.23 pCi/L. In July 2006, this sample was further analyzed for strontium-90, which was detected at a concentration of 4.37 ± 0.66 pCi/L. In July 2006, the sample was re-analyzed and strontium-89/90 was detected at a concentration of 3.39 ± 0.774 pCi/L. In July 2006, this sample was further analyzed for strontium-90, which was detected at a concentration of 2.72 ± 1.29 pCi/L. Because the total strontium from these two samples varied by almost 40 percent and the margin of error was nearly 50 percent, it became necessary to run a third analysis to verify what, if any, detectable concentration existed. This could not be completed for the May 2006 samples due to the samples becoming contaminated at the analytical laboratory. Normal protocol for an anomalous positive result is to perform a confirmatory sampling and analysis of the respective well. Consequently, the well MW-DN-108I was re-sampled in August 2006, as discussed above.

Tritium was detected at concentrations greater than the LLD of 200 pCi/L. Detectable concentrations of tritium ranged from 210 ± 124 pCi/L to $13,200 \pm 319$ pCi/L. The following sections focus on tritium and strontium; specifically, providing general characteristics of tritium and strontium, potential sources, distribution in groundwater, and a conceptual model for migration.

6.3 TRITIUM

6.3.1 GENERAL CHARACTERISTICS

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common forms of tritium are tritium gas and tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen. Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food, or absorption through skin. Once tritium enters the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine within a month or so after ingestion. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity, and in special production reactors, where the isotopes lithium-7 and/or boron-10 are bombarded to produce tritium.

Although tritium can be a gas, its most common form is in water because, like non-radioactive hydrogen, radioactive tritium reacts with oxygen to form water. Tritium replaces one of the stable hydrogen atoms in the water molecule and is called tritiated water. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like non-tritiated water in the subsurface, and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (³He). This radioactive decay releases a beta particle (low-energy electron). The radioactivity of tritium is the source of the risk of exposure.

Tritium is one of the least dangerous radionuclides because it emits very weak radiation and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

6.3.2 DISTRIBUTION IN STATION GROUNDWATER

This section provides an overview of the lateral and vertical distribution of tritium detected in groundwater at the Station. Tritium was detected in groundwater at concentrations greater than the LLD of 200 pCi/L in both the shallow and intermediate groundwater zones.

Hydrogeologic profiles were created across the Station at locations shown on Figure 5.1. Hydrogeologic profiles of the tritium concentrations in groundwater are presented on Figures 6.1, 6.2, and 6.3. The following discussion presents the distribution of tritium concentrations in Station groundwater with respect to the location of a particular AFE.

The distribution of tritium in the shallow groundwater zone is shown on Figure 5.6, and the distribution of tritium in the intermediate groundwater zone is shown on Figure 5.7. As shown in Figures 5.6 and 5.7, there appear to be two primary sources of tritium beneath the Station. One is from the HPCI Piping leaks and the other is from the Unit 1 Fuel Pool overflow. The remainder of this section provides further details on the distribution of the tritium related to the four AFEs.

AFE-Dresden-1: CST System HPCI Piping Leak

The most frequent detections of tritium in the shallow and intermediate groundwater zones were identified near the Units 2/3 Turbine Building on its south, east and west sides. As demonstrated in the following paragraphs, the source of the tritium in this area is historical tritium releases from the CST System HPCI Piping.

The highest concentrations of tritium in the shallow groundwater zone were detected within the area surrounding CST System HPCI Piping at monitoring wells MW-DN-102S ($4,250 \pm 475 \, \text{pCi/L}$), MW-DN-114S ($2,770 \pm 336 \, \text{pCi/L}$), and MW-DN-107S ($1,040 \pm 165 \, \text{pCi/L}$). MW-DN-102S is located approximately 600 feet southwest of CST System HPCI Piping. MW-DN-114S is located approximately 450 feet northeast of CST System HPCI Piping. MW-DN-107S is located approximately 300 feet northeast of CST System HPCI Piping.

Groundwater flows radially outward beneath the PA. Near the CST System HPCI Piping, the flow is to the northwest, west and south-southwest with minimal flow also to the northeast. Tritium detected in groundwater follows this flow path as it moves from the HPCI Piping around the buildings to the northwest (Figure 5.4). Tritium was also detected at concentrations greater than the LLD of 200 pCi/L in groundwater samples collected from monitoring wells MW-DN-111S (638 ± 140 pCi/L) and MW-109S (251 ± 120 pCi/L), located to the west-northwest, hydraulically downgradient of CST System HPCI Piping. In addition, tritium was also detected greater than the LLD of 200 pCi/L in groundwater samples collected from MW-DN-113S (451 ± 136 pCi/L), located to the south of the CST System HPCI Piping. Although MW-DN-113S is not presently downgradient of AFE-Dresden-1, seasonal fluctuations in groundwater elevations could result in this well being downgradient to the AFE.

Within the intermediate groundwater zone, tritium was detected in groundwater monitoring $(320 \pm 127 \text{ pCi/L})$, samples from wells DSP-125 MW-DN-102I $(1,380 \pm 195 \text{ pCi/L}),$ DSP-124 $(10,000 \pm 284 \text{ pCi/L})$, MW-DN-109I $(3,620 \pm 413/3,750 \pm 424 \text{ pCi/L})$, MW-DN-112I $(1,520 \pm 214 \text{ pCi/L})$, and MW-DN-110I (516 ± 134 pCi/L), within the area surrounding CST System HPCI Piping for Units 2/3. DSP-125 is located approximately 100 feet east of the area of the release at the CST System HPCI Piping for Units 2/3. MW-DN-102I is located approximately 600 feet southwest of the CST System HPCI Piping. DSP-124, MW-DN-109I, MW-DN-112I, and MW-DN-110I are all located to the northwest and are located hydraulically downgradient of the release at the CST System HPCI Piping. These tritium levels demonstrate declining (10,000 ± 284 pCi/L to 516 ± 134 pCi/L) concentrations with increased distance from the CST System Piping.

Groundwater flow in and around the Units 2/3 Turbine Building is radially outward from the center of the PA as depicted for the shallow and intermediate groundwater zones on Figures 5.4 and 5.5. This flow pattern provides a potential explanation for the detection of tritium greater than the LLD of 200 pCi/L in the groundwater samples from monitoring wells MW-DN-102S and MW-DN-102I, which are located southwest of the CST. Groundwater containing tritium that has originated in the area of the HPCI Piping for Units 2/3 also migrates to the northeast underneath the Unit 1 Turbine Building within the intermediate zone of the water table aquifer.

AFE-Dresden-2: Unit 1 Spent Fuel Pool

Groundwater flow within the shallow groundwater zone in the area of the Unit 1 Spent Fuel Pool is consistent with the general flow direction across the Station. However, there is a slight deflection of groundwater flow east of the Unit 1 Turbine Building due

to the influence of the structure at that location. The closest shallow monitoring well to the Unit 1 Spent Fuel Pool is MW-DN-118S. The groundwater sample from this well contained tritium at a concentration of $1,650 \pm 227$ pCi/L while the sample from MW-DN-105S, located upgradient of the Unit 1 Spent Fuel Pool, did not contain tritium at concentrations greater than the LLD of 200 pCi/L. MW-DN-101S is located to the north of the Unit 1 Spent Fuel Pool along the banks of the Unit 1 Intake Canal. The groundwater sample from MW-DN-101S had a tritium concentration of 220 \pm 114 pCi/L, only slightly greater than the LLD of 200 pCi/L.

The highest concentration of tritium in the intermediate groundwater zone across the Station detected **DSP-123** was in a groundwater sample from $(13,100 \pm 318/13,200 \pm 319 \,\mathrm{pCi/L})$, which is directly north of the Unit 1 Spent Fuel Pool and also to the north of the Unit 1 Sphere, but along the groundwater flow path originating south of the Turbine Building. MW-DN-119I (1,470 ± 211 pCi/L) is also located along the flow path originating from the Fuel Pool. DSP-105, DSP-106, DSP-107, and DSP-108 are located to the south and east of the Unit 1 Turbine Building and Sphere. Within the intermediate groundwater zone tritium was detected in groundwater samples from monitoring wells DSP-105 (319 \pm 117 pCi/L), DSP-106 (2,370 \pm 289 pCi/L), DSP-107 $(9,820 \pm 1,030 \text{ pCi/L}),$ DSP-108 $(1,930 \pm 244 \text{ pCi/L}),$ DSP-123 $(13,200 \pm 319 \text{ pCi/L})$, and MW-DN-101I $(4,570 \pm 208 \text{ pCi/L})$.

Tritium detected in the groundwater samples from shallow and intermediate monitoring wells in this area is primarily the result of the Unit 1 Spent Fuel Pool historical release.

AFE-Dresden-3: Radwaste Discharge Piping for Units 2/3

There are six wells that are used to evaluate the water quality near this AFE. Groundwater samples from three of these wells contained less than detectable concentrations of tritium. The other three monitoring wells had tritium concentrations ranging from 356 to 1,440 pCi/L.

The groundwater quality downgradient of Radwaste Discharge lines for Units 2/3 is characterized by the analysis of groundwater samples from MW-DN-104S, installed along the Radwaste Discharge Lines for Units 2/3. MW-DN-104S is hydraulically downgradient of the Radwaste Surge Tank and the point at which the discharge piping penetrates the structure. The groundwater sample from this well did not contain tritium at a concentration greater than the LLD of 200 pCi/L. Groundwater flow near the Radwaste Discharge Lines for Units 2/3 is to the north-northeast, consistent with the general groundwater flow direction in the shallow groundwater zone at the Station.

Within the intermediate groundwater zone, tritium was detected in groundwater samples from monitoring wells DSP-122 (1,440 \pm 139 pCi/L), DSP-149R (668 \pm 144/694 \pm 143 pCi/L), and DSP-148 (356 \pm 111 pCi/L). These wells are located near the Radwaste Discharge Piping and downgradient of the 77,000-gallon Radwaste Surge Tank where historical releases have been identified.

The low concentrations of tritium detected in the shallow and intermediate monitoring wells discussed above is likely associated with historical releases from the Radwaste Discharge Piping for Units 2/3, influence from the canal, or both.

AFE-Dresden-4: Piping from CST System and Storm Drain to Unit 1 Intake Canal

The footprint of AFE-Dresden-4 includes the area occupied by the CST System piping and the storm drains that discharge to the Unit 1 Intake Canal. The shallow wells, MW-DN-105S, MW-DN-101S MW-DN-115S, MW-DN-118S, are located in close proximity to the East Drainage Basin storm drain that discharges to the Unit 1 Intake Canal. The groundwater sample from MW-DN-101S contained tritium at a concentration slightly greater than the LLD of 200 pCi/L (220 ± 114 pCi/L) while the upgradient location of MW-DN-118S had tritium detected at 1,650 ± 227 pCi/L. The groundwater samples from MW-DN-105S and MW-DN-115S were non-detect for tritium at the LLD of 200 pCi/L. In the shallow groundwater zone, two shallow wells, MW-DN-107S and MW-DN-114S, are located near the CST System HPCI Piping leak and had tritium concentrations in groundwater samples of 1,040 ± 165 pCi/L and 2,770 ± 336 pCi/L, respectively. Groundwater flow within the area surrounding the CST System HPCI Piping and Storm Drain to Unit 1 Intake Canal is also locally to the north-northeast, consistent with the general radial flow direction at the Station and with the flow moving around the buildings.

Within the intermediate groundwater zone, tritium was detected in groundwater samples from monitoring wells DSP-125 ($320\pm127~pCi/L$), DSP-105 ($319\pm117~pCi/L$), DSP-106 ($2,370\pm289~pCi/L$), DSP-107 ($9,820\pm1,030~pCi/L$), DSP-108 ($1,930\pm244~pCi/L$), MW-DN-101I ($4,570\pm208~pCi/L$), MW-DN-114I ($4,190\pm473~pCi/L$), and MW-DN-119I ($1,470\pm211~pCi/L$). DSP-105, DSP-106, DSP-107, DSP-108, and MW-DN-119I are all located in close proximity to the storm drain servicing the Unit 1 Intake Canal. The detections of tritium in these wells may be the result of a combination of releases from AFE-Dresden-1 and AFE-Dresden-4.

Most of the storm drainage system adjacent to the Turbine Buildings is constructed below the water table. Portions of the storm drainage system lie below the water table by as much as 3 feet. As such, infiltration of groundwater into the storm drainage system that extends from AFE-Dresden-1 to AFE-Dresden-4 is contributing to the movement of tritiated water along southern, eastern and western sides of the Turbine Buildings. This is consistent with groundwater movement in this area. Therefore, the majority of the groundwater that enters the storm drains or surrounding fill would eventually discharge into the Canal System.

The Station currently performs weekly monitoring of two manhole locations that are located upstream from the discharge points for the East Drainage Basin and the West Drainage Basin. Manhole DSP-131 is the final manhole on the West Drainage Basin system prior to discharge into the Unit 2&3 Discharge Canal. The August 2006 tritium concentration at DSP-131 was 600 pCi/L. Manhole DSP-132 is the final manhole on the East Drainage Basin system prior to discharge into the Unit 1 Intake Canal. The August 2006 tritium concentration at DSP-132 was 700 pCi/L.

6.3.3 DISTRIBUTION IN STATION SURFACE WATER

Tritium was not detected in the six surface water samples at concentrations greater than the LLD of 200 pCi/L. The surface water sample locations are shown on Figure 4.1.

6.3.4 CONCEPTUAL MODEL OF TRITIUM RELEASE AND MIGRATION

This section presents CRA's conceptual model of groundwater and tritium migration at the Station.

Hydrogeologic Framework

Based upon existing Station data from boring logs and water level data, the groundwater flow in the water table aquifer is expected to move under conditions equivalent to porous media flow. The sandstone and the limestone bedrock have characteristics that are equivalent to a porous medium at the scale of this investigation. Therefore, discussions of groundwater flow within the shallow and intermediate zones of the water table aquifer are assumed to be under porous media conditions.

Groundwater flow within the water table aquifer at the Station generally moves from southwest to the northeast to the regional discharge points in the Kankakee and Illinois Rivers. Structures and operations at the Station have modified the flow within the water

table aquifer before it reaches the river systems. The canals act like partially penetrating streams, and may receive water from or discharge water to the groundwater system.

The locations of the canals and the rivers with respect to the Station result in radial groundwater flow from the center of the PA. The potentiometric surface represented on Figures 5.4 and 5.5 demonstrate the multiple groundwater discharge locations and the resultant radial pattern to those locations.

Building foundations and fill also influence groundwater flow by redirecting groundwater flow. For example, as groundwater flows toward the rivers and canals, it encounters the basements and backfill around the Turbine Buildings and other buildings.

The operation of the intake structure near the north side of the Units 2/3 Turbine Building appears to have some localized influence on groundwater flow as is evident by the potentiometric surface shown on Figure 5.4. This figure suggests that the pumping of water into this structure creates a capture zone of groundwater.

Groundwater flow at the Station is limited in the vertical direction by the presence of the Maquoketa Shale. The hydrogeologic profiles presented on Figures 6.1 to 6.3 demonstrate that tritium has not migrated deeper than the base of the Divine Limestone/top of the Maquoketa Shale.

The following presents the tritiated water migration pathways:

- Historic data shows that tritiated water has entered the Station Canal System via the Intake Canal from the Kankakee River.
- Tritiated groundwater flows beneath and around the structures and enters the Canal System via the Intake Canal at the intake structure.
- Surface water in the Canal System can migrate both vertically and laterally into groundwater.
- Tritiated groundwater appears to infiltrate into storm drains, which are submerged below the water table, and enter the Canal System when the storm drains discharge to the Canal System, including the Intake Canal.
- Tritiated Kankakee River water in the canal systems can discharge to groundwater, under certain conditions, and then migrate back toward Kankakee River and some residential wells.

6.4 STRONTIUM

6.4.1 GENERAL CHARACTERISTICS

Elemental strontium occurs naturally in the earth's mantle as a mixture of four stable isotopes (strontium-88, strontium-86, strontium-87, and strontium-84), and is present everywhere in very dilute concentrations. It is very similar to calcium in its environmental and physiological behavior. All four isotopes behave the same chemically, so any combination of the four would have the same chemical effect on the body.

The radioactive isotopes of strontium do not occur naturally but are produced as a by-product of nuclear fission of uranium-235, uranium-238, or plutonium-239. The most significant isotopes are strontium-90 (half-life of 29 years), strontium-89 (half-life of 51 days), and strontium-85 (half-life of 65 days), which decay by the emission of beta particles. Strontium-90 releases beta particles and decays into yttrium-90. Yttrium-90 decays to the stable isotope zirconium-90.

The Agency for Toxic Substances and Disease Registry (ATSDR) provides a toxicological profile for strontium (ATSDR, 2004). According to this profile, strontium behaves similar to calcium and is absorbed by the body and deposited in bone and blood-forming tissue (bone marrow) when food and water products containing trace amounts are ingested. Strontium-90 has a relatively long half-life of 29 years. The most serious effects of oral exposure to absorbed radioactive strontium are necrotic lesions and cancers of bone and the adjacent tissues. High-level acute exposures can destroy bone marrow, leading to acute radiation syndrome. At lower doses, irradiation of bone marrow may lead to chronic suppression of immune functions.

6.4.2 DISTRIBUTION IN STATION GROUNDWATER

This section provides an overview of the lateral and vertical distribution of strontium-90 detected in groundwater at the Station. Strontium-90 was detected in groundwater at concentrations exceeding the LLD of 2 pCi/L in the intermediate groundwater zone.

Since strontium-90 was detected at only one groundwater monitoring location (well MW-DN-108I), the following discussion presents the distribution of strontium-90 concentrations in Station groundwater with respect to monitoring well MW-DN-108I.

Groundwater Monitoring Well MW-DN-108I

Strontium-89/90 was detected in one monitoring well (MW-DN-108I) at a concentration greater than the LLD of 2.0 pCi/L. In August 2006, a sample was collected from this well, and strontium-89/90 was detected at a concentration of 2.72 ± 1.01 pCi/L. This sample was further analyzed for strontium-90, which was detected at a concentration of 2.17 ± 0.783 pCi/L. Furthermore, a duplicate of this sample was analyzed for total strontium and strontium-90. Since the strontium-90 results exceeded the sum of the total strontium in the duplicate sample, it has been concluded that the results of this sample are invalid.

In May 2006, a sample was collected from this monitoring well (MW-DN-108I). Analyses in July 2006 detected strontium-89/90 at a concentration of 4.42 ± 1.23 pCi/L. In July 2006, this sample was further analyzed for strontium-90, which was detected at a concentration of 4.37 ± 0.66 pCi/L. In July 2006, the sample was re-analyzed and strontium-89/90 was detected at a concentration of 3.39 ± 0.774 pCi/L. In July 2006, this sample was further analyzed for strontium-90, which was detected at a concentration of 2.72 ± 1.29 pCi/L. Because the total strontium from these two samples varied by almost 40 percent and the margin of error was nearly 50 percent, it became necessary to run a third analysis to verify what, if any, detectable concentration existed. This could not be completed for the May 2006 samples due to the samples becoming contaminated at the analytical laboratory. Normal protocol for an anomalous positive result is to perform a confirmatory sampling and analysis of the respective well. Consequently, the well MW-DN-108I was re-sampled in August 2006, as discussed above.

This well is located in the vicinity of the Unit 1 Off-Gas Hold-up Piping to the Unit 1 Off-Gas Suppression System. In November 1975, a ditch which had been dug to connect piping between the Unit 1 Off-Gas Hold-up Piping and the newly constructed Unit 1 Off-Gas Suppression System, began to fill with rainwater which flowed along the ditch towards the Unit 1 Circulating Water Intake Canal. The off-gas pipe was breached at the time allowing contaminants from inside the pipe to be flushed out into the ditch (surrounding soil). This release is the likely source of the strontium-89/90 detected in groundwater samples collected from well MW-DN-108I.

Since strontium-89/90 was not detected at concentrations above the LLD of 2.0 pCi/L in groundwater samples from any of the other groundwater monitoring wells throughout the Station property and adjacent to well MW-DN-108I, it is assumed that the detection of strontium-89/90 is localized to this area.

6.4.3 <u>DISTRIBUTION IN STATION SURFACE WATER</u>

Strontium was not detected in the six surface water samples at concentrations greater than the LLD of 2.0~pCi/L.

7.0 EXPOSURE PATHWAY ASSESSMENT

This section addresses the groundwater impacts from tritium at the Station and potential risks to human health and the environment.

Based upon historical knowledge and data related to the Station operations, and based upon radionuclide analyses of groundwater samples and the isolated detection of strontium-90 in the groundwater sample from MW-DN-108I, the primary constituent of concern (COC) is tritium. The discussions that follow are restricted to the exposure pathways related to tritium.

Teledyne Brown reports all samples to their statistically derived minimum detectable concentrations (MDC) approximately 150 to 170 pCi/L, which is associated with 95 percent confidence interval on their hard-copy reports. However, the laboratory uses a 99 percent confidence range (± 3-sigma) for determining whether to report the sample activity concentration as detected or not. This 3-sigma confidence typically equates to 150 (± 135.75) pCi/L.

Exelon has specified a LLD of 200 pCi/L for the Fleetwide Assessment. Exelon has also required the laboratory to report related peaks identified at the 95 percent confidence level (2-sigma).

This HIR, therefore, screens and assesses data using Exelon's LLD of 200 pCi/L. As is outlined below, this concentration is also a reasonable approximation of the background concentration of tritium in groundwater at the Station.

7.1 HEALTH EFFECTS OF TRITIUM

Tritium is a radionuclide that decays by emitting a low-energy beta particle that cannot penetrate deeply into tissue or travel far in air. A person's exposure to tritium is primarily through the ingestion of water (drinking water) or through ingestion of water bearing food products. Inhalation of tritium requires the water to be in a vapor form (i.e., through evaporation or vaporization due to heating). Inhalation is a minor exposure route when compared to direct ingestion or drinking of tritiated water. Absorption of tritium through skin is possible, but tritium exposure is more limited here versus direct ingestion or drinking of tritiated water.

7.2 BACKGROUND CONCENTRATIONS OF TRITIUM

The purpose of the following paragraphs is to establish a background concentration through review of various media.

7.2.1 GROUNDWATER

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium isotopes ⁶Li (92.5% abundance) and ⁷Li (7.5% abundance) present in crystalline rocks by neutrons produced by the radioactive decay of uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased during the 1950s and early 1960s, coinciding with the release of significant amounts of tritium to the atmosphere during nuclear weapons testing prior to the signing of the Limited Test Ban Treaty in 1963, which prohibited atmospheric nuclear tests.

7.2.2 PRECIPITATION DATA

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected world wide from 1960 to 2006. RadNet provides tritium precipitation concentration data for samples collected at Stations through the U.S. from 1960 up to and including 2006.

Based on GNIP data for sample stations located in the U.S. Midwest including Chicago, St. Louis and Madison, Wisconsin, as well as Ottawa Ontario, and data from the University of Chicago, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of

thermonuclear weapons. Tritium concentrations showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in Midwest precipitation have typically been below 100 pCi/L since around 1980.

The RadNet database for several stations in the U.S. Midwest (Chicago, Columbus, Indianapolis, Lansing, Madison, Minneapolis, Painesville, Toledo, and Welsch, MN) did not show the same trend, which can attributed to pre-1995 data handling procedures. The pre-1995 data were rounded to the nearest 100 pCi/L, which damped out variances in the data. The post-1995 RadNet data, where rounding was not applied, exhibit much more scatter, and similar to the GNIP data, the vast majority of the data were less than 100 pCi/L.

CRA constructed a non-parametric upper tolerance limit with a confidence of 95 percent and a coverage of 95 percent based on RadNet data for USEPA Region 5 from 2004 to 2005. The resulting upper tolerance limit is 133 pCi/L, which indicates that CRA is 95 percent confident that 95 percent of the ambient precipitation concentration results are below 133 pCi/L. The statistical confidence, however, must be compared with the limitations of the underlying RadNet data, which does not include the minimum detectable concentration for a majority of the measurements. Some of the RadNet values below 200 pCi/L may be approximated. Nevertheless, these results show a background contribution for precipitation of up to 133 pCi/L.

7.2.3 SURFACE WATER DATA

Tritium concentrations are routinely measured in large surface water bodies, including Lake Michigan and the Mississippi River. Surface water data from the RadNet database for Illinois sampling stations include East Moline (Mississippi River), Moline (Mississippi River), Marseilles (Illinois River), Morris (Illinois River), Oregon (Rock River), and Zion (Lake Michigan). As is the case for the RadNet precipitation data, the pre-September 1995 Illinois surface water data was rounded to the nearest 100 pCi/L, creating a dampening of variances in the data. The post-1995 Illinois surface water data, similar to the post-1995 Midwest precipitation data, were less than 100 pCi/L with the exception of the Moline (Mississippi River) station. Tritium surface water concentrations at this location varied between 100 and 800 pCi/L, which may reflect local natural or anthropogenic inputs.

The USEPA RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a ± 70 to 100 pCi/L 95 percent confidence bound on each given measurement. Therefore,

the typical background data provided may be subject to measurement uncertainty of approximately \pm 70 to 100 pCi/L.

As part of the REMP, tritium concentrations are measured in the Kankakee, Des Plaines and Illinois Rivers as well as within the canal network at the Station.

Surface water samples are collected as part of REMP at a total of three locations. Samples are collected at two locations upstream of the Station on the Kankakee (D-54) and Des Plaines (D-52) Rivers, and at one location downstream of the Station on the Illinois River (D-51). The concentration of tritium within the Kankakee River (D-54) was not greater than the LLD of 200 pCi/L since 2003 but increased to 720 pCi/L in 2005 and is attributable to an upstream source. The concentration of tritium within the Des Plaines River (D-52) has not been greater than the LLD of 200 pCi/L since 2000 except for one sample at 230 pCi/L in 2003. The concentration of tritium within the Illinois River (D-51) has fluctuated from less than the LLD of 200 pCi/L since 2000 to a maximum concentration of 1,974 pCi/L in 2002.

Since January 2005, the concentration of tritium in the Station intake has ranged from the LLD of 200 pCi/L to greater than 2,500 pCi/L. In addition, available data indicates that upstream background concentrations in the Kankakee River have ranged from LLD of 200 pCi/L to greater than 6,900 pCi/L (RETEC, 2004). The intake canal sample is a direct representation of tritium concentrations in the Kankakee River.

7.2.4 DRINKING WATER DATA

Tritium concentrations in drinking water from the RadNet database for three Illinois sampling stations (Chicago, Morris, and East Chicago) exhibit similar trends to the precipitation and surface water data. As with the precipitation and surface water data, the pre-1995 data has dampened out variances due to rounding the data to the nearest 100 pCi/L. The post-1995 results show tritium concentrations in samples of drinking water were less than 100 pCi/L and less than the tritium concentrations found in precipitation and surface water.

A residential well, designated RW-1, has been sampled for tritium for over 10 years as part of the Offsite Dose Calculation Manual (ODCM) and is located approximately 0.7 miles south of the plant. Prior to 1995, the groundwater samples from this well consistently contained tritium concentrations less than 300 pCi/L. From 1995 to April 2005, tritium concentrations increased from 232 to 940 pCi/L.

Based on the tritium found in RW-1, in December 2004, Exelon sampled 34 additional residential wells in the same neighborhood. Tritium was detected in groundwater samples from three of the 34 residential wells, designated RW-2, RW-3, and RW-4. These wells are all located beside the Kankakee River to the south of the Station. The locations of these wells are shown on Figure B.1 in Appendix B.

A groundwater sample was collected from the RW-2 well on December 2, 2004, and the sample was split for analysis by two independent laboratories. Due to the discrepancy in the results (366 pCi/L versus 114 pCi/L), another sample was collected on January 13, 2005, and four aliquots were reported ranging in concentration from 360 to 480 pCi/L. Another sample was collected on April 15, 2005, and the reported tritium concentration was 542 pCi/L.

Groundwater samples were collected from the RW-3 well on September 21, 2005 with a concentration of 369 pCi/L and the RW-4 well on August 29, 2005 with a concentration of 468 pCi/L.

A water sample collected from the RW-1 well on April 15, 2005 contained tritium at a concentration of 653 pCi/L. A sample collected from the RW-2 well on the same date contained 542 pCi/L of tritium.

Based on the results of this investigation, the low tritium concentration impact observed in the residential wells to the south of the Station is principally, if not entirely, due to the discharge of tritiated Kankakee River water to groundwater. In addition, the HIR data demonstrate that there is no measurable tritium impact in the canal network from current groundwater migration to the canal network in the vicinity of the PA.

7.2.5 EXPECTED TRITIUM BACKGROUND FOR THE STATION

As reported in the GNIP and RadNet databases, tritium concentrations in U.S. Midwest precipitation has typically been less than 100 pCi/L since 1980. Tritium concentrations reported in the RadNet database for Illinois surface water and groundwater, at least since 1995, has typically been less than 100 pCi/L. Based on the USEPA Region 5 2004 to 2005 RadNet precipitation data, 95 percent of the ambient concentrations of tritiated water in Illinois are expected to be less than 133 pCi/L, based on a 95 percent confidence limit. Tritium concentrations in surface water and drinking water are expected to be comparable or less based on historical data and trends.

Concentrations in groundwater, similar to surface and drinking water, are expected to be less than precipitation values. The lower groundwater concentrations are related to the age of the groundwater as compared to the half-life of tritium. Deep aquifers in proximity to crystalline basement rock, however, can potentially show elevated concentrations of tritium due to lithogenic sources.

As was noted in Section 7.0, the analytical laboratory is reporting tritium results to a LLD of 200 pCi/L. This concentration also provides a reasonable representation of background groundwater quality, given the data for precipitation, surface water, and drinking water.

Based on the evaluation presented above, the background concentration for tritium at the Station is reasonably represented by the LLD of 200 pCi/L.

7.3 IDENTIFICATION OF POTENTIAL EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS

Four potential exposure pathways were identified and considered during the evaluation of tritium in groundwater.

- potential groundwater migration to drinking water users on the Station property;
- potential groundwater migration off the Station property to private and public groundwater users;
- potential groundwater migration off the Station property to a surface water body;
 and
- potential surface water migration to groundwater off the Station property.

The following section provides an overview these four potential exposure pathways for tritium in groundwater.

7.3.1 POTENTIAL GROUNDWATER MIGRATION TO DRINKING WATER USERS AT THE STATION PROPERTY

At the Station, the tritium detected in groundwater samples has been isolated to the water table aquifer, which is isolated from the deeper regional groundwater aquifer by the Maquoketa Shale. Groundwater quality data from the Station's potable wells that are completed below this aquitard do not contain concentrations of tritium greater than the LLD of 200 pCi/L. As such, the tritium impact is limited to the water table aquifer.

There are no water supply wells located on the Station property that draw water from the water table aquifer.

There is no complete exposure pathway. Therefore, there is no current risk of exposure associated with groundwater ingestion at the Station.

7.3.2 POTENTIAL GROUNDWATER MIGRATION TO DRINKING WATER USERS OFF THE STATION PROPERTY

The concentrations of tritium in groundwater are less than the USEPA drinking water standard of 20,000 pCi/L. Consequently, there is currently no tritium in the groundwater that could migrate off the Station at concentrations exceeding the USEPA drinking water standard.

There are private water supply wells located on land to the south of the Station. Based on groundwater flow maps, it is unlikely that tritiated groundwater beneath the Station could migrate to the south in the intermediate flow system and onto the private property.

Although there is a potentially complete exposure pathway, there is no current risk of exposure associated with this pathway.

7.3.3 POTENTIAL GROUNDWATER MIGRATION TO SURFACE WATER USERS OFF THE STATION PROPERTY

Groundwater at the Station discharges to Kankakee and Illinois Rivers or through the Discharge Canal. Therefore, there is a potentially complete exposure route to recreational users of surface water including boating, fishing, and swimming.

Tritium results for surface water samples collected as part of this investigation were less than the LLD of 200 pCi/L. In addition, based on the results of this investigation, the Station is not causing any off-Station concentrations of tritium above detectable limits.

Although there is a potentially complete exposure pathway, there is no current risk of exposure associated with groundwater migration to surface water users off the Station property.

7.3.4 POTENTIAL SURFACE WATER MIGRATION TO GROUNDWATER AND SURFACE WATER OFF THE STATION PROPERTY

Surface water within the Canal System could potentially migrate from the Canal System to groundwater off the Station property. Tritium results for surface water samples collected as part of this investigation were less than the LLD of 200 pCi/L.

As discussed in Section 7.2.4, private wells south of the Station were sampled to evaluate potential impact of the Station's operations on groundwater. The Canal System historically contained elevated tritium concentrations as high as approximately 6,900 pCi/L due to upgradient sources in the Kankakee River. Therefore, as discussed above, the source of these low concentrations in the off-Station wells is principally, if not entirely, due to the discharge of tritiated Kankakee River water to groundwater. In addition, the HIR data demonstrate that there is no measurable tritium impact in the canal network from current groundwater migration to the canal network in the vicinity of the PA.

Although there is a potentially complete exposure pathway, there is no current risk of exposure associated with migration of tritium originating from the Station to the Canal System to groundwater off the Station property.

7.4 SUMMARY OF POTENTIAL TRITIUM EXPOSURE PATHWAYS

In summary, there are four potential groundwater exposure pathways for tritium originating at the Station:

- potential groundwater migration to drinking water users on the Station property;
- potential groundwater migration off the Station property to private and public groundwater users;
- potential groundwater migration off the Station property to a surface water body;
 and
- potential surface water migration to groundwater off the Station property.

Based on the groundwater and surface water data provided and referenced in this investigation, none of the potential receptors are at risk of exposure to concentrations of tritium in excess of USEPA drinking water standard (20,000 pCi/L).

7.5 OTHER RADIONUCLIDES

Strontium-89/90 was detected in one monitoring well (MW-DN-108I) at a concentration greater than the LLD of 2.0 pCi/L. In August 2006, a sample was collected from this well, and strontium-89/90 was detected at a concentration of 2.72 ± 1.01 pCi/L. This sample was further analyzed for strontium-90, which was detected at a concentration of 2.17 ± 0.783 pCi/L. Furthermore, a duplicate of this sample was analyzed for total strontium and strontium-90. Since the strontium-90 results exceeded the sum of the total strontium in the duplicate sample, it has been concluded that the results of this sample are invalid.

In May 2006, a sample was collected from this monitoring well (MW-DN-108I). Analyses in July 2006 detected strontium-89/90 at a concentration of 4.42 ± 1.23 pCi/L. In July 2006, this sample was further analyzed for strontium-90, which was detected at a concentration of 4.37 ± 0.66 pCi/L. In July 2006, the sample was re-analyzed and strontium-89/90 was detected at a concentration of 3.39 ± 0.774 pCi/L. In July 2006, this sample was further analyzed for strontium-90, which was detected at a concentration of 2.72 ± 1.29 pCi/L. Because the total strontium from these two samples varied by almost 40 percent and the margin of error was nearly 50 percent, it became necessary to run a third analysis to verify what, if any, detectable concentration existed. This could not be completed for the May 2006 samples due to the samples becoming contaminated at the analytical laboratory. Normal protocol for an anomalous positive result is to perform a confirmatory sampling and analysis of the respective well. Consequently, the well MW-DN-108I was re-sampled in August 2006, as discussed above.

It is concluded that this detection is localized to the vicinity of MW-DN-108I. On this basis, there is limited discussion of this result in this report.

No target radionuclides were detected in the groundwater and surface water samples at concentrations greater than their respective LLDs. Other non-target radionuclides were also included in the tables but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

8.0 CONCLUSIONS

Based on this hydrogeologic investigation, CRA concludes:

Groundwater Flow

- There are two significant underlying water-bearing units, Pottsville Sandstone (shallow groundwater zone) and the Divine Limestone (intermediate groundwater zone), beneath the Station. The two formations comprise the water table aquifer.
- The water table aquifer extends through the entire thickness of these two units and is underlain by the Maquoketa Shale, which acts as an aquitard and is continuous across the Station.
- The depth to groundwater beneath the Station ranges between 3 to 23 feet bgs.
- Groundwater flow is influenced by the canal network and the foundations of buildings such that the shallow and intermediate groundwater flows radially outwards from the center of the PA towards the canals and rivers. The canals also influence the flow of groundwater in the intermediate groundwater zone. The shallow groundwater zone discharges to the canal as does the intermediate groundwater zone but to a lesser degree.
- The horizontal groundwater flow velocity for the shallow groundwater zone ranges from 87 to 355 ft/yr while the intermediate groundwater flow velocity ranges from 17 to 225 ft/yr.
- The Station canals act as an interceptor trench for the shallow groundwater zone while the intermediate zone is partially intercepted by the Station canals. Seasonal changes result in differing degrees of hydraulic communication between the groundwater and the canal system.

Groundwater Quality

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the 68 groundwater samples collected as part of this investigation.
- Strontium-90 was not detected in groundwater at concentrations greater than the USEPA drinking water standard of 8.0 pCi/L.
- Strontium-89/90 was detected in one monitoring well (MW-DN-108I) at a concentration greater than the LLD of 2.0 pCi/L. In August 2006, a sample was collected from this well, and strontium-89/90 was detected at a concentration of 2.72 ± 1.01 pCi/L. This sample was further analyzed for strontium-90, which was

detected at a concentration of 2.17 ± 0.783 pCi/L. Furthermore, a duplicate of this sample was analyzed for total strontium and strontium-90. Since the strontium-90 results exceeded the sum of the total strontium in the duplicate sample, it has been concluded that the results of this sample are invalid.

In May 2006, a sample was collected from this monitoring well (MW-DN-108I). Analyses in July 2006 detected strontium-89/90 at a concentration of $4.42\pm1.23~\text{pCi/L}$. In July 2006, this sample was further analyzed for strontium-90, which was detected at a concentration of $4.37\pm0.66~\text{pCi/L}$. In July 2006, the sample was re-analyzed and strontium-89/90 was detected at a concentration of $3.39\pm0.774~\text{pCi/L}$. In July 2006, this sample was further analyzed for strontium-90, which was detected at a concentration of $2.72\pm1.29~\text{pCi/L}$. Because the total strontium from these two samples varied by almost 40 percent and the margin of error was nearly 50 percent, it became necessary to run a third analysis to verify what, if any, detectable concentration existed. This could not be completed for the May 2006 samples due to the samples becoming contaminated at the analytical laboratory. Normal protocol for an anomalous positive result is to perform a confirmatory sampling and analysis of the respective well. Consequently, the well MW-DN-108I was re-sampled in August 2006, as discussed above.

- Tritium was not detected in groundwater at concentrations greater than the USEPA drinking water standard of 20,000 pCi/L.
- Tritium was detected in groundwater samples from nine monitoring wells in the shallow groundwater zone at concentrations ranging from 220 ± 114 pCi/L to $4,250 \pm 475$ pCi/L.
- Tritium was detected in groundwater samples from twenty-one wells in the intermediate groundwater zone at concentrations ranging from 210 ± 124 pCi/L to $13,200 \pm 319$ pCi/L.

Surface Water Quality

- Tritium was not detected at concentrations greater than the LLD of 200 pCi/L in any of the six surface water samples collected as part of this investigation.
- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the six surface water samples collected as part of this investigation.
- Strontium-89/90 was not detected at a concentration greater than the LLD of 2.0 pCi/L in any of the six surface water samples collected as part of this investigation.

AFE-Dresden-1: CST System HPCI Piping for Units 2/3

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the groundwater samples obtained from the monitoring wells located in close proximity to the CST System HPCI Piping.
- Strontium-89/90 was not detected at a concentration greater than the LLD of 2.0 pCi/L in any of the groundwater samples obtained from the monitoring wells located in close proximity to the CST System HPCI Piping.
- In the area surrounding the CST System HPCI Piping, tritium was detected in the shallow and intermediate groundwater zones. The groundwater flows with the local hydraulic gradient, to the northwest around the Units 2/3 Turbine Building, and under the Unit 1 Turbine Building.
- There are 12 monitoring wells associated with this AFE. The groundwater samples
 contained tritium at concentrations ranging from less than the LLD of 200 pCi/L to
 10,000 ± 284 pCi/L.
- Tritium in groundwater samples collected in the CST System HPCI Piping area is primarily attributable to the historical releases in this area.

AFE-Dresden-2: Unit 1 Spent Fuel Pool

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the groundwater samples collected from the monitoring wells near the fuel pool.
- Strontium-89/90 was not detected at a concentration greater than the LLD of 2.0 pCi/L in any of the groundwater samples obtained from the monitoring wells located in close proximity to this AFE.
- Tritium was detected in the area surrounding the Unit 1 Spent Fuel Pool at concentrations greater than LLD of 200 pCi/L in the groundwater samples from the shallow and intermediate groundwater monitoring wells.
- There are 10 monitoring wells associated with this AFE. The groundwater samples contained tritium at concentrations ranging from less than the LLD of 200 pCi/L to 13,200 ± 319 pCi/L.
- Tritium in groundwater samples collected in the area north of the Unit 1 Spent Fuel Pool is likely attributable to the Unit 1 Spent Fuel Pool historical release.

AFE-Dresden-3: Radwaste Discharge Lines for Units 2/3

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the groundwater samples collected from the monitoring wells located in close proximity to Radwaste Discharge Piping for Units 2/3.
- Strontium-89/90 was not detected at a concentration greater than the LLD of 2.0 pCi/L in any of the groundwater samples obtained from the monitoring wells located in close proximity to this AFE.
- Tritium was detected in samples from three of the six monitoring wells near the Radwaste Discharge Piping. The groundwater samples contained tritium at concentrations ranging from less than the LLD of 200 pCi/L to 1,440 ± 139 pCi/L.
- Tritium in groundwater samples collected in the area of the Radwaste Discharge Lines for Units 2/3 is primarily attributable to the historical releases in this area.

AFE-Dresden-4: Piping from CST System and Storm Drain to Unit 1 Intake Canal

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the groundwater samples obtained from the monitoring wells located near the storm drain.
- Strontium-89/90 was not detected at a concentration greater than the LLD of 2.0 pCi/L in any of the groundwater samples obtained from the monitoring wells located in close proximity to this AFE.
- Tritium concentrations in samples from monitoring wells near, or hydraulically downgradient, of AFE-Dresden-4 may be impacted by tritium sources from other AFEs.
- There are 12 monitoring wells associated with this AFE. The groundwater samples
 contained tritium at concentrations ranging in concentration from less than the LLD
 of 200 pCi/L to 4,570 ± 208 pCi/L.
- Groundwater infiltration into the storm drain system is providing a pathway for tritiated groundwater to the Unit 1 Intake Canal.
- The Storm Drain System acts as a conduit for tritiated water rather than a source of tritium.

Potential Receptors

• Based on the results of this investigation² there is no current risk of exposure to radionuclides associated with licensed plant operations through any of the identified potential exposure pathways.

General Conclusions

- Based on the results of this investigation, tritium originating from the Station is not migrating off the Station property at detectable concentrations.
- Based on the results of this investigation, there are no known active releases into the groundwater at the Station.

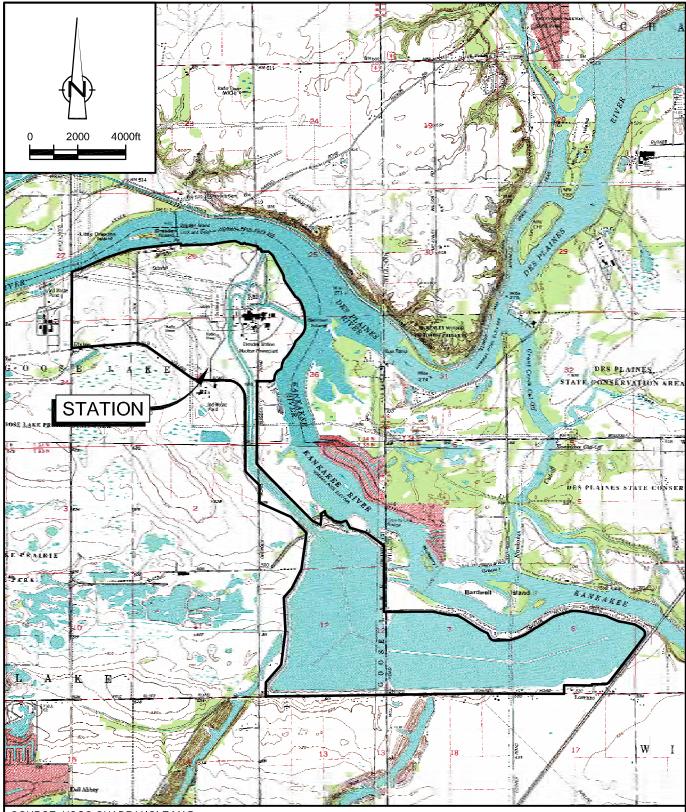
² Using the LLD specified in this HIR.

9.0 **RECOMMENDATIONS**

The following presents CRA's recommendations for proposed activities to be completed at the Station.

9.1 FILL DATA GAPS

Based on the results of this hydrogeologic investigation, there are no data gaps remaining to support CRA's conclusions regarding the characterization of the groundwater regime and potential impacts from radionuclides at the Station.


9.2 GROUNDWATER MONITORING

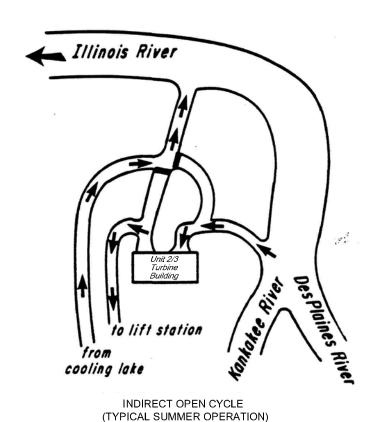
Based on the information collected to date, CRA recommends that Exelon conduct periodic monitoring of selected sample locations.

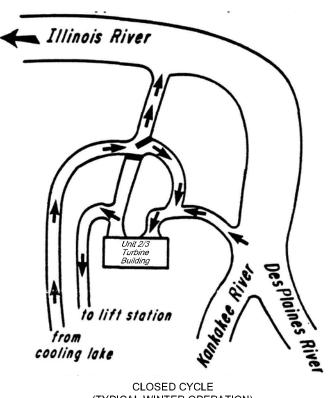
10.0 REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR), April 2004. Toxicological Profile for Strontium.
- Burch, S, 2002. A Comparison of Potentiometric Surfaces for the Cambrian-Ordovician Aquifers of Northeastern Illinois, 1995 and 2000, Illinois State Water Survey.
- Buschbach, T.C., 1964. Cambrian and Ordovician Strata of Northeastern Illinois, Illinois State Geological Survey, Report of Investigation 218, 90 p.
- Conestoga-Rovers & Associates (CRA), 2006. Hydrogeologic Investigation Work Plan.
- Dresden Station Final Environmental Statement (FES), November 1973.
- Dresden Station Radiological Environmental Monitoring Program (REMP) Reports.
- Dresden Station Updated Final Safety Analysis Report (UFSAR), Revision 6, June 2005.
- Exelon Generation Company, May 2005. Quad Cities Nuclear Power Station, 2004 Annual Radiological Environmental Operating Report, Exelon, Cordova, Illinois.
- Frye, J.C., et al., 1969. Glacial Tills of Northwestern Illinois, Illinois State Geological Survey, Cir. 437, 45 p.
- Harza Engineering Company (Harza), July 1991. Dresden Station Groundwater Study.
- Harza Environmental Services, Inc. (Harza), January 1995. Dresden Groundwater Study Report, Morris, Illinois.
- Michigan Department of Environmental Quality, January 2002. Use of Tritium in Assessing Aquifer Vulnerability, http://www.deq.state.mi.us/documents/deq-dwrpd-gws-wpu-Tritium.pdf. Puls and Barcelona, 1996, EPA/540/S-95/504.
- RETEC Group, December 7, 2005. Groundwater Tritium Investigation Report.
- Schicht, Richard J., J. Rodger Adams, and John B. Stall, 1976. Water Resources Availability, Quality, and Cost in Northeastern Illinois, Illinois State Water Survey Report of Investigation 83.
- Sundance Environmental and Energy Specialists, Ltd. (Sundance), January 2006. Effects of Liquid Releases from the Braidwood Nuclear Power Station on the Kankakee River and Riparian Water Wells and the Influence of the Dresden Nuclear Power Station Cooling Lake on Groundwater and the Kankakee River.
- Visocky, A.P. 1997. Water-Level Trends and Pumpage in the Deep Bedrock Aquifers in the Chicago Region, 1991-1995, Illinois State Water Survey, Circular 182.

- Visocky, Adrian P., Marvin G. Sherrill, and Keros Cartwright, 1985. Geology, Hydrogeology, and Water Quality of the Cambrian and Ordovician Systems in Northern Illinois, Illinois State Geological Survey, Illinois State Water Survey, Cooperative Groundwater Report 10.
- Willman, H.B. and Frye, J.C., 1969. High-Level Glacial Outwash in the Driftless Area of Northwestern Illinois, Circular 440, Illinois State Geological Survey.
- Willman, H.B., 1943. High-Purity Dolomite in Illinois, Illinois State Geological Survey, 101 p.
- Willman, H.B., et al., 1975. Handbook of Illinois Stratigraphy, Bulletin 95, Illinois State Geological Survey.
- Willman, H.B.; Kolata, Dennis, R, 1978. The Platteville and Galena Groups in Northern Illinois, Illinois State Geological Survey.

SOURCE: USGS QUADRANGLE MAP; DRESDEN MOSAIC, ILLINOIS 1986 (EDITED: 1991)

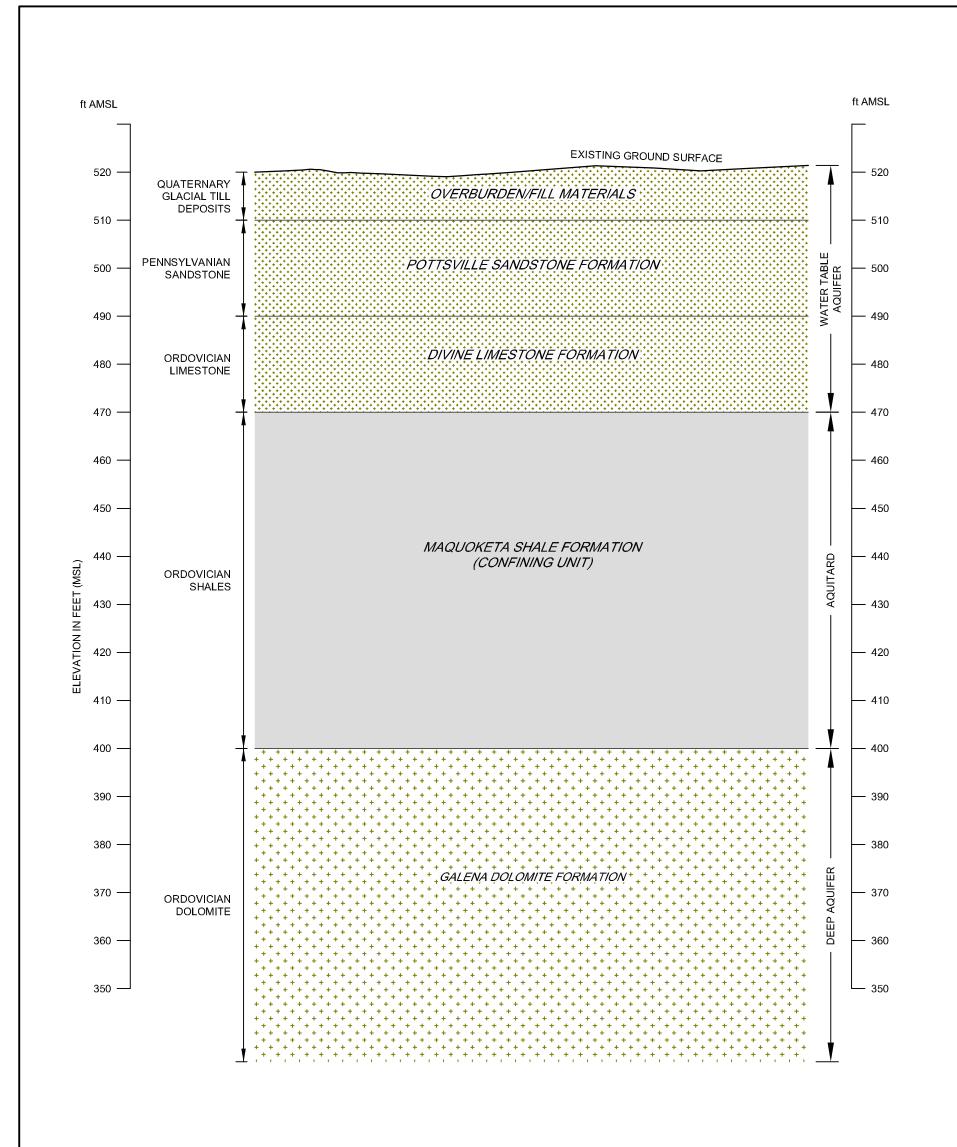

figure 1.1


Exelon.

STATION LOCATION MAP DRESDEN GENERATING STATION EXELON GENERATION COMPANY, LLC Morris, Illinois

FIGURE 2.1 STATION BOUNDARIES AND FEATURES

(TYPICAL WINTER OPERATION)



COOLING WATER FLOW DIAGRAM UNITS 2 AND 3 DRESDEN GENERATING STATION EXELON GENERATION COMPANY, LLC Morris, Illinois

figure 2.2

SOURCE: DRESDEN STATION, UFSAR, REV. 6 JUNE 2005, FIGURE 2.4-2

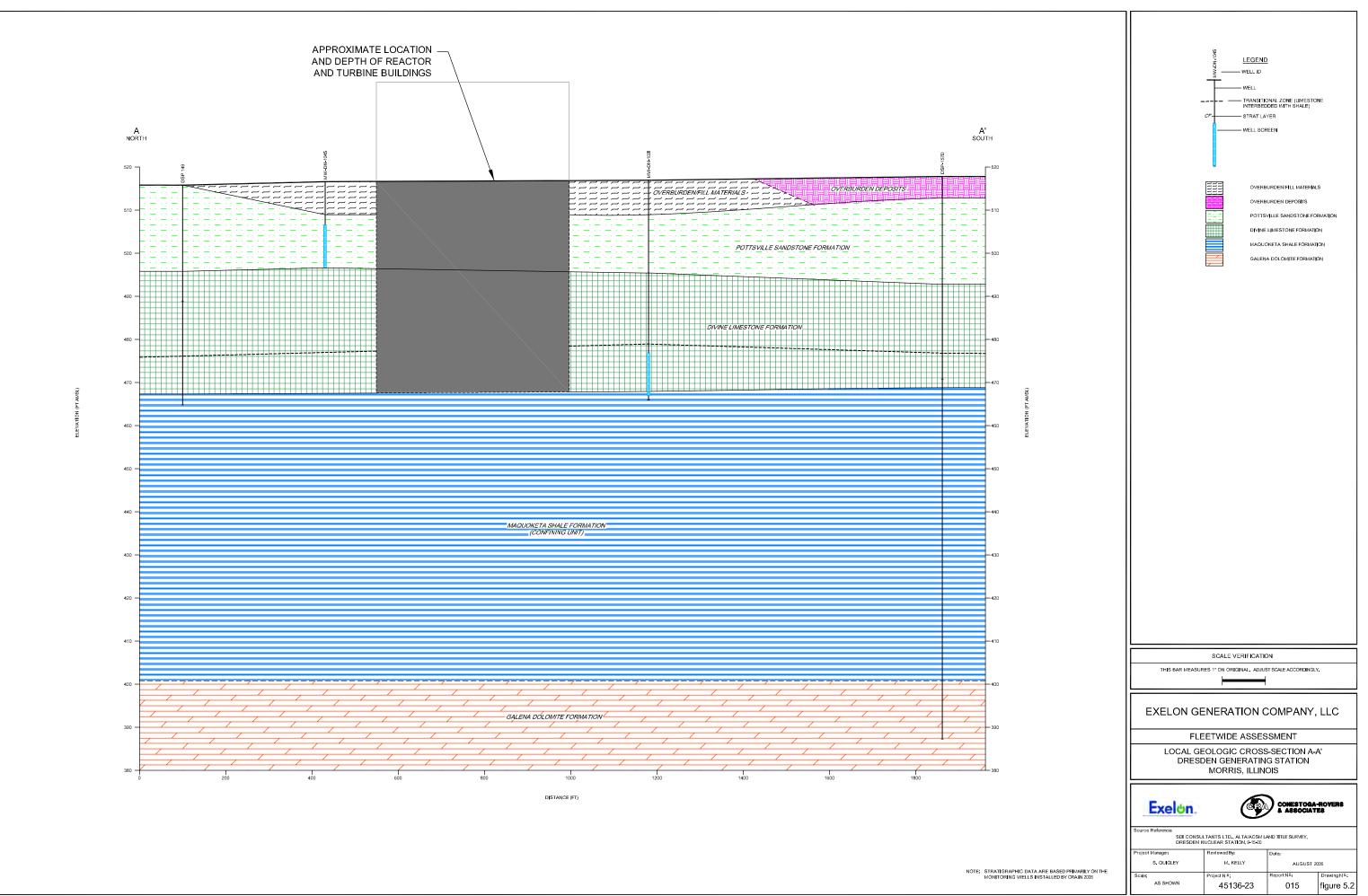
LEGEND

WATER BEARING UNIT

AQUITARD LAYER

ft AMSL FEET ABOVE MEAN SEA LEVEL

REGIONAL GEOLOGIC CROSS-SECTION DRESDEN GENERATING STATION EXELON GENERATION COMPANY, LLC Morris, Illinois



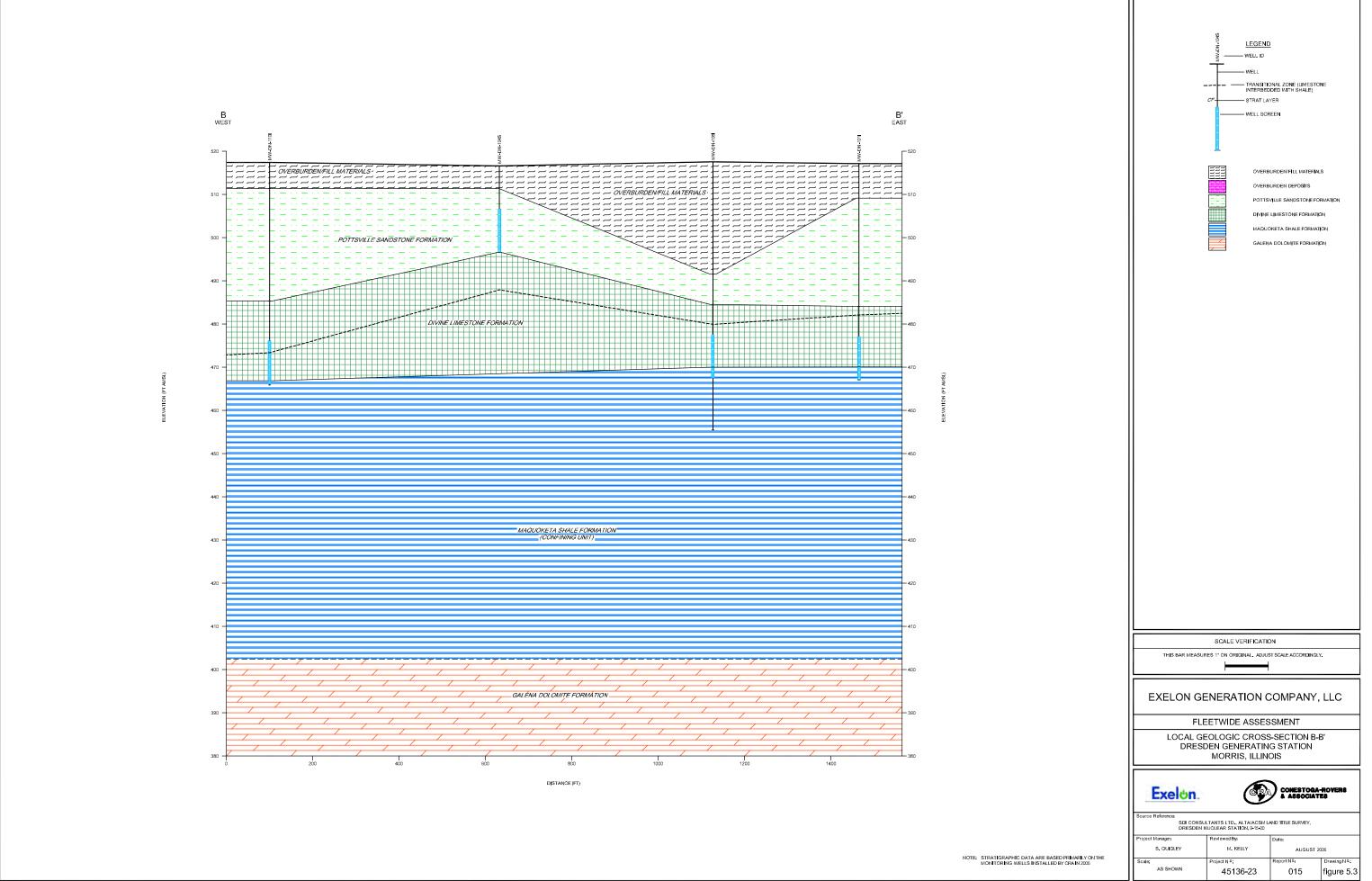
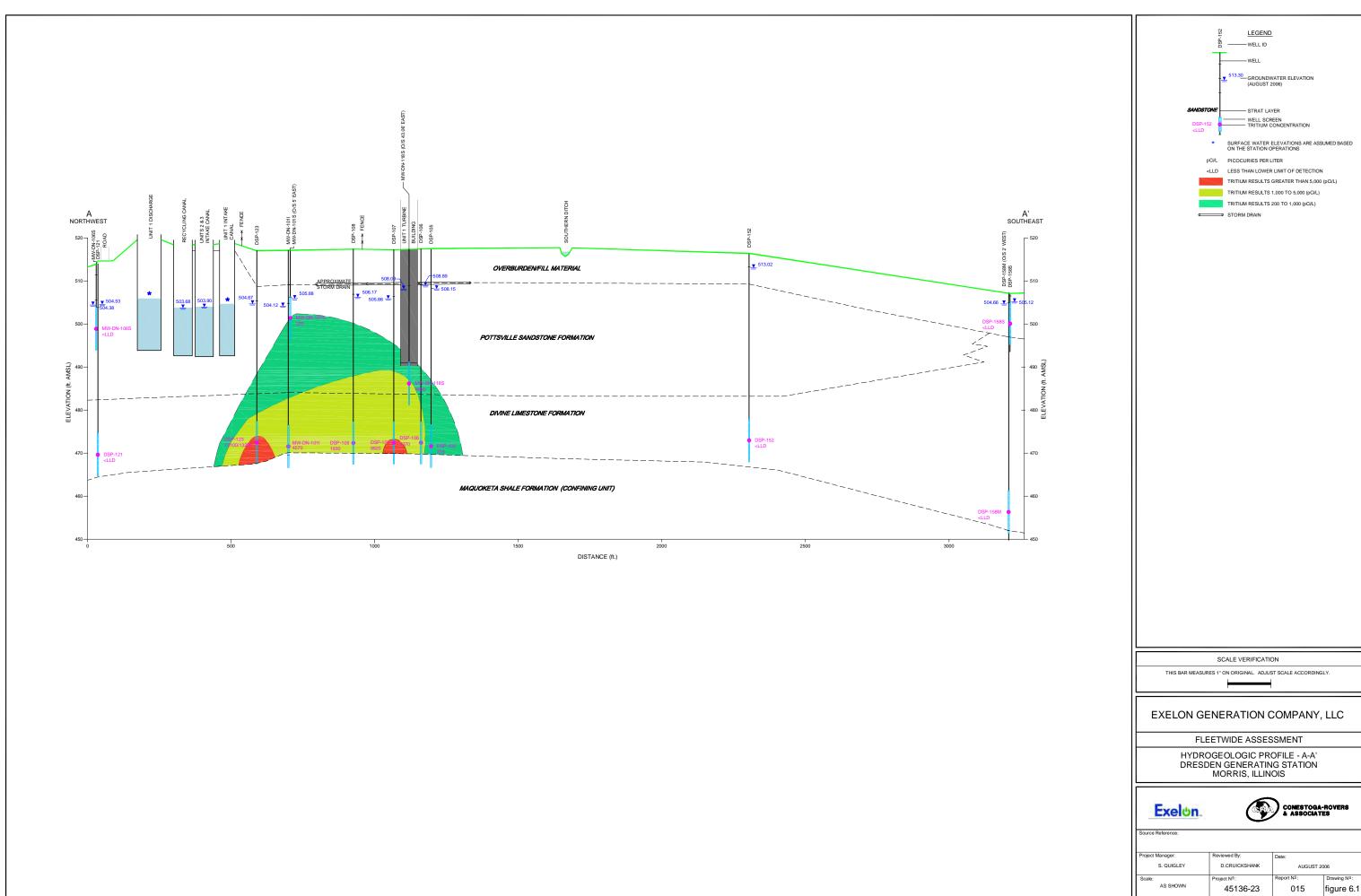

FIGURE 3.1 AREAS FOR FURTHER EVALUATION

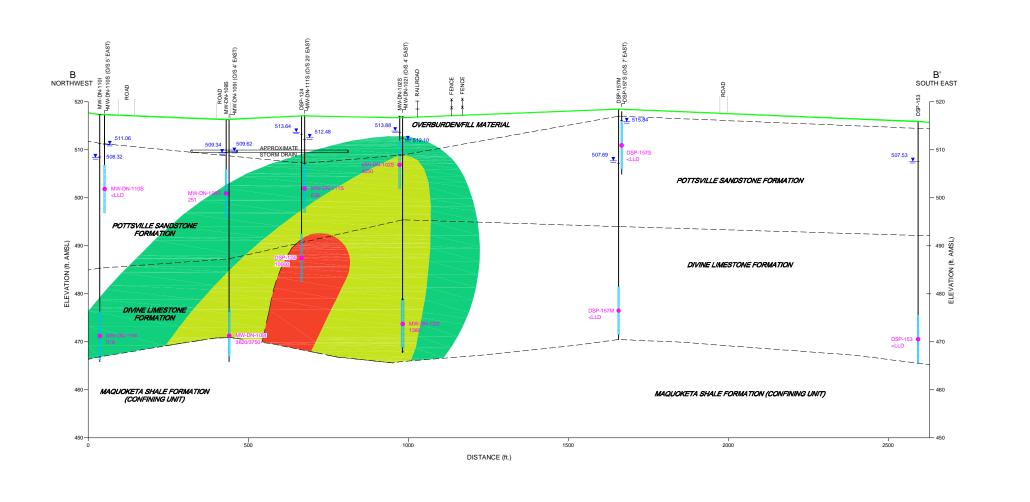
FIGURE 4.1 SURFACE WATER MONITORING LOCATIONS

FIGURE 4.2 GROUNDWATER MONITORING LOCATIONS

FIGURE 5.1 LOCAL GEOLOGIC CROSS-SECTION LOCATIONS

FIGURE 5.4 POTENTIOMETRIC SURFACE CONTOURS AUGUST 2006 - SHALLOW GROUNDWATER ZONE


FIGURE 5.5 POTENTIOMETRIC SURFACE CONTOURS AUGUST 2006 – INTERMEDIATE GROUNDWATER ZONE


FIGURE 5.6 TRITIUM CONCENTRATIONS - SHALLOW GROUNDWATER ZONE

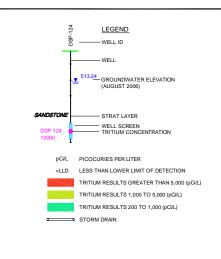

FIGURE 5.7 TRITIUM CONCENTRATIONS - INTERMEDIATE GROUNDWATER ZONE

FIGURE 5.8 RADIONUCLIDE CONCENTRATIONS - SHALLOW GROUNDWATER ZONE AUGUST 2006

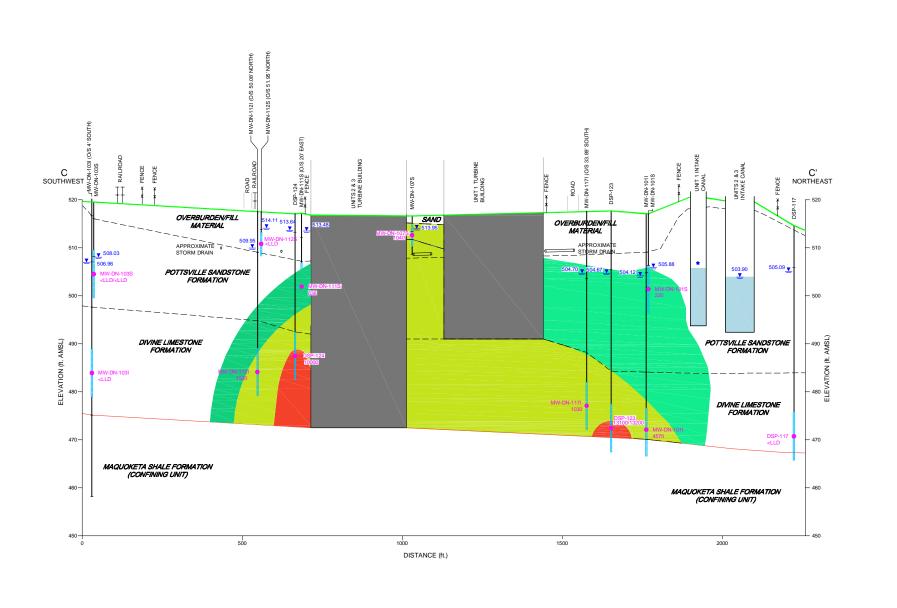
FIGURE 5.9 RADIONUCLIDE CONCENTRATIONS - INTERMEDIATE GROUNDWATER ZONE AUGUST 2006

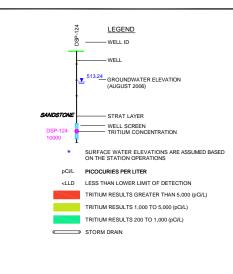
SCALE VERIFICATION

THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE ACCORDINGLY.

EXELON GENERATION COMPANY, LLC

FLEETWIDE ASSESSMENT


HYDROGEOLOGIC PROFILE - B-B' DRESDEN GENERATING STATION MORRIS, ILLINOIS



Source Reference

Project Manager:	Reviewed By:	Date:	
S. QUIGLEY	D.CRUICKSHANK	AUGUST 2	006
Scale:	Project Nº:	Report Nº:	Drawing Nº:
AS SHOWN	45136-23	015	figure 6

SCALE VERIFICATION

THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE ACCORDINGLY.

EXELON GENERATION COMPANY, LLC

FLEETWIDE ASSESSMENT

HYDROGEOLOGIC PROFILE - C-C' DRESDEN GENERATING STATION MORRIS, ILLINOIS

Source Reference:

- 1				
- 1	Project Manager:	Reviewed By:	Date:	
١	S. QUIGLEY	D.CRUICKSHANK	AUGUST 2	006
- 1	Scale:	Project Nº:	Report Nº:	Drawing N
- 1	AS SHOWN	45136-23	015	figure

SUMMARY OF MONITORING WELL INSTALLATION DETAILS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample			Installation	Surface	Reference	Boring		Screened	Interval		Well	Hydrogeologic Unit
Location	X-coord.	Y-coord.	Date	Elevation	Elevation	Total Depth	Тор	Bottom	Top	Bottom	Construction	Screened
	(UTM Coo	rdinates ¹)		(ft AMSL) (2)	(ft AMSL)	(ft bgs) ⁽³⁾	(ft	bgs)	(ft A	MSL)		
N. (I.M. D.N. 101C	1000054.50	15005(01.00	F (F (200)	515 10	E20.20	20	4.0					
MW-DN-101S	1292754.52	15035691.89	5/5/2006	517.10	520.30	20	10	20	507.10	497.10	2-inch PVC Screen	sandstone
MW-DN-101I	1292749.73	15035691.63	5/10/2006	517.08	520.48	50	40	50	477.08	467.08	2-inch PVC Screen	limestone
MW-DN-102S	1291970.66	15034981.38	5/8/2006	516.98	516.68	15	5	15	511.98	501.98	2-inch PVC Screen	sandstone
MW-DN-102I	1291974.96	15034980.06	5/10/2006	516.91	516.63	51	40	50	476.91	466.91	2-inch PVC Screen	limestone
MW-DN-103S	1291438.38	15034732.26	5/3/2006	519.53	522.12	20	10	20	509.53	499.53	2-inch PVC Screen	sandstone
MW-DN-103I	1291438.37	15034725.53	5/3/2006	520.13	522.72	62	31.2	41.2	488.93	478.93	2-inch PVC Screen	limestone
MW-DN-104S	1291936.65	15035728.47	5/9/2006	516.60	516.38	20	10	20	506.60	496.60	2-inch PVC Screen	sandstone
MW-DN-105S	1292920.89	15035163.96	5/5/2006	516.52	516.68	20	10	20	506.52	496.52	2-inch PVC Screen	sandstone
MW-DN-106S	1292788.38	15036048.97	5/3/2006	513.88	516.42	20	10	20	503.88	493.88	2-inch PVC Screen	sandstone
MW-DN-107S	1292169.66	15035276.73	5/15/2006	516.63	518.23	6.5	1.5	6.5	515.13	510.13	2-inch PVC Screen	overburden/fill material
MW-DN-108I	1292418.94	15035621.00	5/12/2006	517.49	517.14	62	40	50	477.49	467.49	2-inch PVC Screen	limestone
MW-DN-109S	1291668.32	15035430.95	5/9/2006	516.29	516.32	20	10	20	506.29	496.29	2-inch PVC Screen	sandstone
MW-DN-109I	1291673.27	15035431.11	5/9/2006	516.27	516.31	51	40	50	476.27	466.27	2-inch PVC Screen	limestone
MW-DN-110S	1291410.28	15035726.77	5/4/2006	517.16	517.28	20.2	10.2	20.2	506.96	496.96	2-inch PVC Screen	sandstone
MW-DN-110I	1291404.75	15035724.76	5/4/2006	517.34	517.41	51.5	41.2	51.2	476.14	466.14	2-inch PVC Screen	limestone
MW-DN-111S	1291825.08	15035252.07	5/4/2006	517.19	516.63	20	10	20	507.19	497.19	2-inch PVC Screen	sandstone
MW-DN-112S	1291687.438	15035163.73	7/25/2006	516.72	516.35	12.00	7.0	12.0	509.72	504.72	2-inch PVC Screen	sandstone
MW-DN-112I	1291687.61	15035160.79	7/27/2006	516.56	516.22	41.5	31.5	41.5	485.06	475.06	2-inch PVC Screen	limestone
MW-DN-113S	1292128.616	15034829.18	7/26/2006	516.36	516.13	11.0	6.0	11.0	510.36	505.36	2-inch PVC Screen	sandstone
MW-DN-113I	1292133.339	15034829.09	7/26/2006	516.33	516.13	48.0	38.0	48.0	478.33	468.33	2-inch PVC Screen	limestone and shale
MW-DN-114S	1292267.724	15035256.93	7/27/2006	516.76	516.31	42.0	31.0	41.0	485.76	475.76	2-inch PVC Screen	sandstone
MW-DN-114I	1292264.824	15035231.87	7/31/2006	519.71	519.97	53.0	48.0	53.0	471.71	466.71	2-inch PVC Screen	limestone and shale
MW-DN-115S	1292438.135	15035151.31	7/31/2006	516.89	516.58	30.0	25.0	30.0	491.89	486.89	2-inch PVC Screen	sandstone
MW-DN-115I	1292441.016	15035151.25	7/28/2006	516.88	516.63	63.0	46.0	56.0	470.88	460.88	2-inch PVC Screen	limestone
MW-DN-116S	1292386.958	15035670.71	7/26/2006	517.40	517.11	28.0	23.0	28.0	494.40	489.40	2-inch PVC Screen	sandstone
MW-DN-116I	1292378.009	15035670.4	7/26/2006	517.30	516.84	49.0	35.5	45.5	481.80	471.80	2-inch PVC Screen	limestone
MW-DN-117I	1292547.509	15035558.2	7/26/2006	517.75	518.22	47.3	37.0	47.0	480.75	470.75	2-inch PVC Screen	limestone
MW-DN-118S	1292739.289	15035265.24	7/26/2006	516.38	516.13	35.0	23.0	33.0	493.38	483.38	2-inch PVC Screen	sandstone
MW-DN-119S	1292903.761	15035634.86	7/27/2006	516.52	516.16	21.0	16.0	21.0	500.52	495.52	2-inch PVC Screen	sandstone
MW-DN-119I	1292898.723	15035634.1	7/27/2006	518.45	517.97	43.0	32.0	42.0	486.45	476.45	2-inch PVC Screen	limestone
MW-DN-120S	1293830.442	15035510.63	7/25/2006	511.85	513.93	38.0	28.0	38.0	483.85	473.85	2-inch PVC Screen	sandstone
MW-DN-120I	1293828.088	15035505.4	7/25/2006	511.59	513.89	58.0	47.5	57.5	464.09	454.09	2-inch PVC Screen	limestone and shale
			.,,			00.0		07.0	101.07	101.07	- Hich I VC Scieen	micsione and shale

TABLE 4.1 Page 2 of 2

SUMMARY OF MONITORING WELL INSTALLATION DETAILS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

												Hydrogeologic				
Sample			Installation	Surface	Reference	Boring		Screened	Interval		Well	Unit				
Location	X-coord.	Y-coord.	Date	Elevation	Elevation	Total Depth	Top	Bottom	Тор	Bottom	Construction	Screened				
	(UTM Coo	rdinates ¹)		(ft AMSL) (2)	(ft AMSL)	(ft bgs) (3)	(ft l	(ft bgs)		(ft bgs)		t bgs) ((ft AMSL)		
MW-DN-121S	1291006.629	15035519.61	7/24/2006	515.93	518.63	26.9	14.5	24.5	501.43	491.43	2-inch PVC Screen	sandstone				
MW-DN-122S	1290479.543	15032860.49	7/24/2006	525.72	528.43	12.5	6.5	11.5	519.22	514.22	2-inch PVC Screen	sandstone				
MW-DN-122I	1290479.679	15032865.52	7/24/2006	525.53	528.18	43.0	32.8	42.8	492.73	482.73	2-inch PVC Screen	limestone and shale				
MW-DN-123S	1291955.928	15031851.29	7/25/2006	512.98	515.03	20.0	14.0	19.0	498.98	493.98	2-inch PVC Screen	limestone				
MW-DN-123I	1291955.16	15031842.23	7/25/2006	512.71	516.65	44.5	34.0	44.0	478.71	468.71	2-inch PVC Screen	limestone				

Notes:

(1) Universal Transverse Mercator (UTM), Zone 16, NAVD 88, in feet

(2) ft AMSL - feet above mean sea level

(3) ft bgs - feet below ground surface

PVC polyvinyl chloride

TABLE 4.2 Page 1 of 13

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µSlcm) ⁽²⁾	Temperature (°C) (3)	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-101S	5/12/2006	1.57	1.5	7.17	97	11.3	48.5	brown
			3.0	7.15	96	11.4	32.1	brown
			4.5	7.16	95	11.7	13.2	brown
					Well dry a	nt 5 gallons		
			6.0	7.18	95	10.9	264.0	gray
			7.5	7.16	95	11.5	1.1	gray
					Well dry at	t 7.5 gallons		0 7
			9.0	7.83	7 61	13.5	174.0	gray
			10.5	7.87	7 11	13.3	142.0	gray
			12.0	7.94	678	14.0	69.0	gray
					Well dry a	t 12 gallons		
MW-DN-101I	5/15/2006	6.07	6	7.18	107	15.5	44.6	gray
						l dry		
			12	7.54	1033	14.9	2.2	gray
			18	7.69	1025	15.0	34.2	gray
			24	7.76	955	14.9	24.3	gray
			30	7.65	982	15.1	120.9	gray
			36	7.52	924	15.4	251.0	gray
			42	7.61	861	15.6	74.3	gray
			48	7.67	850	16.2	28.6	gray
			54	7.36	847	15.8	54.7	clear
			60	7.47	839	16.1	10.3	clear

TABLE 4.2 Page 2 of 13

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µSlcm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-102S	5/15/2006	1.97	2	7.14	1378	18.4	0.4	brown
			4	7.01	1356	18.6	0.1	brown
					Well	dry		
			6	7.20	1245	18.0	1.1	brown
			8	7.20	1249	18.2	0.8	brown
•						dry		
			10	7.29	1100	19.1	290.0	brown
			12	7.15	1152	18.5	9.6	brown
						dry		
			14	7.35	1101	18.5	127.0	brown
			16	7.16	1083	18.4	29.0	brown
					Well	dry		
MW-DN-102I	5/15/2006	6.71	7	7.91	1110	18.2	34.4	gray
					Wel	l dry		Ÿ ,
			14	8.12	884	18.4	214.0	gray
					Wel	l dry		
			21	7.90	831	17.7	15.4	gray
					Wel	l dry		
MW-DN-103S	5/16/2006	1.7	1.7	7.03	NA ⁽⁵⁾	13.3	864	brown
1000	0/10/2000	1.7	2.4	-	-	-	-	Jiowii
			4.1		NA ⁽⁵⁾			
			4.1 4.4	7.08		13.0	446	brown
					~ • (5)	-	-	-
			6.1	6.86	NA ⁽⁵⁾	13.2	107	brown
			6.3	-	-	-	-	-

TABLE 4.2 Page 3 of 13

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µS/cm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-103I	5/16/2006	4.7	4.7	7.15	NA ⁽⁵⁾	14.1	>999	brown, sulfur odor
			9.4	7.07	NA ⁽⁵⁾	14.6	>999	brown, sulfur odor
			14.1	7.17	NA ⁽⁵⁾	15.0	>999	brown, sulfur odor
			18.5	7 .1	NA ⁽⁵⁾	14.5	258	brown, sulfur odor
			23.2	7.12	NA ⁽⁵⁾	14.5	178	brown, sulfur odor
			27.9	7.03	NA ⁽⁵⁾	14.4	55.9	brown, sulfur odor
			32.6	7.05	NA ⁽⁵⁾	14.4	58.1	brown, sulfur odor
			37.3	7.09	NA ⁽⁵⁾	14.4	102	brown, sulfur odor
			41.9	7.07	NA ⁽⁵⁾	14.4	111	brown, sulfur odor
			46.2	7.04	NA ⁽⁵⁾	14.4	96	brown, sulfur odor
MW-DN-104S	5/15/2006	2.2	2.2	6.40	362	22.4	>999	brown
			4.5	6.38	368	22.6	>999	brown
			. -	= 0.4		ell dry	000	
			6.7 8.3	7.04 6.41	227 176	23.2	>999 >999	gray
			0.3	0.41		23.0 ell dry	>999	gray
			10.5	6.74	163	22.5 ell dry	>999	gray
MW-DN-105S	5/15/2006 #	2.7	2.7	7.8	405	15.2	685	brown
			4.0	-	-	-	-	brown
			6.7	7.28	182	ell dry 14.1 ell dry	>999	gray
			9.4	7.26	176	14.0 ell dry	>999	gray

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µS/cm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-106S	5/16/2006	2.08	2.1	7.01	175.6	12.7	>999	brown
			3.2	-	-	=	-	-
					Wel	l dry		
			5.3	6.95	157.9	12.6	>999	brown
			6.5	-	-	-	-	-
						l dry		
			8.6	6.95	NA ⁽⁵⁾	12.3	>999	brown
			9.3	-	-	-	-	-
					Well	l dry		
MW-DN-107S	5/15/2006	0.26	0.25	7.93	362	26.7	>999	brown
			0.50	7.90	368	28.5	>999	brown
			0.75	7.88	360	28.6	>999	brown
			1.00	7.87	352	28.8	>999	brown
			1.25	7.90	348	29.0	>999	brown
			1.50	7.92	348	28.8	>999	brown
			1.75	7.93	344	28.8	>999	brown
			2.00	7.94	340	28.8	>999	brown
			2.25	7.96	335	28.8	>999	brown
			2.50	7.98	331	28.8	>999	brown
MW-DN-108I	5/16/2006	1.49	1.5	7.84	734	15.6	69.8	-
			3.0	7.88	730	15.5	71.1	-
			4.5	7.85	721	15.5	76.8	-
			6.0	7.87	731	15.4	88.0	-
			7.5	7.86	722	15.8	105.9	-
			9.0	7.90	724	16.2	101.6	-
			10.5	7.88	726	15.4	77.4	-
			12.0	7.91	726	15.5	76.2	. -
			13.5	7.88	710	15.4	75.4	-
			15.0	7.90	721	15.7	77.7	-

TABLE 4.2 Page 5 of 13

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µS/cm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-109S	5/12/2006	2.17	2.2	<i>7.17</i>	131.8	13.2	80.9	brown
			4.4	7.13	134.6	13.7	77.2	brown
			6.6	7.12	138.8	14.0	73.6	brown
			8.8	7.11	140.7	14.1	25.6	brown
			11.0	7.11	144.5	14.4	13.1	brown
			13.2	7.11	142.9	14.0	193.0	brown
			15.4	7.12	143.7	14.0	157.9	brown
			17.6	7.13	141.9	13.8	182.9	brown
			19.8	7.12	145.0	14.2	174.9	brown
			24.0	7.13	144.2	13.9	47.1	brown
MW-DN-109I	5/11/2006	7.09	7.0	7.82	161.1	15.7	38.0	brown
			14.0	7.93	164.0	16.1	0.1	brown
					Well dry aft	er 2 volumes	i i	
			21.0	7.17	127.5	15.0	164.4	brown
			28.0	7.22	145.9	14.9	17.2	brown
					Well dry aft	er 2 volumes		
			35.0	7.18	113.0	15.0	172.5	brown
					Well dry aft	ter 1 volume		
MW-DN-110S	5/11/2006	2.44	2.5	6.84	199.9	13.8	2.0	gray
			5.0	6.86	189.7	14.0	0.4	gray
			8.0	6.97	195.5	14.0	46.8	gray
					Wel	l dry		Ů,
			10.5	7.08	143.2	13.8	265.0	gray
			13.0	7.11	151.0	14.4	16.1	gray
					Well rur	ning dry		
			18.0	7.02	157.2	13.7	52.0	gray
			20.5	7.11	147.4	13.5	228.0	gray
					Wel	l dry		

TABLE 4.2 Page 6 of 13

SUMMARY OF MONITORING WELL DEVELOPMENT PARAMETERS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µSlcm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-110I	5/15/2006	6.87	7	7.60	493	15.9	2.5	gray
						l dry		
			14	7.40	133.2	16.3	285.0	gray
						l dry		
			21	7.11	170.1	14.2	265.0	gray
					Wel	l dry		
MW-DN-111S	5/15/2006	2.36	2.4	6.42	143	17.4	>999	brown, petroleum odor, slight sheen
			5.0	6.38	137	17.3	>999	brown, petroleum odor, slight sheen
			7. 5	7.65	145	17.3	>999	brown, petroleum odor, slight sheen
			10.0	7.28	125	17.8	>999	brown, petroleum odor, slight sheen
			12.5	7.17	115	18.2	>999	brown, petroleum odor, slight sheen
			15.0	7.07	111	18.2	>999	brown, petroleum odor, slight sheen
			17.4	7.61	122	17.0	>999	brown, petroleum odor, slight sheen
MW-DN-112S	7/25/2006	1.44	0	6.76	1125			
			1.5	7.21	1196			
			3.0	7.13	1158			
					t 4.5 gallons			
			4.5	6.94	1258			
			6.0	7.02	1294			
			7.5	Well dry a	it 8 gallons			
			8.0	7.02	1200			
			9.5	7.06	1244			
			11.0	7.12	1219			

Well dry at 11 gallons

TABLE 4.2

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µS/cm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-112I	7/26/2006	5.98	0	7.53	1,086			
			6.0	7.59	1002			
				Ţ	Well dry at 10 gallons	s		
			13.0	7.21	1030	18.9		silty gray
			15.0	7.42	1027	17.3		silty, brown/gray
			16.0	7.47	1080	18.2		silty, brown/gray
					Well dry at 16 gallons			
			21.0	7.49	849	17.78		silty, brown/gray
			23.0	7.53	1007	17.6		silty, gray
				V	Well dry at 23 gallons	s		
MW-DN-113S	7/25/2006	1.36	0.0	7.17	1068			
			1.5	7.09	1036			
				Well dry a	t 3.5 gallons			
			3.5	7.02	1067			
			5.0	7.20	1075			
				Well dry at	t 5.5 gallons			
			5.5	6.88	1031			
			7.0	6.45	1008			
				Well dry at	7.75 gallons			
MW-DN-113I	7/25/2006	7.08	7.25	7.15	1107			
				Well dry a	t 10 gallons			
			10.0	7.27	1180			
			17.25	7.53	1069			
			21.0	7.47	1102			
				Well dry at 21				
				gallons				
			28.25	7.47	890			
			35.5	7.43	1038			

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µS/cm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-114S	7/27/2006	5.1	10.00	7.04	925 Well dry	22.4		silty/brownish gray/slight odor
			17.5	7.06	867 Well dry	21.5		cloudy, brownish gray
			27.5	<i>7</i> .05	895 Well dry	21.6		cloudy, brownish gray
MW-DN-114I	7/31/2006	7.2	15.0	6.77	1570	20.2		cloudy, gray, sulfur odor
			30.0	6.82	1568	20.0		clearing, sulfur odor
			45.0	6.80	1560	20.1		slightly cloudy, sulfur odor
			60.0	6.78	1550	19.9		clear, sulfur odor
			80.0	6.79	1552	20		clear, sulfur odor
MW-DN-115S	7/31/2006	3.7	8.0	6.78	1000	20.3		silty gray
			4.0		Well dry at 10 gallon			
			16.0	6.85 V	1030 Well dry at 18 gallon	20.8 s		silty gray
			24.0	6.79	1035	20.8		silty gray
				V	Well dry at 26 gallon	ıs		, , ,
MW-DN-115I	7/28/2006	7.72	20.0	8.72	884	19.3		cloudy, gray, sulfur odor
			40.0	8.10	1010	19.5		cloudy, gray, sulfur odor
			60.0	7.63	1244	19.8		clearing, sulfur odor
			70.0	7.68	1252	19.9		clearing, sulfur odor
			80.0	7.68	1251	19.9		clearing, sulfur odor

TABLE 4.2 Page 9 of 13

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µS/cm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-116S	7/25/2006	2.34	0.0	6.8	862			
			2.5	6.94	847			
				M	Vell dry at 4.5 gallor	ns		
			4.5	7.38	848			
			7.0	7.17	816			
				M	Vell dry at 8.5 gallor	ns		
			8.5	7.10	806			
			11.0	7.19	803			
				W	ell dry at 12.5 gallo	ns		
MW-DN-116I	7/26/2006	5.2	5.25	6.97	1210	17		Very silty, brown, sulfur odor
			10.50	6.94	1160	15.9		Very silty, brown, sulfur odor
			15.75	6.9	1190	16.2		Very silty, brown, sulfur odor
			21.00	6.92	1190	16.2		less silt, light gray, sulfur odor
			26.25	6.94	1170	16		less silt, light gray, sulfur odor
			31.50	6.93	1160	16.1		Translucent, sulfur odor
			36.75	6.93	1150	15.9		Translucent, sulfur odor
			42.00	6.93	1150	15.8		Translucent, sulfur odor
			47.25	6.94	1150	15.8		Translucent, sulfur odor
			52.50	6.93	1120	16		Translucent, sulfur odor
MW-DN-117I	7/26/2006	4.9	5.0	7.13	648	15.2		very silty, gray
			10.0	6.96	649	15.2		very silty, gray
			15.0	6.9	654	15.3		less silty, light gray
			20.0	6.98	682	15.7		less silty, light gray
			25.0	6.97	668	15.3		less silty, light gray
			30.0	6.89	<i>707</i>	15.2		less silty, light gray
			35.0	6.97	673	15.1		less silty, light gray
			40.0	6.93	662	15.5		less silty, light gray
			45.0	7.00	651	16.5		translucent, little sediment, no color
			50.0	7.02	663	16.2		translucent, little sediment, no color

TABLE 4.2 Page 10 of 13

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µS/cm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-118S	7/26/2006	3.7	3.75	7.05	970	19.2		opaque, light brown
			7.5	6.96	980	18.8		opaque, light brown
			11.25	7.01	970	18.3		opaque, light brown
			15	7.01	960	17.8		slightly opaque, no color
			18.75	6.95	887	18.2		slightly opaque, no color
			22.5	6.97	950	17.5		slightly opaque, no color
			26.25	6.96	882	17.5		translucent, no color
			30	6.98	874	17.2		translucent, no color
			33.75	6.97	920	17.2		translucent, no color
MW-DN-119S	7/27/2006	1.8		1	Well dry at 2 gallons	s		
			3	6.97	793	18.9		cloudy, gray
			4	6.92	831	18.4		cloudy, gray
				7	Well dry at 4 gallons	s		J. 8 J
			6	6.91	835	18.3		cloudy, gray
				1	Well dry at 6 gallons	s		J. 0 J
MW-DN-119I	7/27/2006	5	5	7.05	195	16.2		silty, gray
			10	7.05	190	16.3		silty, gray
			20	7.13	190	16.7		silty, gray
			30	7.06	193	16.5		cloudy, gray, clearing
			40	7.08	194	16.2		clear
			50	7.08	195	16.3		clear

TABLE 4.2

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µS/cm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-120S	7/25/2006	5	5.0	6.43	1850	15.8		silty, opaque, brown
			10.0	6.44	1950	14.6		silty, opaque, brown
			15.0	6.43	1970	13.9		silty, opaque, brown
			20.0	6.46	1960	14.5		silty, opaque, brown
			25.0	6.49	1890	14.2		silty, opaque, brown
				V	Vell dry at 30 gallor	ıs		
			30.0	6.44	1960	14.5		translucent, light gray
			35.0	6.44	1970	14.7		translucent, light gray
			40.0	6.43	1970	14.3		translucent, light gray
			45.0	6.43	1980	14.3		translucent, light gray
			50.0	6.43	1950	15.5		translucent, light gray
MW-DN-120I	7/25/2006	8.23	8.25	7.06	1190	15.5		turbid, gray
			16.50	6.88	1210	14.7		opaque, light gray
			24.75	6.81	1220	15.1		opaque, light gray
			33.00	6.73	1230	14.4		opaque, light gray
			41.25	6.61	1230	14.1		translucent, very light gray
			49.50	6.73	1230	14.6		translucent, very light gray
			57. 7 5	6.71	1220	14.4		translucent, no color
			66.00	6.73	1230	14.2		translucent, no color
			74.25	6.74	1230	14.4		translucent, no color
			82.50	6.72	1230	14.2		translucent, no color
			90.75	6.71	1240	13.8		translucent, no color

TABLE 4.2 Page 12 of 13

SUMMARY OF MONITORING WELL DEVELOPMENT PARAMETERS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units) ⁽¹⁾	Conductivity (µS/cm) ⁽²⁾	Temperature (°C) ⁽³⁾	Turbidity (NTU) ⁽⁴⁾	Observations
MW-DN-121S	7/24/2006	3.1	3.0	6.67	1300	17.2		turbid, gray
			6.0	6.61	1210	16.3		turbid, light gray
			9.0	6.57	1220	16.2		translucent, very light gray
			12.0	6.6	1220	15.8		translucent, very light gray
			15.0	6.55	1250	16.1		translucent, no color
			18.0	6.46	1230	16.1		translucent, no color
			21	6.5	1230	15.9		translucent, no color
			24	6.3	1260	16.7		translucent, no color
			27	6.4	1250	15.6		translucent, no color
			30	6.4	1240	15.6		translucent, no color
			33	6.4	1250	15.9		translucent, no color
MW-DN-122S	7/24/2006	0.9	1.0	7.79 Well dry	960	18.1		very turbid, light brown
			1.0	7.7 Well dry	1000	19.0		very turbid, light brown
			1.0	7.6 Well dry	754	24.7		very turbid, light brown
MW-DN-122I	7/24/2006	5.3	5.0	7.78 Well dry	731	18.7		very turbid, gray
			2.0	7.74 Well dry	844	18.8		very turbid, gray
			2.0	***	***	***		
MW DN 1920	7/25/2006		V	Vall was dry thorafo	ro it was not doval	anad		

MW-DN-123S 7/25/2006 Well was dry; therefore, it was not developed.

TABLE 4.2 Page 13 of 13

SUMMARY OF MONITORING WELL DEVELOPMENT PARAMETERS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Well **Volume** Purged Location **Date** Volume pН **Conductivity Temperature Turbidity Observations** (Std. Units) (1) (NTU) (4) (µS/cm) (2) $(^{\circ}C)^{(3)}$ (gallons) (gallons) MW-DN-123I 6.2 6.25 7.29 499 translucent, no color 7/25/2006 18.5 opaque, light gray 12.50 7.16 498 17.2 opaque, light gray 7.06 18.75 475 16.4 25.00 17.0 translucent, no color 7.01 474 translucent, no color 31.25 6.94 472 16.2 470 translucent, no color 37.50 6.9416.0 43.75 6.93 469 16.0 translucent, no color 50.00 6.88 466 16.0 translucent, no color

472

468

15.8

16.4

6.9

6.85

Notes:

- (1) Std. Units standard units
- (2) μ S/cm microSiemens per centimeter
- (3) degrees Celsius
- (4) NTU nephelometric turbidity units
- (5) Conductivity not available due to instrument calibration error. Removed minimum of 10 gallons or purge dry 3 times.

56.25

62.50

translucent, no color

translucent, no color

TABLE 4.3 Page 1 of 2

SUMMARY OF GROUNDWATER ELEVATIONS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

				5/22/2006		<i>8/7/2006</i>		
Sample Location	Top of Casing Elevation (ft AMSL) ⁽¹⁾	Surface Elevation	Total Depth (ft BTOC) ⁽²⁾	Depth to Water	Groundwater Elevation	Depth to Water	Groundwater Elevation	
	() (AMSL)		(JI BIOC)	(ft BTOC)	(ft AMSL)	(ft BTOC)	(ft AMSL)	
Shallow Wells								
DSP-157S	521.54	517.93	NA	5.47	516.07	5.70	515.84	
DSP-158S	510.78	507.07	NA	4.27	506.51	5.66	505.12	
DSP-159S	519.41	515.61	18.61	NM	NM	10.47	508.94	
MW-DN-101S	520.30	517.10	23.90	14.03	506.27	14.42	505.88	
MW-DN-102S	516.68	516.98	14.80	3.05	513.63	2.80	513.88	
MW-DN-103S	522.12	519.53	NA	13.93	508.19	14.09	508.03	
MW-DN-104S	516.61	516.60	20.05	6.73	509.88	7.66	508.95	
MW-DN-105S	516.68	516.52	20.00	4.35	512.33	4.71	511.97	
MW-DN 106S	516.42	513.88	NA	10.86	505.56	12.06	504.36	
MW-DN-107S	518.23	516.63	6.31	4.88	513.35	4.28	513.95	
MW-DN-109S	516.32	516.29	20.40	6.94	509.38	6.98	509.34	
MW-DN-110S	517.28	517.16	20.43	6.21	511.07	6.22	511.06	
MW-DN-111S	517.32	517.19	20.41	5.20	512.12	4.84	512.48	
MW-DN-112S	516.35	516.72	12.00	N/A	N/A	2.24	514.11	
MW-DN-113S	516.13	516.36	11.05	N/A	N/A	2.53	513.60	
MW-DN-114S	516.31	516.76	42.00	N/A	N/A	8.61	507.70	
MW-DN-115S	516.58	516.89	29.92	N/A	N/A	7.36	509.22	
MW-DN-116S	517.11	517.40	27.41	N/A	N/A	12.83	504.28	
MW-DN-118S	516.13	516.38	31.19	N/A	N/A	8.04	508.09	
MW-DN-119S	516.16	516.52	20.73	N/A	N/A	9.69	506.47	
MW-DN-120S	513.93	511.85	40.36	N/A	N/A	9.71	504.22	
MW-DN-121S	518.63	515.93	26.85	N/A	N/A	7.32	511.31	
MW-DN-122S	528.43	525.72	14.35	N/A	N/A	7.89	520.54	
MW-DN-123S	515.03	512.98	20.89	N/A	N/A	20.18	494.85	
Intermediate Wells								
DSP-105	518.44	517.50	51.80	10.15	508.29	10.29	508.15	
DSP-106	518.44	517.42	51.00	9.37	509.07	9.55	508.89	
DSP-107	519.53	517.23	52.10	13.18	506.35	13.67	505.86	
DSP-108	519.49	517.37	52.10	12.58	506.91	13.32	506.17	
DSP-117	517.52	514.63	>100.00	11.61	505.91	12.43	505.09	
DSP-118	519.83	517.21	51.90	7.53	512.30	7.94	511.89	
DSP-121	516.83	513.95	52.20	23.03	493.80	12.30		
							504.53	
DSP-122	519.67	516.76	37.37	10.43	509.24	10.94	508.73	
DSP-123	520.13	517.00	52.68	14.71	505.42	15.46	504.67	
DSP-124	519.81	517.08	37.33	6.57	513.24	6.17	513.64	
DSP-125	519.76	516.71	37.60	6.56	513.20	6.65	513.11	
DSP-126	524.90	522.39	55.70	16.10	508.80	16.26	508.64	
DSP-127	519.88	516.96	47.70	10.67	509.21	10.99	508.89	
DSP-147	523.37	520.89	52.00	15.88	507.49	22.27	501.10	
DSP-148	520.78	518.29	51.50	13.20	507.58	13.68	507.10	
DSP-149R	518.29	515.80	52.42	12.96	505.33	13.65	504.64	
DSP-150	518.31	515.45	51.50	10.10	508.21	10.43	507.88	
DSP-151	519.17	516.43	51.90	7.26	511.91	7.56	511.61	
DSP-151								
D3F-134	519.26	516.40	51.30	5.96	513.30	6.24	513.02	

TABLE 4.3 Page 2 of 2

SUMMARY OF GROUNDWATER ELEVATIONS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

		on Elevation		5/22	2/2006	8/7/2006	
Sample Location	Top of Casing Elevation (ft AMSL) ⁽¹⁾		Total Depth (ft BTOC) ⁽²⁾	Depth to Water (ft BTOC)	Groundwater Elevation (ft AMSL)	Depth to Water (ft BTOC)	Groundwater Elevation (ft AMSL)
Intermediate Wells (cont	ŕ		y ,	V	•	•	•
DSP-153	518.57	515.89	NA	11.05	507.52	11.04	507.53
DSP-154	514.70	512.17	52.44	8.15	506.55	7.99	506.71
					506.79	NM	NM .
DSP-155	518.53	515.47	42.20	11.74			504.64
DSP-156	518.14	515.17	52.30	12.78	505.36	13.50	
DSP-157M	521.80	517.81	NA	14.64	507.16	14.11	507.69
DSP-158M	510.64	507.32	NA	5.72	504.92	5.98	504.66
DSP-159M	519.37	515.57	NA	12.84	506.53	12.85	506.52
MW-DN-101I	520.48	517.08	53.90	15.71	504.77	16.36	504.12
MW-DN-102I	516.63	516.91	48.90	4.21	512.42	4.53	512.10
MW-DN-103I	522.72	520.13	NA	15.68	507.04	15.76	506.96
MW-DN-108I	517.14	517.49	50.20	12.51	504.63	12.86	504.28
MW-DN-109I	516.31	516.27	50.40	6.68	509.63	6.69	509.62
MW-DN-110I	517.41	517.34	51.50	8.90	508.51	9.09	508.32
MW-DN-112I	516.22	516.56	41.40	N/A	N/A	6.27	509.95
MW-DN-113I	516.13	516.33	47.35	N/A	N/A	3.39	512.74
MW-DN-114I	519.97	519.71	52.85	N/A	N/A	8.43	511.54
MW-DN-115I	516.63	516.88	55.70	N/A	N/A	7.17	509.46
MW-DN-116I	516.84	517.30	45.57	N/A	N/A	13.05	503.79
MW-DN-117I	518.22	517.75	47.28	N/A	N/A	13.52	504.70
MW-DN-119I	517.97	518.45	42.36	N/A	N/A	11.59	506.38
MW-DN-120I	513.89	511.59	60.55	N/A	N/A	9.75	504.14
MW-DN-122I	528.18	525.53	46.01	N/A	N/A	12.57	515.61
MW-DN-123I	515.65	512.71	46.40	N/A	N/A	7.92	507.73
Deep Wells							
DSP-119	517.72 ⁽⁴⁾	NA	NA	<150.00	<367.72	>100	
DSP-157D	521.86	NA	NA	139.30	382.56	>100	
DSP-158D	510.39	NA	NA	138.18	372.21	>100	
DSP-159D		NA	NA			>100	

Notes:

- (1) ft AMSL feet above mean sea level
- (2) ft BTOC feet below top of casing
- (3) NA Surface elevation not available
- (4) This is top of casing. The riser was below the casing and not accessible

SUMMARY OF SURFACE WATER ELEVATIONS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION

MORRIS, ILLINOIS

		May 22	2, 2006	August 7, 2006			
Surface Water Location	Reference Elevation (ft AMSL) ⁽¹⁾	Depth to Water (ft below Reference)	Surface Water Elevation (ft AMSL)	Depth to Water (ft below Reference)	Surface Water Elevation (ft AMSL)		
SW-DN-101	514.14	9.73	504.41	10.24	503.90		
SW-DN-102	517.79	13.28	504.51	13.14	504.65		
SW-DN-103	519.58	14.99	504.59	16.17	503.41		
SW-DN-104	519.15	NM	NM	11.09	508.06		
SW-DN-105	519.24	NM	NM	12.36	506.88		
SW-DN-106	529.63	7.23	522.40	7.27	522.36		
SW-DN-107	529.25	7.24	522.01	7.09	522.16		

Note:

ft AMSL - feet above mean sea level
 NM No depth-to-water measurement.

TABLE 4.5 Page 1 of 12

Sample Location	Date	Time	Pumping Rate	pН	Temperature	Conductivity	ORP (5)	DO ⁽⁷⁾	Turbidity	Volume Purged
			(mL/min) (1)	(Std. Units) (2)	(°C) (3)	(µS/cm) (4)	$(mV)^{(6)}$	$(mg/L)^{(8)}$	(NTU) (9)	(gallons)
DSP-105	05/23/2006	11:15	250	7.35	18.98	1039	-30.1	5.10	2.37	NM
		11:20	250	7.29	18.88	1037	-30	4.52	2.02	NM
		11:25	250	7.31	18.61	1039	-30	4.79	2.16	NM
DSP-106	05/23/2006	12:15	250	7.51	17.36	795	-26.1	5.08	1.92	NM
		12:20	250	7.49	17.37	794	-25 <i>.</i> 7	4.99	1.49	NM
		12:25	250	7.49	17.33	794	-25.7	4.97	1.29	NM
DSP-107	05/23/2006	13:30	150	7.19	1 6. 57	830	-30.7	0.65	3.20	NM
		13:35	150	7.16	16.58	831	-30.7	0.49	2.52	NM
		13:40	150	7.15	16.83	830	-30.5	0.40	2.36	NM
DSP-108	05/24/2006	15:30	60	7.21	19.64	872	-22.6	1.97	3.71	NM
		15:35	60	7.21	20.16	873	-22.5	1.77	4.10	NM
		15:40	60	7.19	20.49	876	-22.3	1.96	2.38	NM
DSP-117	05/26/2006	10:45	270	6.75	13.10	1677	46	2.41	2.50	0.21
		10:50	270	6.75	13.13	1684	41	2.13	2.00	0.36
		10:55	270	6.76	13.05	1684	40	1.95	2.20	0.36
DSP-118	05/25/2006	10:05	NM	7.83	15.26	597	-18.9	1.83	3.64	NM
		10:10	NM	7.82	15.52	598	-20.2	1.87	3.07	NM
		10:15	NM	7.81	15.35	597	-23.7	1.50	3.27	NM
DSP-121	05/26/2006	15:10	190	7.22	15.84	1067	-361	2.11	0.60	0.25
		15:15	190	7.20	16.14	1070	-412	1.97	0.70	0.25
		15:20	190	7.18	16.18	1072	-203	1.59	0.80	0.25
DSP-122	05/25/2006	16:45	100	7.23	22.94	1160	-62.4	1.38	14.80	NM
		16:50	100	7.20	23.48	1162	-71.4	1.28	9.58	NM
		16:55	100	7.18	23.50	1160	<i>-7</i> 5.9	1.10	8.63	NM
DSP-123	05/26/2006	9:55	100	7.29	17.21	835	-9.2	0.85	26.40	NM
		9:55	100	7.27	17.52	833	-9.3	0.60	24.30	NM
		9:55	100	7.27	17.73	833	-10.3	0.66	26.30	NM
DSP-124	05/26/2006	11:45	200	6.89	18. 47	1265	-16.5	1.84	2.49	NM
		11:50	200	6.86	18.73	1263	-17.3	1.73	1.94	NM
		11:55	200	6.85	18.81	1263	-18.6	1.38	2.19	NM

TABLE 4.5 Page 2 of 12

Sample Location	Date	Time	Pumping Rate (mL/min) ⁽¹⁾	pH (Std. Units) ⁽²⁾	Temperature (°C) ⁽³⁾	Conductivity (µS/cm) ⁽⁴⁾	ORP (5) (mV) (6)	DO ⁽⁷⁾ (mg/L) ⁽⁸⁾	Turbidity (NTU) ⁽⁹⁾	Volume Purged (gallons)
DSP-125	06/01/2006	13:15	100	6.81	19.05	3144	26.4	0.40	0.02	ND (
D31 123	00/01/2000	13:20	100	6.80	19.08	3141	-36.4 -37.6	0.49	9.93	NM
		13:25	100	6.79	19.03	3142	-37.6 -38.6	0.40	9.53	NM
DSP-126	05/24/2006	11:20	150	7.17	15.18	930	-36.6 -173	0.38	8.09	NM
D31-120	03/24/2000	11:25	150	7.16	15.16	930		1.28	6.00	0.20
		11:30		7.16 7.16			-179.5	1.18	5.00	0.20
DSP-127	05/30/2006	10:30	150 100		15.25	930	-177.3	1.17	4.80	0.20
DSF-127	03/30/2000	10:30		7.81	18.71	1409	-65.6	0.69	11.90	NM
			100	7.83	18.75	1400	-66.8	0.66	11.10	NM
DCD 145	05 /20 /200/	10:40	100	7.85	18.78	1399	-67.2	0.71	10.90	NM
DSP-147	05/30/2006	9:25	130	7.99	18.02	1222	373	2.15	1.20	0.17
		9:30	130	8.02	17.72	1223	344	1.89	1.40	0.17
DCD 440	0= /00 /000	9:35	130	8.05	18.60	1223	363	1.67	1.40	0.17
DSP-148	05/30/2006	13:30	113	6.82	13.80	1510	-253	2.15	11.30	0.15
		13:35	113	6.84	14.02	1523	-259	1.89	8.93	0.15
		13:40	113	6.80	13.96	1527	-266	1.67	8.23	0.15
DSP-149R	05/31/2006	9:45	88	9.88	19.01	74 1	-62	1.50	11.40	0.12
		9:50	88	9.89	18.96	742	-21	1.30	9.50	0.12
		9:55	88	9.89	18.65	740	-2.7	1.38	8.50	0.12
DSP-150	05/24/2006	12:15	200	7.13	20.99	978	-10.7	1.14	10.50	NM
		12:20	200	7.13	20.99	979	-10.1	1.05	9.80	NM
		12:25	200	7.13	21.27	981	-9.7	0.88	9.40	NM
DSP-151	05/24/2006	14:00	60	7.85	19.10	639	-48.6	2.22	4.11	NM
		14:05	60	7.85	19.69	638	-59	2.05	4.28	NM
		14:10	60	7.85	19.71	640	-68.3	2.00	4.61	NM
DSP-152	05/23/2006	11:00	200	7.12	14.64	1127	-8.5	2.67	2.00	0.26
		11:05	200	7.11	14.79	1116	-8.2	2.50	0.65	0.26
		11:10	200	7.13	15.45	1116	-17.7	2.44	2.35	0.26
DSP-153	05/24/2006	14:40	200	9.54	20.13	747	969	1.32	4.00	0.26
		14:45	200	9.47	20.17	748	-169	0.94	4.00	0.26
		14:50	200	9.37	19.72	750	-90	0.83	4.30	0.26

TABLE 4.5 Page 3 of 12

Sample			Pumping							Volume
Location	Date	Time	Rate	pH	Temperature	Conductivity	ORP (5)	$DO^{(7)}$	Turbidity	Purged
			(mL/min) ⁽¹⁾	(Std. Units) (2)	(°C) (3)	(µS/cm) (4)	$(mV)^{(6)}$	$(mg/L)^{(8)}$	(NTU) ⁽⁹⁾	(gallons)
DSP-154	05/24/2006	17:00	500	8.19	13.68	765	-120	2.19	2.60	0.66
		17:05	500	8.19	13.75	767	709	1.73	2.20	0.66
		17:10	500	8.20	14.20	765	-289	1.51	2.60	0.66
DSP-155	05/25/2006	14:50	250	7.62	22.32	783	-21 .1	2.29	2.51	NM
		14:55	250	7.60	22.28	783	-22.4	2.12	1.96	NM
		15:00	250	7.57	22.50	783	-23.6	1.84	2.02	NM
DSP-156	05/30/2006	15:35	76	7.92	21.02	834	-9.9	1.09	18.20	0.10
		15:40	76	7.92	21.27	837	-15.2	0.89	17.00	0.10
		15:45	76	7.92	21.58	833	-16.4	0.76	15.40	0.10
DSP-157S	05/23/2006	15:10	200	6.65	15.00	9173	-113.3	0.44	9.50	0.26
		15:15	250	6.66	15.38	9176	-60.1	0.36	6.40	0.40
		15:20	250	6.65	14.85	9100	-281.4	0.36	7.50	0.40
DSP-157M	05/23/2006	13:25	200	7.55	15.56	1578	-179.7	1.08	16.20	0.26
		13:30	200	7.55	15.57	1587	-165	0.94	15.10	0.26
		13:35	200	7.55	15.82	1587	-162	0.82	13.70	0.26
DSP-158S	05/25/2006	10:55	250-300	7.16	14.11	797	-317	2.20	10.40	0.33
		11:00	250-300	7.14	14.30	<i>7</i> 96	-290	1.78	10.20	0.33
		11:05	250-300	7.13	14.74	803	-280	1.61	10.20	0.33
DSP-158M	05/25/2006	9:15	300	7.54	15.26	595	-552	1.27	3.00	0.40
		9:20	300	7.54	14.94	594	-476	1.12	2.30	0.40
		9:25	300	7.55	15.13	594	-617	0.99	3.60	0.40
DSP-159S	05/25/2006	16:00	300	6.81	14.96	2007	-230	7.70	4.90	0.40
		16:05	300	6.82	15.30	2032	-105	2.55	6.20	0.40
		16:10	300	6.83	15.21	2160	-96	1.76	14.30	0.40
DSP-159M	05/25/2006	14:30	<250	7.43	18.10	707	-328	1.76	6.30	< 0.33
		14:35	<250	7.42	18.28	706	-305	1.43	4.80	< 0.33
		14:40	<250	7.42	18.22	705	-315	1.17	3.10	<0.33
MW-DN-101S	05/26/2006	13:55	<i>7</i> 5	7.03	18.63	1069	-78.9	1.46	57.40	NM
		14:00	75	7.02	19.15	1069	-82.6	1.41	58.60	NM
		14:05	75	7.02	19.22	1069	-85.6	1.41	55.60	NM

TABLE 4.5 Page 4 of 12

Sample Location	Date	Time	Pumping Rate (mL/min) ⁽¹⁾	pH (Std. Units) ⁽²⁾	Temperature (°C) ⁽³⁾	Conductivity (µS/cm) ⁽⁴⁾	ORP (5) (mV) (6)	DO ⁽⁷⁾ (mg/L) ⁽⁸⁾	Turbidity (NTU) ⁽⁹⁾	Volume Purged (gallons)
MW-DN-101I	05/26/2006	15:20	100	7.05	18.82	1605	-22.6	0.75	6.41	NM
		15:25	100	7.03	18.81	1609	-22.6	0.65	4.40	NM
		15:30	100	7.04	19.25	1613	-22.6	0.59	3.22	NM
MW-DN-102S	06/01/2006	11:20	100	6.54	19.17	5814	-27.5	0.32	47.30	NM
		11:25	100	6.54	19.19	5812	-28.7	0.30	49.40	NM
		11:30	100	6.53	19.19	8811	-29.6	0.28	51.60	NM
MW-DN-102I	06/01/2006	8:30	100	8.25	18.76	1952	-11.7	0.34	101.00	NM
		8:30	100	8.25	18.74	1948	-11.9	0.31	82.60	NM
		8:30	100	8.24	18.78	1951	-11.8	0.30	81.70	NM
MW-DN-103S	05/26/2006	9:20	180	6.58	14.66	1527	66.9	7.08	2.70	0.24
		9:25	180	6.59	15.09	1533	79.2	7.07	2.30	0.24
		9:30	180	6.59	15.25	1538	-82.9	6.70	1.90	0.24
MW-DN-103I	05/26/2006	10:55	180	7.01	15.36	1292	-635	8.29	3.00	0.92
		11:00	180	7.00	15.00	1286	-873	3.54	3.30	0.46
		11:05	180	6.99	14.94	1281	-919	2.57	2.50	0.46
MW-DN-104S	05/30/2006	16:15	100	6.46	23.15	2947	-14.7	1.70	30.70	NM
		16:20	100	6.44	23.12	2946	-14.2	1.68	31.70	NM
		16:25	100	6.44	23.12	2946	-14.1	1.58	24.30	NM
MW-DN-105S	06/01/2006	13:15	100	7.05	16.06	1430	-21.3	1.61	8.10	NM
		13:20	100	7.03	16.06	1428	-21.1	1.64	7.79	NM
		13:25	100	7.01	16.04	1424	-20.4	1.66	7.94	NM
MW-DN-106S	05/26/2006	13:40	250	6.74	13.66	1143	181.7	7.59	0.60	1.98
		13:45	250	6.73	13.64	1144	155.7	4.96	0.70	0.33
		13:50	250	6.73	13.73	1141	136.4	3.31	0.70	0.33
MW-DN-107S	05/31/2006	14:25	100	7.74	41.29	426	-54.1	0.48	21.70	NM
		14:25	100	7.76	41.28	428	-54	0.35	11.00	NM
		14:25	100	7.75	41.28	429	-53.5	0.33	7.46	NM
MW-DN-108I	05/26/2006	16:50	100	7.43	16.28	1614	-65.3	0.43	15.90	NM
		16:55	100	7.40	16.11	1618	-68.6	0.44	12.30	NM
		17:00	100	7.41	16.11	1615	-71.6	0.43	NM	NM

TABLE 4.5 Page 5 of 12

Sample			Pumping							Volume
Location	Date	Time	Rate	pН	Temperature	Conductivity	ORP (5)	$DO^{(7)}$	Turbidity	Purged
			(mL/min) (1)	(Std. Units) (2)	(°C) (3)	(µS/cm) (4)	$(mV)^{(6)}$	$(mg/L)^{(8)}$	(NTU) ⁽⁹⁾	(gallons)
MW-DN-108I	08/14/2006	9:20	200	7.31	19.04	1570	63	1.23	16.2	NM
		9:25	200	7.09	18.47	1570	63	0.85	3.47	NM
		9:30	200	7.07	18.70	1570	62	0.68	2.16	NM
		9:35	200	7.12	18.64	1560	60	0.67	2.07	NM
		9:40	200	7.12	18.59	1560	60	0.65	1.96	NM
MW-DN-109S	05/31/2006	11:20	100	7.16	15.83	1702	-25.1	0.45	9.69	NM
		11:25	100	7.15	15.88	1698	-27.4	0.42	6.30	NM
		11:30	100	7.15	15.89	1696	-28.2	0.37	6.03	NM
MW-DN-109I	05/31/2006	9:10	100	7.29	17.11	1274	-9. <i>7</i>	1.81	11.60	NM
		9:15	100	7.29	17.17	1275	-19.7	1.76	6.17	NM
		9:20	100	7.29	17.17	1272	-19.7	1.57	4.78	NM
MW-DN-110S	05/30/2006	13:25	100	6.94	17.58	2162	-45.4	0.34	37.2	NM
		13:30	100	6.97	17.61	2157	-47	0.33	20.0	NM
		13:35	100	6.95	17.64	2154	-48.2	0.33	11.8	NM
MW-DN-110I	05/30/2006	14:15	NM	7.27	18.13	1406	-23.2	1.14	15.9	NM
		14:20	NM	7.24	18.17	1392	-24.1	1.16	13.0	NM
		14:25	NM	7.21	18.19	1386	-24.9	1.19	12.1	NM
MW-DN-111S	05/31/2006	11:20	100	7.34	19.00	567	-86.1	0.21	29.8	NM
		11:25	100	7.33	18.97	567	-89.4	0.19	19.0	NM
		11:30	100	7.31	18.96	565	-91.2	0.17	18.1	NM
MW-DN-112S	08/10/2006	10:15	200	7.11	21.49	3550	66	0.81	37.0	NM
		10:20	200	7.14	21.78	3730	65	0.65	14.4	NM
		10:25	200	7.17	21.92	3820	61	0.55	12.4	NM
		10:30	200	7.22	21.95	3770	59	0.46	13.0	NM
		10:35	200	7.13	22.00	3770	57	0.43	11.6	NM
		10:40	200	7.14	21.98	3780	53	0.39	37.3	NM
		10:45	200	7.12	21.95	3790	50	0.48	54.5	NM
		10:50	200	7.20	21.87	3800	49	0.40	24.7	NM
		10:55	200	7.24	21.83	3840	48	0.39	25.4	NM
•		11:00	200	7.23	21.84	3830	48	0.40	25.7	NM

TABLE 4.5Page 6 of 12

Sample			Pumping							Volume
Location	Date	Time	Rate	pH	Temperature	Conductivity	ORP (5)	$DO^{(7)}$	Turbidity	Purged
			(mL/min) ⁽¹⁾	(Std. Units) (2)	(°C) (3)	(µS/cm) (4)	$(mV)^{(6)}$	$(mg/L)^{-(8)}$	(NTU) ⁽⁹⁾	(gallons)
MW-DN-112I	08/10/2006	10:25	150	7.59	20.83	1750	323	6.45	175	NM
		10:30	150	7.37	19.05	1740	325	0.92	112	NM
		10:35	150	7.19	19.74	1530	325	0.59	96.1	NM
		10:40	150	7.15	19.67	1630	323	0.52	181	NM
		10:45	150	7.17	19.83	1680	316	0.48	274	NM
		10:50	150	7.14	19.89	1560	312	0.45	464	NM
		10:55	150	7.17	19.79	1730	309	0.47	458	NM
		11:00	150	7.17	19.75	1640	305	0.49	629	NM
		11:05	150	7.16	19.68	1590	299	0.16	>1000	NM
		11:10	150	7.16	19.7 1	1590	300	0.60	>1000	NM
		11:15	150	7.16	19.77	1580	299	0.61	>1000	NM
		11:20	150	7.27	19.02	1560	253	0.88	935	NM
		11:25	150	7.22	19.26	1530	2 57	0.82	>1000	NM
		11:30	150	7.18	19.55	1490	262	0.80	642	NM
		11:35	150	7.16	19.46	1470	265	0.79	618	NM
		11:40	150	7.15	19.39	1460	267	0.78	581	NM
		11:45	150	7.13	19.24	1426	269	0.81	545	NM
		11:50	150	7.14	19.09	1418	270	0.84	434	NM
		11:55	150	7.13	19.13	1414	271	0.82	468	NM
		12:00	150	7.13	19.10	1415	270	0.82	465	NM
		12:05	150	7.14	19.09	1413	271	0.81	460	NM
MW-DN-113S	08/09/2006	9:40	100	7.43	26.70	1326	79	2.34	15.70	NM
		9:45	100	7.43	26.99	1327	78	2.43	6.86	NM
		9:50	100	7.38	27.34	1325	79	2.66	3.24	NM
		9:55	100	7.41	27.39	1328	<i>7</i> 8	2.67	4.17	NM
MW-DN-113I	08/09/2006	10:50	200	7.21	22.80	1710	289	2.53	27.5	NM
		10:55	200	7.16	21.92	1670	294	2.54	21.1	NM
		11:00	150	7.15	21.50	1700	297	2.37	16.0	NM
		11:05	150	7.15	21.85	1750	299	2.19	16.3	NM
		11:10	150	7.15	21.58	1760	301	2.02	15.9	NM
		11:15	150	7.15	21.23	1800	302	1.98	15.8	NM
		11:20	150	7.16	21.19	1820	302	1.99	16.0	NM

TABLE 4.5 Page 7 of 12

Sample			Pumping							Volume
Location	Date	Time	Rate (mL/min) ⁽¹⁾	pH (Std. Units) ⁽²⁾	Temperature (°C) ⁽³⁾	Conductivity (µS/cm) ⁽⁴⁾	$ORP^{(5)}$ $(mV)^{(6)}$	$DO^{(7)}$ $(mg/L)^{(8)}$	Turbidity (NTU) ⁽⁹⁾	Purged (gallons)
MW-DN-114S	08/11/2006	12:40	190	7.32	22.57	1209	46	1.17 #	31	NM
		12:45	190	7.26	22.53	1297	46	0.88 #		NM
		12:50	190	7.13	22.46	1313	44	0.72 #		NM
		12:55	190	7.11	22.38	1313	42	0.66	14.9	NM
		13:00	190	7.10	22.58	1310	40	0.61	14.2	NM
		13:05	190	7.08	22.39	1309	39	0.60	13.8	NM
		13:10	190	7.07	22.41	1309	40	0.59	14	NM
MW-DN-114I	08/14/2006	12:25	200	7.02	20.93	2110	67	1.14	22	NM
		12:30	380	6.99	19.48	2070	67	0.71	15.9	NM
		12:35	380	6.87.	19.18	2100	67	0.50	5.76	NM
		12:40	380	6.90	19.17	2100	67	0.49	2.75	NM
		12:45	380	6.87	19.14	2110	68	0.47	2.21	NM
		12:50	380	6.86	19.16	2110	68	0.46	1.98	NM
MW-DN-115S	08/14/2006	10:45	200	6.63	22.36	1342	64	1.01	13.9	NM
		10:50	200	6.91	22.48	1342	65	0.98	14.6	NM
		10:55	200	6.89	22.51	1345	66	1.02	14	NM
		11:00	200	6.84	22.61	1347	66	1.06	7.2	NM
		11:05	200	6.82	22.51	1346	66	1.07	3.65	NM
MW-DN-115I	08/11/2006	10:20	200	7.23	21.94	1475	62	1.07	447	NM
		10:25	200	7.12	22.03	1407	60	0.75	137	NM
		10:30	200	7.21	22.12	1362	54	0.59	56.1	NM
		10:35	200	7.22	22.16	1340	50	0.53	42.8	NM
		10:40	200	7.19	22.17	1335	44	0.46	43.5	NM
		10:45	200	7.18	22.28	1332	30	0.39	37.5	NM
		10:50	200	7.25	22.40	1334	24	0.38	28.3	NM
		10:55	200	7.30	22.73	1338	6	0.34	23.3	NM
		11:00	200	7.36	22.80	1339	-4	0.32	20.6	NM
		11:05	200	7.36	22.99	1339	-11	0.33	17.2	NM
		11:10	200	7.32	22.74	1341	-17	0.32	22.7	NM
		11:15	200	7.34	22.57	1333	-23	0.32	13.6	NM
		11:20	200	7.34	22.52	1328	-25	0.33	12.8	NM
		11:25	200	7.33	22.49	1327	-26	0.32	12.4	NM

TABLE 4.5 Page 8 of 12

Sample			Pumping							Volume
Location	Date	Time	Rate	pН	Temperature	Conductivity	ORP (5)	$DO^{(7)}$	Turbidity	Purged
			(mL/min) ⁽¹⁾	(Std. Units) (2)	(°C) (3)	(µS/cm) (4)	$(mV)^{(6)}$	$(mg/L)^{(8)}$	(NTU) ⁽⁹⁾	(gallons)
MW-DN-116S	08/09/2006	13:00	200	7.31	17.92	4690	77	1.63	136	NM
		13:05	150	7.20	17.70	1690	77	1.13	52.9	NM
		13:10	150	7.12	17.67	1670	78	1.23	40.5	NM
		13:15	150	7.13	17.75	1680	78	1.37	26.6	NM
		13:20	150	7.10	17.7	1680	<i>7</i> 9	1.32	20.0	NM
		13:25	150	7.08	18.3	1690	78	1.04	14.6	NM
		13:30	150	7.07	18.82	1690	78	1.08	10.31	NM
		13:35	150	7.06	18.86	1690	78	1.10	7.29	NM
		13:40	150	7.07	18.78	1690	78	0.99	6.96	NM
		13:45	150	7.08	18.77	1690	78	0.97	4.91	NM
MW-DN-116I	08/09/2006	12:55	200	7.06	18.60	1640	127	0.75	12.1	NM
		13:00	200	7.01	18.91	1590	117	0.64	11.4	NM
		13:05	200	6.99	19.04	1530	108	0.56	7.37	NM
		13:10	200	6.99	19.04	1500	105	0.53	6.32	NM
		13:15	200	6.98	18.82	1490	102	0.51	5.91	NM
		13:20	200	6.98	18.95	1410	100	0.49	6.29	NM
		13:25	200	6.99	18.88	1374	97	0.49	5.16	NM
		13:30	200	6.99	18.98	1424	95	0.49	4.07	NM
MW-DN-117I	08/10/2006	13:20	200	7.13	16.68	733	285	1.18	>1000	NM
		13:25	200	7.11	16.64	770	285	1.19	480	NM
		13:30	200	7.00	16.60	690	288	0.68	250	NM
		13:35	200	7.04	16.60	631	288	0.63	118	NM
		13:40	200	7.01	16.84	738	290	0.61	69	NM
		13:45	200	6.99	16.99	740	291	0.59	56.3	NM
		13:50	200	7.00	17.42	733	294	0.62	49.3	NM
		13:55	200	6.95	17.17	745	296	0.51	25.5	NM
		14:00	200	6.94	17.08	748	297	0.45	18.3	NM
		14:05	200	6.93	17.17	750	297	0.43	12.4	NM
		14:10	200	9.93	17.15	749	297	0.43	7.62	NM
		14:15	200	6.93	17.17	750	298	0.43	5.09	NM

TABLE 4.5 Page 9 of 12

Sample			Pumping							Volume
Location	Date	Time	Rate	pH	Temperature	Conductivity	ORP (5)	DO (7)	Turbidity	Purged
			(mL/min) (1)	(Std. Units) (2)	(°C) (3)	(µS/cm) (4)	$(mV)^{(6)}$	$(mg/L)^{(8)}$	(NTU) ⁽⁹⁾	(gallons)
MW-DN-118S	08/10/2006	15:25	200	7.02	20.90	1063	257	0.80	2.93	NM
		15:30	200	6.95	20.81	1065	243	0.60	4.23	NM
		15:35	200	6.95	20.72	1093	224	0.46	2.17	NM
		15:40	200	6.94	20.68	1109	217	0.45	3.18	NM
		15:45	200	6.94	20.62	1127	210	0.41	2.08	NM
		15:50	200	6.93	20.59	1130	207	0.40	2.13	NM
		15:55	200	6.94	20.57	1131	205	0.40	1.99	NM
MW-DN-119S	08/11/2006	8:30	200	6.95	17.48	1600	<i>7</i> 1	0.84	62.3	NM
		8:35	150	6.90	17.95	1580	<i>7</i> 1	0.75	66.5	NM
		8:40	150	6.92	18.04	1590	72	0.69	43.1	NM
		8:45	150	6.88	18.13	1590	<i>7</i> 1	0.64	32	NM
		8:50	150	6.84	18.08	1600	7 1	0.62	31	NM
		8:55	150	6.85	18.09	1600	72	0.61	33.2	NM
MW-DN-119I	08/11/2006	8:30	200	7.04	17.49	997	338	1.00	418	NM
		8:35	200	6.91	17.58	1000	338	0.68	118	NM
		8:40	200	6.88	17.68	1000	338	0.59	49.7	NM
		8:45	200	6.87	17.71	1001	336	0.53	24.1	NM
		8:50	200	6.88	17.72	1004	333	0.52	14.7	NM
		8:55	200	6.89	17.76	1006	328	0.50	6.51	NM
		9:00	200	6.87	17.83	1007	322	0.48	5.58	NM
		9:05	200	6.86	17.80	1008	32 1	0.47	4.98	NM
MW-DN-120S	08/08/2006	15:40	300	6.55	18.00	2330	24 1	3.40	41.5	NM
		15:45	200	6.30	16.96	2330	216	2.24	24.5	NM
		15:50	300	6.36	15.88	2340	207	1.49	11.9	NM
		15:55	250	6.36	15.81	2340	202	1.20	9.48	NM
		16:00	250	6.37	15.92	2330	196	0.91	3.85	NM

TABLE 4.5 Page 10 of 12

Sample			Pumping							Volume
Location	Date	Time	Rate	pН	Temperature	Conductivity	ORP (5)	$DO^{(7)}$	Turbidity	Purged
			(mL/min) (1)	(Std. Units) (2)	(°C) (3)	(µS/cm) (4)	$(mV)^{(6)}$	$(mg/L)^{(8)}$	(NTU) (9)	(gallons)
MW-DN-120I	08/08/2006	15:40	300	6.91	14.62	1680	66	0.79	>1000	NM
		15:45	200	6.83	15.25	1403	68	0.41	>1000	NM
		15:50	400	6.84	15.33	1362	68	0.37	>1000	NM
		15:55	200	6.87	15.39	1319	68	0.34	>1000	NM
		16:00	200	6.79	16.71	1311	68	0.31	857	NM
		16:05	200	6.87	13.85	1280	67	0.29	534	NM
		16:10	200	6.87	13.78	1239	69	0.28	444	NM
		16:15	200	6.88	13.76	1220	69	0.26	328	NM
		16:20	200	6.88	13.76	1211	69	0.25	295	NM
		16:25	200	6.87	13.78	1202	69	0.24	218	NM
		16:30	200	6.87	13.90	1190	69	0.23	150	NM
		16:35	200	6.96	13.65	1185	64	0.22	120	NM
		16:40	200	6.95	13.76	11 7 9	65	0.22	115	NM
		16:45	200	6.94	13.71	1188	65	0.22	112	NM
MW-DN-121S	08/08/2006	11:15	100	6.63	17.93	1346	39	1.34	>1000	NM
		11:20	150	6.59	16.98	1353	37	1.24	>1000	NM
		11:25	150	6.60	15.82	1354	37	1.09	792	NM
		11:30	300	6.60	15.74	1348	37	0.83	283	NM
		11:35	200	6.60	15.70	1331	37	0.64	65.2	NM
		11:40	300	6.61	15.76	1325	36	0.54	37.1	NM
		11:45	300	6.63	15.74	1313	36	0.44	12.8	NM
		11:50	300	6.64	15.75	1304	35	0.39	12	NM
		11:55	300	6.65	15.74	1300	34	0.37	7.31	NM
		12:00	300	6.65	15.71	1296	34	0.36	3.76	NM

TABLE 4.5 Page 11 of 12

Sample			Pumping							Volume
Location	Date	Time	Rate	pН	Temperature	Conductivity	$ORP^{(5)}$	$DO^{(7)}$	Turbidity	Purged
			(mL/min) ⁽¹⁾	(Std. Units) (2)	(°C) (3)	(μS/cm) ⁽⁴⁾	$(mV)^{(6)}$	$(mg/L)^{(8)}$	(NTU) ⁽⁹⁾	(gallons)
MW-DN-121I	08/08/2006	7:55	400	7.56	13.36	1192	73	0.51	>1000	NM
		8:00	400	7.56	14.76	1181	72	0.49	>1000	NM
		8:05	400	7.59	13.40	1175	72	0.42	904	NM
		8:10	400	7.57	13.91	1176	73	0.38	>1000	NM
		8:15	400	7.58	14.45	1171	72	0.38	>1000	NM
		8:20	400	7.57	14.58	1170	73	0.39	>1000	NM
		8:25	300	7.57	14.03	1176	73	0.39	371.00	NM
		8:30	300	7.57	14.14	1176	73	0.40	201.00	NM
		8:35	300	7.58	14.17	1176	72	0.39	188.00	NM
		8:40	300	7.58	14.21	1175	72	0.39	189.00	NM
		8:45	300	7.57	14.24	1173	72	0.38	184.00	NM
MW-DN-122S	08/08/2006	9:25	200	7.27	17.21	862	67	3.03	>1000	NM
		9:30	200	7.21	17.12	943	67	3.50	338	NM
		9:35	150	7.18	17.63	958	68	3.44	207	NM
		9:40	150	7.13	17.03	983	70	3.88	113	NM
		9:45	150	7.11	16.93	982	69	3.86	30.1	NM
		9:50	150	7.11	16.91	981	69	3.91	20.7	NM
		9:55	150	7.14	16.98	9 81	68	3.93	8.9	NM
		10:00	150	7.16	16.99	981	68	3.93	4.72	NM
MW-DN-122I	08/08/2006	7:55	400	7.56	13.36	1192	73	0.51	>1000	NM
		8:00	400	7.56	14.76	1181	72	0.49	>1000	NM
		8:05	400	7.59	13.42	1175	72	0.42	904	NM
		8:10	400	7.57	13.91	1176	73	0.38	>1000	NM
		8:15	400	7.58	14.45	1171	<i>7</i> 2	0.38	>1000	NM
		8:20	400	7.57	14.58	1170	73	0.39	>1000	NM
		8:25	300	7.57	14.03	1176	73	0.39	371	NM
		8:30	300	7.57	14.14	1176	73	0.40	201	NM
		8:35	300	7.58	14.17	1176	72	0.39	188	NM
		8:40	300	7.58	17.21	1175	72	0.39	189	NM
		8:45	300	7.57	14.24	1173	72	0.38	184	NM

TABLE 4.5 Page 12 of 12

SUMMARY OF MONITORING WELL PURGING PARAMETERS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample			Pumping							Volume
Location	Date	Time	Rate (mL/min) ⁽¹⁾	pH (Std. Units) ⁽²⁾	Temperature (°C) ⁽³⁾	Conductivity (µS/cm) ⁽⁴⁾	$ORP^{(5)}$ $(mV)^{(6)}$	DO ⁽⁷⁾ (mg/L) ⁽⁸⁾	Turbidity (NTU) ⁽⁹⁾	Purged (gallons)
MW-DN-123I	08/08/2006	13:45	200	7.37	17.91	525	55	2.74	294	NM
		13:50	200	7.34	18.06	520	55	2.41	110	NM
		13:55	150	7.31	18.79	517	55	2.20	73.2	NM
		14:00	200	7.38	17.53	516	56	2.27	49.9	NM
		14:05	160	7.32	17.13	512	57	1.80	22.1	NM
		14:10	150	7.33	17.65	511	57	1.79	13	NM
		14:15	150	7.26	17.70	510	60	1.60	9.98	NM
		14:20	150	7.30	18.73	512	59	1.60	6.52	NM
		14:25	150	7.32	16.62	517	62	1.60	4.73	NM

Notes:

- (1) mL/min milliliters per minute
- (2) Std. Units standard units
- (3) °C degrees Celsius
- (4) μ S/cm microsiemens per centimeter
- (5) ORP oxidation-reduction potential
- (6) mV millivolts
- (7) DO dissolved oxygen
- (8) mg/L milligrams per liter
- (9) NTU nephelometric turbidity units

The last three readings are provided in the table

TABLE 4.6 Page 1 of 3

SAMPLE KEY FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Sample Identification	QC Sample	Date	Time	Matrix	Analysis
DSP-152	WG-DN-DSP-152-052306-JH-001		5/23/2006	11:14	Groundwater	Tritium / Target Radionuclides
DSP-157M	WG-DN-DSP-157M-052306-JH-002		5/23/2006	13:36	Groundwater	Tritium / Target Radionuclides
DSP-157S	WG-DN-DSP-157S-052306-JH-003		5/23/2006	15:50	Groundwater	Tritium / Target Radionuclides
DSP-126	WG-DN-DSP-126-052406-JH-004		5/24/2006	11:37	Groundwater	Tritium / Target Radionuclides
DSP-153	WG-DN-DSP-153-052406-JH-005		5/24/2006	13:20	Groundwater	Tritium / Target Radionuclides
DSP-154	WG-DN-DSP-154-052506-JH-006		5/25/2006	6:40	Groundwater	Tritium / Target Radionuclides
DSP-158M	WG-DN-DSP-158M-052506-JH-007		5/25/2006	9:40	Groundwater	Tritium / Target Radionuclides
DSP-158S	WG-DN-DSP-158S-052506-JH-008		5/25/2006	13:00	Groundwater	Tritium / Target Radionuclides
DSP-159M	WG-DN-DSP-159M-052506-JH-009		5/25/2006	14:45	Groundwater	Tritium / Target Radionuclides
MW-DN-103S	WG-DN-MW-DN-103S-052606-JH-010		5/26/2006	9:40	Groundwater	Tritium / Target Radionuclides
MW-DN-103S	WG-DN-MW-DN-103S-052606-JH-011	Duplicate (010)	5/26/2006	10:00	Groundwater	Tritium / Target Radionuclides
MW-DN-103I	WG-DN-MW-DN-103I-052606-JH-012		5/26/2006	11:05	Groundwater	Tritium / Target Radionuclides
MW-DN-106S	WG-DN-MW-DN-106S-052606-JH-013		5/26/2006	14:00	Groundwater	Tritium / Target Radionuclides
DSP-121	WG-DN-DSP-121-052606-JH-014		5/26/2006	15:20	Groundwater	Tritium / Target Radionuclides
DSP-117	WG-DN-DSP-117-052606-JH-015		5/26/2006	16:55	Groundwater	Tritium / Target Radionuclides
DSP-147	WG-DN-DSP-147-053006-JH-016		5/30/2006	9:40	Groundwater	Tritium / Target Radionuclides
DSP-148	WG-DN-DSP-148-053006-JH-017		5/30/2006	13:50	Groundwater	Tritium / Target Radionuclides
DSP-156	WG-DN-DSP-156-053006-JH-018		5/30/2006	15:50	Groundwater	Tritium / Target Radionuclides
DSP-149R	WG-DN-DSP-149R-053106-JH-019		5/31/2006	10:00	Groundwater	Tritium / Target Radionuclides
DSP-149R	WG-DN-DSP-149R-053106-JH-020	Duplicate (019)	5/31/2006	10:50	Groundwater	Tritium / Target Radionuclides
DSP-159S	WG-DN-DSP-159S-053106-JH-022		5/31/2006	13:30	Groundwater	Tritium / Target Radionuclides
DSP-105	WG-DN-DSP-DN-105-052306-JL-051		5/23/2006	11:30	Groundwater	Tritium / Target Radionuclides
DSP-106	WG-DN-DSP-DN-106-052306-JL-052		5/23/2006	12:30	Groundwater	Tritium / Target Radionuclides
DSP-107	WG-DN-DSP-DN-107-052306-JL-053		5/23/2006	13:50	Groundwater	Tritium / Target Radionuclides
DSP-150	WG-DN-DSP-DN-150-052406-JL-054		5/24/2006	12:25	Groundwater	Tritium / Target Radionuclides
DSP-151	WG-DN-DSP-DN-151-052406-JL-055		5/24/2006	14:15	Groundwater	Tritium / Target Radionuclides
DSP-108	WG-DN-DSP-DN-108-052406-JL-056		5/24/2006	17:05	Groundwater	Tritium / Target Radionuclides
DSP-118	WG-DN-DSP-DN-118-052506-JL-057		5/25/2006	10:15	Groundwater	Tritium / Target Radionuclides
DSP-155	WG-DN-DSP-DN-155-052506-JL-058		5/25/2006	15:00	Groundwater	Tritium / Target Radionuclides
DSP-122	WG-DN-DSP-DN-122-052506-JL-059		5/25/2006	17:00	Groundwater	Tritium / Target Radionuclides
DSP-123	WG-DN-DSP-DN-123-052606-JL-060		5/26/2006	10:10	Groundwater	Tritium / Target Radionuclides
DSP-123	WG-DN-DSP-DN-123-052606-JL-061	Duplicate (060)	5/26/2006	10:20	Groundwater	Tritium / Target Radionuclides
DSP-124	WG-DN-DSP-DN-124-052606-JL-062	•	5/26/2006	12:00	Groundwater	Tritium / Target Radionuclides
MW-DN-101S	WG-DN-MW-DN-101S-052606-JL-063		5/26/2006	14:10	Groundwater	Tritium / Target Radionuclides
MW-DN-101I	WG-DN-MW-DN-101I-052606-JL-064		5/26/2006	15:35	Groundwater	Tritium / Target Radionuclides

TABLE 4.6 Page 2 of 3

SAMPLE KEY FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Sample Identification	QC Sample	Date	Time	Matrix	Analysis
MW-DN-108I	WG-DN-MW-DN-108I-052606-JL-065		5/26/2006	17:00	Groundwater	Tritium / Target Radionuclides / Strontium-90
DSP-127	WG-DN-DSP-DN-127-053006-JL-066		5/30/2006	10:55	Groundwater	Tritium / Target Radionuclides
MW-DN-110S	WG-DN-MW-DN-110S-053006-JL-067		5/30/2006	14:10	Groundwater	Tritium / Target Radionuclides
MW-DN-110I	WG-DN-MW-DN-110I-053006-JL-068		5/30/2006	15:15	Groundwater	Tritium / Target Radionuclides
MW-DN-104S	WG-DN-MW-DN-104S-053006-JL-069		5/30/2006	17:20	Groundwater	Tritium / Target Radionuclides
MW-DN-109I	WG-DN-MW-DN-109I-053106-JL-070		5/31/2006	10:15	Groundwater	Tritium / Target Radionuclides
MW-DN-109I	WG-DN-MW-DN-109I-053106-JL-071	Duplicate (070)	5/31/2006	10:25	Groundwater	Tritium / Target Radionuclides
MW-DN-109S	WG-DN-MW-DN-109S-053106-JL-072		5/31/2006	11:45	Groundwater	Tritium / Target Radionuclides
MW-DN-111S	WG-DN-MW-DN-111S-053106-JL-073		5/31/2006	14:00	Groundwater	Tritium / Target Radionuclides
MW-DN-107S	WG-DN-MW-DN-107S-053106-JL-074		5/31/2006	14:50	Groundwater	Tritium / Target Radionuclides
MW-DN-102I	WG-DN-MW-DN-102I-060106-JL-075		6/1/2006	10:45	Groundwater	Tritium / Target Radionuclides
MW-DN-102S	WG-DN-MW-DN-102S-060106-JL-076		6/1/2006	11:50	Groundwater	Tritium / Target Radionuclides
MW-DN-105S	WG-DN-MW-DN-105S-060106-JL-077		6/1/2006	14:10	Groundwater	Tritium / Target Radionuclides
DSP-125	WG-DN-DSP-DN-125-060106-JL-078		6/1/2006	15:10	Groundwater	Tritium / Target Radionuclides
SW-DN-103	WS-DN-SW-103-053106-JH-021		5/31/2006	12:00	Surface Water	Tritium / Target Radionuclides
SW-DN-101	WS-DN-SW-101-053106-JH-023		5/31/2006	14:00	Surface Water	Tritium / Target Radionuclides
SW-DN-102	WS-DN-SW-102-053106-JH-024		5/31/2006	15:20	Surface Water	Tritium / Target Radionuclides
SW-DN-105	WS-DN-SW-105-060106-JH-025		6/1/2006	9:00	Surface Water	Tritium / Target Radionuclides
SW-DN-104	WS-DN-SW-104-060106-JH-026		6/1/2006	9:40	Surface Water	Tritium / Target Radionuclides
SW-DN-106	WS-DN-SW-106-060106-JH-027		6/1/2006	11:20	Surface Water	Tritium / Target Radionuclides
SW-DN-106	WS-DN-SW-106-060106-JH-028	Duplicate (027)	6/1/2006	11:40	Surface Water	Tritium / Target Radionuclides
MW-DN-122I	WG-DN-MW-DN-122I-080806-GL-001		8/8/2006	8:50	Groundwater	Tritium / Target Radionuclides
MW-DN-122S	WG-DN-MW-DN-122S-080806-GL-002		8/8/2006	10:05	Groundwater	Tritium / Target Radionuclides
MW-DN-121S	WG-DN-MW-DN-121S-080806-GL-003		8/8/2006	12:05	Groundwater	Tritium / Target Radionuclides
MW-DN-123I	WG-DN-MW-DN-123I-080806-GL-004		8/8/2006	14:30	Groundwater	Tritium / Target Radionuclides
MW-DN-120I	RB-DN-MW-DN-120I-080806-GL-005		8/8/2006	14:40	Water	Tritium / Target Radionuclides
MW-DN-120I	WG-DN-MW-DN-120I-080806-GL-006		8/8/2006	16:50	Groundwater	Tritium / Target Radionuclides
MW-DN-120S	WG-DN-MW-DN-120S-080806-GL-007		8/8/2006	16:10	Groundwater	Tritium / Target Radionuclides
MW-DN-113S	WG-DN-MW-DN-113S-080906-GL-008		8/9/2006	10:00	Groundwater	Tritium / Target Radionuclides
MW-DN-113I	WG-DN-MW-DN-113I-080906-GL-009		8/9/2006	11:25	Groundwater	Tritium / Target Radionuclides
MW-DN-113I	WG-DN-MW-DN-113I-080906-GL-010	Duplicate (009)	8/9/2006	11:45	Groundwater	Tritium / Target Radionuclides
MW-DN-116S	WG-DN-MW-DN-116S-080906-GL-011		8/9/2006	13:35	Groundwater	Tritium / Target Radionuclides
MW-DN-116I	WG-DN-MW-DN-116I-080906-GL-012		8/9/2006	13:50	Groundwater	Tritium / Target Radionuclides
MW-DN-112S	WG-DN-MW-DN-112S-081006-GL-013		8/10/2006	11:05	Groundwater	Tritium / Target Radionuclides
MW-DN-112I	WG-DN-MW-DN-112I-081006-GL-014		8/10/2006	12:10	Groundwater	Tritium / Target Radionuclides

TABLE 4.6 Page 3 of 3

SAMPLE KEY FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Sample Identification	QC Sample	Date	Time	Matrix	Analysis
MW-DN-117I	WG-DN-MW-DN-117I-081006-GL-015		8/10/2006	14:20	Groundwater	Tritium / Target Radionuclides
MW-DN-118S	WG-DN-MW-DN-118I-081006-GL-016		8/10/2006	16:00	Groundwater	Tritium / Target Radionuclides
MW-DN-119S	WG-DN-MW-DN-119S-081106-GL-017		8/11/2006	9:00	Groundwater	Tritium / Target Radionuclides
MW-DN-119I	WG-DN-MW-DN-119I-081106-GL-018		8/11/2006	9:10	Groundwater	Tritium / Target Radionuclides
MW-DN-115I	WG-DN-MW-DN-115I-081106-GL-019		8/11/2006	11:30	Groundwater	Tritium / Target Radionuclides
MW-DN-114S	WG-DN-MW-DN-114S-081106-GL-020		8/11/2006	13:15	Groundwater	Tritium / Target Radionuclides
MW-DN-114S	WG-DN-MW-DN-114S-081106-GL-021	Duplicate (020)	8/11/2006	13:40	Groundwater	Tritium / Target Radionuclides
MW-DN-108I	WG-DN-MW-DN-108I-081406-GL-022		8/14/2006	9:45	Groundwater	Tritium / Target Radionuclides
MW-DN-108I	WG-DN-MW-DN-108I-081406-GL-023	Duplicate (022)	8/14/2006	10:10	Groundwater	Tritium / Target Radionuclides
MW-DN-115S	WG-DN-MW-DN-115S-081406-GL-024		8/14/2006	11:10	Groundwater	Tritium / Target Radionuclides
MW-DN-114I	WG-DN-MW-DN-114I-081406-GL-025		8/14/2006	12:55	Groundwater	Tritium / Target Radionuclides
MW-DN-123S	WG-DN-MW-DN-123S-080806-GL-026		8/8/2006	14:45	Groundwater	Tritium

Note:

QC - Quality Control

Target Radionuclides: Sr-89/90, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Cs-134, Cs-137, Ba-140, and La-140 Duplicate (020) - Duplicate of sample number in parenthesis

TABLE 5.1 Page 1 of 1

SUMMARY OF CALCULATED VERTICAL GRADIENTS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

	Top of	Bottom of	Mid-Point	22	2-May-06		7-Aug-06
Sample Location	Screen Elevation (ft AMSL) ⁽¹⁾	Screen Elevation (ft AMSL)	of Screen Elevation (ft AMSL)	Water Level (ft AMSL)	Vertical Gradient (ft/ft downward) ⁽²⁾	Water Level (ft AMSL)	Vertical Gradient (ftlft downward) ⁽²⁾
DSP-157S	516.59	506.59	511.59	516.07	0.184	515.84	0.169
DSP-157M	468.23	458.29	463.26	507.16		507.69	
DSP-158S	505.73	495.73	500.73	506.51	0.036	505.12	0.011
DSP-158M	461.97	451.97	456.97	504.92		504.66	
DSP-159S	511.27	501.27	506.27	509.09	0.059	508.94	0.056
DSP-159M	468.23	458.23	463.23	506.53		506.52	
MW-DN-101S	507.10	497.10	502,10	506.27	0.050	505.88	0.059
MW-DN-101I	477.08	467.08	472.08	504.77		504.12	
MW-DN-102S	511.98	501.98	506.98	513.63	0.035	513.88	0.051
MW-DN-102I	476.91	466.91	471.91	512.42		512.10	
MW-DN-103S	509.53	499.53	504.53	508.39	0.097	508.03	0.052
MW-DN-103I	488.93	478.93	483.93	506.39	0.057	506.96	5.052
MW-DN-109S	506.29	496.29	501.29	509.42	-0.007	509.34	-0.009
MW-DN-109I	476.27	466.27	471.27	509.63	5.55.	509.62	
MW-DN-110S	506.96	496.96	501.96	511.07	0.083	511.06	0.089
MW-DN-110I	476.14	466.14	471.14	508.51	01000	508.32	0.007
MW-DN-112S	509.72	504.72	507.22	NA	NA	514.11	0.153
MW-DN-112I	485.06	475.06	480.06	NA	NA	509.95	3.25 5
MW-DN-113S	510.36	505.36	507.86	NA	NA	513.60	0.025
MW-DN-113I	478.33	468.33	473.33	NA	NA	512.74	
MW-DN-114S	485.76	475.76	480.76	NA	NA	507.70	-0.332
MW-DN-114I	471.71	466.71	469.21	NA	NA	511.54	
MW-DN-115S	491.89	486.89	489.39	NA	NA	509.22	-0.010
MW-DN-115I	470.88	460.88	465.88	NA	NA	509.46	
MW-DN-116S	494.40	489.40	491.90	NA	NA	504.28	0.032
MW-DN-116I	481.80	471.80	476.80	NA	NA	503.79	
MW-DN-119S	500.52	495.52	498.02	NA	NA	506.47	0.005
MW-DN-119I	486.45	476.45	481.45	NA	NA	506.38	
MW-DN-120S	483.85	473.85	478.85	NA	NA	504.22	0.004
MW-DN-120I	464.09	454.09	459.09	NA	NA	504.14	
MW-DN-122S	519.22	514.22	516.72	NA	NA	520.54	0.170
MW-DN-122I	492.73	482.73	487.73	NA	NA	515.61	
MW-DN-123S	498.98	493.98	496.48	NA	NA	494.85	-0.566
MW-DN-123I	478.71	468.71	473.71	NA	NA	507.73	
Average Vertical C	Gradient Across Site				0.067		-0.002

Notes:

⁽¹⁾ ft AMSL - feet above mean sea level

⁽²⁾ Positive value denotes downward vertical gradient; negative value denotes upward vertical gradient

NA Elevation not available

TABLE 5.2 Page 1 of 2

ANALYTICAL RESULTS SUMMARY - TRITIUM IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Sample Identification	QC Sample	Sample Date	Tritium (pCi/L)	Result Error
DSP-105	WG-DN-DSP-DN-105-052306-JL-051		5/23/2006	319	+/-117
DSP-106	WG-DN-DSP-DN-106-052306-JL-052		5/23/2006	2370	+/-289
DSP-107	WG-DN-DSP-DN-107-052306-JL-053		5/23/2006	9820	+/-1030
DSP-108	WG-DN-DSP-DN-108-052406-JL-056		5/24/2006	1930	+/-244
DSP-117	WG-DN-DSP-117-052606-JH-015		5/26/2006	ND (200)	-
DSP-118	WG-DN-DSP-DN-118-052506-JL-057		5/25/2006	ND (200)	-
DSP-121	WG-DN-DSP-121-052606-JH-014		5/26/2006	ND (200)	-
DSP-122	WG-DN-DSP-DN-122-052506-JL-059		5/25/2006	1440	+/-139
DSP-123	WG-DN-DSP-DN-123-052606-JL-060		5/26/2006	13100	+/-318
DSP-123	WG-DN-DSP-DN-123-052606-JL-061	Duplicate (060)	5/26/2006	13200	+/-319
DSP-124	WG-DN-DSP-DN-124-052606-JL-062	• , ,	5/26/2006	10000	+/-284
DSP-125	WG-DN-DSP-DN-125-060106-JL-078		6/1/2006	320	+/-127
DSP-126	WG-DN-DSP-126-052406-JH-004		5/24/2006	ND (200)	-
DSP-127	WG-DN-DSP-DN-127-053006-JL-066		5/30/2006	ND (200)	-
DSP-147	WG-DN-DSP-147-053006-JH-016		5/30/2006	ND (200)	-
DSP-148	WG-DN-DSP-148-053006-JH-017		5/30/2006	356	+/-111
DSP-149R	WG-DN-DSP-149R-053106-JH-019		5/31/2006	668	+/-144
DSP-149R	WG-DN-DSP-149R-053106-JH-020	Duplicate (019)	5/31/2006	694	+/-143
DSP-150	WG-DN-DSP-DN-150-052406-JL-054	•	5/24/2006	ND (200)	-
DSP-151	WG-DN-DSP-DN-151-052406-JL-055		5/24/2006	ND (200)	-
DSP-152	WG-DN-DSP-152-052306-JH-001		5/23/2006	ND (200)	-
DSP-153	WG-DN-DSP-153-052406-JH-005		5/24/2006	ND (200)	-
DSP-154	WG-DN-DSP-154-052506-JH-006		5/25/2006	ND (200)	-
DSP-155	WG-DN-DSP-DN-155-052506-JL-058		5/25/2006	ND (200)	-
DSP-156	WG-DN-DSP-156-053006-JH-018		5/30/2006	ND (200)	-
DSP-157M	WG-DN-DSP-157M-052306-JH-002		5/23/2006	ND (200)	-
DSP-157S	WG-DN-DSP-157S-052306-JH-003		5/23/2006	ND (200)	-
DSP-158M	WG-DN-DSP-158M-052506-JH-007		5/25/2006	ND (200)	-
DSP-158S	WG-DN-DSP-158S-052506-JH-008		5/25/2006	ND (200)	-
DSP-159M	WG-DN-DSP-159M-052506-JH-009		5/25/2006	531	+/-131
DSP-159S	WG-DN-DSP-159S-053106-JH-022		5/31/2006	ND (200)	-
MW-DN-101I	WG-DN-MW-DN-101I-052606-JL-064		5/26/2006	4570	+/-208
MW-DN-101S	WG-DN-MW-DN-101S-052606-JL-063		5/26/2006	220	+/-114
MW-DN-102I	WG-DN-MW-DN-102I-060106-JL-075		6/1/2006	1380	+/-195
MW-DN-102S	WG-DN-MW-DN-102S-060106-JL-076		6/1/2006	4250	+/-475
MW-DN-103I	WG-DN-MW-DN-103I-052606-JH-012		5/26/2006	ND (200)	-
MW-DN-103S	WG-DN-MW-DN-103S-052606-JH-010		5/26/2006	ND (200)	-
MW-DN-103S	WG-DN-MW-DN-103S-052606-JH-011	Duplicate (010)	5/26/2006	ND (200)	-
MW-DN-104S	WG-DN-MW-DN-104S-053006-JL-069		5/30/2006	ND (200)	-
MW-DN-105S	WG-DN-MW-DN-105S-060106-JL-077		6/1/2006	ND (200)	-
MW-DN-106S	WG-DN-MW-DN-106S-052606-JH-013		5/26/2006	ND (200)	-
MW-DN-107S	WG-DN-MW-DN-107S-053106-JL-074		5/31/2006	1040	+/-165
MW-DN-108I	WG-DN-MW-DN-108I-052606-JL-065		5/26/2006	ND (200)	-
MW-DN-108I	WG-DN-MW-DN-108I-081406-GL-022		8/14/2006	ND (200)	
MW-DN-108I	WG-DN-MW-DN-108I-081406-GL-023	Duplicate (022)	8/14/2006	210	+/-124
MW-DN-109I	WG-DN-MW-DN-109I-053106-JL-070	- t (ama)	5/31/2006	3620	+/-413
MW-DN-109I	WG-DN-MW-DN-109I-053106-JL-071	Duplicate (070)	5/31/2006	3750	+/-424
MW-DN-109S	WG-DN-MW-DN-109S-053106-JL-072		5/31/2006	251	+/-120
MW-DN-110I	WG-DN-MW-DN-110I-053006-JL-068		5/30/2006	516	+/-134
MW-DN-110S	WG-DN-MW-DN-110S-053006-JL-067		5/30/2006	ND (200)	- / 140
MW-DN-111S	WG-DN-MW-DN-111S-053106-JL-073		5/31/2006	638	+/-140
MW-DN-112I	WG-DN-MW-DN-112I-081006-GL-014		8/10/2006	1520 NID (200)	+/-214
MW-DN-112S	WG-DN-MW-DN-112S-081006-GL-013		8/10/2006	ND (200)	-
MW-DN-113I	WG-DN-MW-DN-113I-080906-GL-009	Devel: (- (000)	8/9/2006	ND (200)	-
MW-DN-113I	WG-DN-MW-DN-113I-080906-GL-010	Duplicate (009)	8/9/2006	ND (200)	- 124
MW-DN-113S	WG-DN-MW-DN-113S-080906-GL-008		8/9/2006	451	+/-136

TABLE 5.2 Page 2 of 2

ANALYTICAL RESULTS SUMMARY - TRITIUM IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Sample Identification	QC Sample	Sample Date	Tritium (pCi/L)	Result Error
MW-DN-114I	WG-DN-MW-DN-114I-081406-GL-025		8/14/2006	4190	+/-473
MW-DN-114S	WG-DN-MW-DN-114S-081106-GL-020		8/11/2006	2770	+/-336
MW-DN-114S	WG-DN-MW-DN-114S-081106-GL-021	Duplicate (020)	8/11/2006	2740	+/-335
MW-DN-115I	WG-DN-MW-DN-115I-081106-GL-019	-	8/11/2006	ND (200)	-
MW-DN-115S	WG-DN-MW-DN-115S-081406-GL-024		8/14/2006	ND (200)	-
MW-DN-116I	WG-DN-MW-DN-116I-080906-GL-011		8/9/2006	4150	+/-468
MW-DN-116S	WG-DN-MW-DN-116S-080906-GL-012		8/9/2006	431	+/-135
MW-DN-117I	WG-DN-MW-DN-117I-081006-GL-015		8/10/2006	1030	+/-170
MW-DN-118S	WG-DN-MW-DN-118S-081006-GL-016		8/10/2006	1650	+/-227
MW-DN-119I	WG-DN-MW-DN-119I-081106-GL-018		8/11/2006	1470	+/-211
MW-DN-119S	WG-DN-MW-DN-119S-081106-GL-017		8/11/2006	ND (200)	-
MW-DN-120I	WG-DN-MW-DN-120I-080806-GL-006		8/8/2006	ND (200)	-
MW-DN-120S	WG-DN-MW-DN-120S-080806-GL-007		8/8/2006	ND (200)	-
MW-DN-121S	WG-DN-MW-DN-121S-080806-GL-003		8/8/2006	ND (200)	=
MW-DN-122I	WG-DN-MW-DN-122I-080806-GL-001		8/8/2006	ND (200)	-
MW-DN-122S	WG-DN-MW-DN-122S-080806-GL-002		8/8/2006	ND (200)	-
MW-DN-123I	WG-DN-MW-DN-123I-080806-GL-004		8/8/2006	ND (200)	-
MW-DN-123S	WG-DN-MW-DN-123S-080806-GL-026		8/8/2006	ND (200)	-

Notes:

Samples analyzed by: Teledyne Brown Engineering, Inc.

QC - Quality Control

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

⁻⁻ Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		DSP-105 WG-DN-DSP-DN-105-052306-JL-051 5/23/2006	DSP-105 Result Error	DSP-106 WG-DN-DSP-DN-106-052306-JL-052 5/23/2006	DSP-106 Result Error	DSP-107 WG-DN-DSP-DN-107-052306-JL-053 5/23/2006	DSP-107 Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	_
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	_
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-
Radium-226	pCi/L	RNI	-	RNI	-	RNI	
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-232	pCi/L	RNI	-	RNI	_	RNI	-

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity
concentration exceeds Minimum
Detectable Concentration and 3 sigma.

-- Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		DSP-108 WG-DN-DSP-DN-108-052406-JL-056 5/24/2006	DSP-108 Result Error	DSP-117 WG-DN-DSP-117-052606-JH-015 5/26/2006	DSP-117 Result Error	DSP-118 WG-DN-DSP-DN-118-052506-JL-057 5/25/2006	DSP-118 Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	•
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-
Radium-226	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.
 - Peak not identified, but forced activity
 - concentration exceeds Minimum
 - Detectable Concentration and 3 sigma.
- - Non-detect value, +/- value not reported.

TABLE 5.3 Page 3 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		DSP-121 WG-DN-DSP-121-052606-JH-014 5/26/2006	DSP-121 Result Error	DSP-122 WG-DN-DSP-DN-122-052506-JL-059 5/25/2006	DSP-122 Result Error	DSP-123 WG-DN-DSP-DN-123-052606-JL-060 5/26/2006	DSP-123 Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	_	RNI	
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-
Radium-226	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-232	pCi/L	16.9	+/-8.458	RNI	-	RNI	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND() Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- - Non-detect value, +/- value not reported.

TABLE 5.3 Page 4 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date: Uni	DSP-123 WG-DN-DSP-DN-123-052606-JL-061 5/26/2006 Duplicate	DSP-123 Result Error	DSP-124 WG-DN-DSP-DN-124-052606-JL-062 5/26/2006	DSP-124 Result Error	DSP-125 WG-DN-DSP-DN-125-060106-JL-078 6/1/2006	DSP-125 Result Error
Target Radionuclides						
Barium-140 pCi	L ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134 pCi	L ND (10)	-	ND (10)	-	ND (10)	-
Cesium-137 pCi	L ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58 pCi	L ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60 pCi	L ND (15)	-	ND (15)	-	ND (15)	-
Iron-59 pCi	L ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140 pCi	L ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54 pCi	L ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95 pCi	L ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total) pCi	L ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90 pCi	L NA	-	NA	-	NA	-
Zinc-65 pCi	L ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95 pCi	L ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)						
Actinium-228 pCi	L RNI	-	RNI	-	RNI	-
Potassium-40 pCi	L 74.95	+/-48.68	RNI	-	RNI	-
Radium-226 pCi	L RNI	-	RNI	-	RNI	-
Thorium-228 pCi	L RNI	-	RNI	-	RNI	-
Thorium-232 pCi	L RNI	-	RNI	-	RNI	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- - Non-detect value, +/- value not reported.

TABLE 5.3 Page 5 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		DSP-126 WG-DN-DSP-126-052406-JH-004 5/24/2006	DSP-126 Result Error	DSP-127 WG-DN-DSP-DN-127-053006-JL-066 5/30/2006	DSP-127 Result Error	DSP-147 WG-DN-DSP-147-053006-JH-016 5/30/2006	DSP-147 Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)		ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	_
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	_
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	_
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	_
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	_	ND (2)	_
Strontium-90	pCi/L	NA	-	NA	-	NA	
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	61.32	+/-12.11	RNI	-	RNI	
Potassium-40	pCi/L	64.41	+/-42.33	RNI	-	RNI	
Radium-226	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	_

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

 \mbox{ND} () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity
concentration exceeds Minimum

Detectable Concentration and 3 sigma.

-- Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		DSP-148 WG-DN-DSP-148-053006-JH-017 5/30/2006	DSP-148 Result Error	DSP-149R WG-DN-DSP-149R-053106-JH-019 5/31/2006	DSP-149R Result Error	DSP-149R WG-DN-DSP-149R-053106-JH-020 5/31/2006 Duplicate	DSP-149R Result Error
	Units					5 April 100	
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	_
Cesium-134	pCi/L	ND (10) U*	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	_
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	_
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	_
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-
Radium-226	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- - Non-detect value, +/- value not reported.

TABLE 5.3 Page 7 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		DSP-150 WG-DN-DSP-DN-150-052406-JL-054 5/24/2006	DSP-150 Result Error	DSP-151 WG-DN-DSP-DN-151-052406-JL-055 5/24/2006	DSP-151 Result Error	DSP-152 WG-DN-DSP-152-052306-JH-001 5/23/2006	DSP-152 Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	_
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	_
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-
Radium-226	pCi/L	RNI	-	RNI	_	RNI	-
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90 $\,$

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity
concentration exceeds Minimum
Detectable Concentration and 3 sigma.

-- Non-detect value, +/- value not reported.

TABLE 5.3 Page 8 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		DSP-153 WG-DN-DSP-153-052406-JH-005 5/24/2006	DSP-153 Result Error	DSP-154 WG-DN-DSP-154-052506-JH-006 5/25/2006	DSP-154 Result Error	DSP-155 WG-DN-DSP-DN-155-052506-JL-058 5/25/2006	DSP-155 Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)		ND (60)	_	ND (60)	_
Cesium-134	pCi/L	ND (10)	-	ND (10) U*	-	ND (10)	_
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	•	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	_	RNI	_
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	_
Radium-226	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum

 Detectable Concentration and 3 sigma.
- -- Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		DSP-156 WG-DN-DSP-156-053006-JH-018 5/30/2006	DSP-156 Result Error	DSP-157M WG-DN-DSP-157M-052306-JH-002 5/23/2006	DSP-157M Result Error	DSP-157S WG-DN-DSP-157S-052306-JH-003 5/23/2006	DSP-157S Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	_	ND (60)	_
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	_
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Iron-59	pCi/L	ND (30)	-	ND (30)		ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	_
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30) U*	_	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	_	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	_
Radium-226	pCi/L	121.4	+/-68.44	RNI	-	RNI	-
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- -- Non-detect value, +/- value not reported.

Revision 1

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		DSP-158M WG-DN-DSP-158M-052506-JH-007 5/25/2006	DSP-158M Result Error	DSP-158S WG-DN-DSP-158S-052506-JH-008 5/25/2006	DSP-158S Result Error	DSP-159M WG-DN-DSP-159M-052506-JH-009 5/25/2006	DSP-159M Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10) U*	-	ND (10) U*	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	_
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	_
Potassium-40	pCi/L	165.1	+/-26.11	RNI	_	RNI	-
Radium-226	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-232	pCi/L	RNI	-	15.75	+/-6.047	RNI	-

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity
concentration exceeds Minimum
Detectable Concentration and 3 sigma.

-- Non-detect value, +/- value not reported.

TABLE 5.3 Page 11 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:	DSP-159S WG-DN-DSP-159S-053106-JH-022 5/31/2006	DSP-159S Result Error	MW-DN-1011 WG-DN-MW-DN-101I-052606-JL-064 5/26/2006	MW-DN-101I Result Error	MW-DN-101S WG-DN-MW-DN-101S-052606-JL-063 5/26/2006	MW-DN-101S Result Error
Units						
Target Radionuclides						
Barium-140 pCi/L	ND (60)	-	ND (60)		ND (60)	
Cesium-134 pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	_
Cesium-137 pCi/L	ND (18)	-	ND (18)	-	ND (18)	_
Cobalt-58 pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Cobalt-60 pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59 pCi/L	ND (30)	-	ND (30)	-	ND (30)	
Lanthanum-140 pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54 pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95 pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total) pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90 pCi/L	NA	-	NA	-	NA	-
Zinc-65 pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95 pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)						
Actinium-228 pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40 pCi/L	RNI	-	RNI		RNI	
Radium-226 pCi/L	RNI	-	RNI	-	RNI	-
Thorium-228 pCi/L	RNI	-	8.284	+/-4.883	RNI	_
Thorium-232 pCi/L	RNI	-	RNI	· -	RNI	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- - Non-detect value, +/- value not reported.

TABLE 5.3 Page 12 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		MW-DN-102I WG-DN-MW-DN-102I-060106-JL-075 6/1/2006	MW-DN-102I Result Error	MW-DN-102S WG-DN-MW-DN-102S-060106-JL-076 6/1/2006	MW-DN-102S Result Error	MW-DN-1031 WG-DN-MW-DN-1031-052606-JH-012 5/26/2006	MW-DN-103I Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	_	RNI	_
Potassium-40	pCi/L	RNI	-	RNI	_	RNI	~
Radium-226	pCi/L	RNI	-	RNI	_	RNI	-
Thorium-228	pCi/L	RNI	~	RNI	-	RNI	-
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- -- Non-detect value, +/- value not reported.

TABLE 5.3 Page 13 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:	West.	MW-DN-103S WG-DN-MW-DN-103S-052606-JH-010 5/26/2006	MW-DN-103S Result Error	MW-DN-103S WG-DN-MW-DN-103S-052606-JH-011 5/26/2006 Duplicate	MW-DN-103S Result Error	MW-DN-104S WG-DN-MW-DN-104S-053006-JL-069 5/30/2006	MW-DN-1045 Result Error
Target Radionuclides	Units						
Barium-140	pCi/L	ND (60)		NTD ((0)			
Cesium-134	pCi/L		-	ND (60)	-	ND (60)	-
Cesium-137		ND (10)	-	ND (10)	-	ND (10)	-
Cobalt-58	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	•	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-
Radium-226	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity concentration exceeds Minimum

Detectable Concentration and 3 sigma.

- - Non-detect value, +/- value not reported.

TABLE 5.3 Page 14 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Date: 6/1/2006 Error 5/26/2006 Error 5/31/2006	
Units	
Target Radionuclides	
Barium-140 pCi/L ND (60) - ND (60) - ND (60)	_
Cesium-134 pCi/L ND (10) - ND (10) - ND (10)	_
Cesium-137	-
Cobalt-58 pCi/L ND (15) - ND (15) - ND (15)	-
Cobalt-60 pCi/L ND (15) - ND (15) - ND (15)	-
Iron-59 pCi/L ND (30) - ND (30) - ND (30)	-
Lanthanum-140 pCi/L ND (15) - ND (15) - ND (15)	-
Manganese-54 pCi/L ND (15) - ND (15) - ND (15)	-
Niobium-95 PCi/L ND (10) - ND (10) - ND (10)	_
Strontium-89/90 (Total) pCi/L ND (2) - ND (2) - ND (2)	-
Strontium-90 pCi/L NA - NA - NA - NA	-
Zinc-65 pCi/L ND (30) - ND (30) - ND (30)	-
Zirconium-95 pCi/L ND (10) - ND (10) - ND (10)	-
Non-Target Radionuclides (1)	
Actinium-228 pCi/L RNI - RNI - RNI - RNI	_
Potassium-40 pCi/L RNI - RNI - RNI - RNI	-
Radium-226 pCi/L RNI - RNI - RNI	-
Thorium-228 pCi/L RNI - RNI - RNI - RNI	-
Thorium-232 pCi/L RNI - RNI - RNI	

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity
concentration exceeds Minimum

Detectable Concentration and 3 sigma.

-- Non-detect value, +/- value not reported.

TABLE 5.3 Page 15 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:	Units	MW-DN-108I WG-DN-MW-DN-108I-052606-JI065 5/26/2006	MW-DN-1081 Result Error	MW-DN-108I WG-DN-MW-DN-108I-052606-JL-065 5/26/2006 Re-run	MW-DN-1081 Result Error	MW-DN-108I WG-DN-MW-DN-108I-081406-GL-022 8/14/2006	MW-DN-1081 Result Error
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	NA	-	ND (60)	_
Cesium-134	pCi/L	ND (10)	-	NA		ND (10)	_
Cesium-137	pCi/L	ND (18)	-	NA	-	ND (18)	
Cobalt-58	pCi/L	ND (15)	-	NA	-	ND (15)	_
Cobalt-60	pCi/L	ND (15)	-	NA	-	ND (15)	_
Iron-59	pCi/L	ND (30)	-	NA	_	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	NA	_	ND (15)	
Manganese-54	pCi/L	ND (15)	-	NA		ND (15)	_
Niobium-95	pCi/L	ND (10)	-	NA	-	ND (10)	•
Strontium-89/90 (Total)	pCi/L	4.42	+/-1.23	3.39	+/-0.774	3.21 (2)	+/-1
Strontium-90	pCi/L	4.37	+/-0.66	2.72	+/-1.29	4.74 (2)	+/-2.45
Zinc-65	pCi/L	ND (30) U*		NA		ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	NA	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	_
Potassium-40	pCi/L	RNI	-	RNI	_	RNI	_
Radium-226	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-228	pCi/L	RNI	-	RNI	_	RNI	_
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity
concentration exceeds Minimum
Detectable Concentration and 3 sigma.

- - Non-detect value, +/- value not reported.

TABLE 5.3 Page 16 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date: Target Radionuclides	Units	MW-DN-108I WG-DN-MW-DN-108I-081406-GL-023 8/14/2006 Duplicate	MW-DN-108I Result Error	MW-DN-109I WG-DN-MW-DN-109I-053106-JL-070 5/31/2006	MW-DN-109I Result Error	MW-DN-109I WG-DN-MW-DN-109I-053106-JL-071 5/31/2006 Duplicate	MW-DN-109I Result Error
Barium-140	pCi/L	ND (60)	_	ND (60)	_	ND (60)	
Cesium-134	pCi/L	ND (10)	_	ND (10) U*		ND (10)	-
Cesium-137	pCi/L	ND (18)	_	ND (18)	-	ND (10) ND (18)	-
Cobalt-58	pCi/L	ND (15)	_	ND (15)	-	ND (18) ND (15)	-
Cobalt-60	pCi/L	ND (15)	_	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	_	ND (30)	-	ND (13) ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	_	ND (30)	-
Manganese-54	pCi/L	ND (15)	_	ND (15)		ND (13) ND (15)	
Niobium-95	pCi/L	ND (10)	_	ND (10)	_	ND (13) ND (10)	-
Strontium-89/90 (Total)	pCi/L	2.72	+/-1.01	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	2.17	+/-0.783	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	
Zirconium-95	pCi/L	ND (10)	_	ND (10)	-	ND (30)	-
Non-Target Radionuclides (1)	·			115 (15)		(10)	-
Actinium-228	pCi/L	RNI	_	RNI	_	RNI	_
Potassium-40	pCi/L	RNI	-	RNI	_	RNI	-
Radium-226	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	
Thorium-232	pCi/L	RNI	<u>-</u>	RNI	-	RNI	-
	1			1411	-	KINI	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- - Non-detect value, +/- value not reported.

TABLE 5.3 Page 17 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		MW-DN-109S WG-DN-MW-DN-109S-053106-JL-072 5/31/2006	MW-DN-109S Result Error	MW-DN-110I WG-DN-MW-DN-110I-053006-JL-068 5/30/2006	MW-DN-110I Result Error	MW-DN-1105 WG-DN-MW-DN-110S-053006-JL-067 5/30/2006	MW-DN-110S Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	_	ND (60)	-	ND (60)	_
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30) U*	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	_	RNI	_
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	_
Radium-226	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity
concentration exceeds Minimum

Detectable Concentration and 3 sigma.

-- Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION

				_	
MORRIS,	ILL	11.	NO	IS	

Sample Location: Sample Identification: Sample Date:		MW-DN-111S WG-DN-MW-DN-111S-053106-JL-073 5/31/2006	MW-DN-111S Result Error	MW-DN-1121 WG-DN-MW-DN-1121-081006-GL-014 8/10/2006	MW-DN-112I Result Error	MW-DN-112S WG-DN-MW-DN-112S-081006-GL-013 8/10/2006	MW-DN-112S Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	_	ND (60)	_
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	_
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	_
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	_
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	_
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI		RNI	-	RNI	_
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-
Radium-226	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	_
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90 $\,$

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

 $N\!D$ () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- - Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER

FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date: Target Radionuclides	Units	MW-DN-113I WG-DN-MW-DN-113I-080906-GI009 8/9/2006	MW-DN-113I Result Error	MW-DN-113I WG-DN-MW-DN-113I-080906-GL-010 8/9/2006 Duplicate	MW-DN-113I Result Error	MW-DN-1135 WG-DN-MW-DN-1135-080906-GL-008 8/9/2006	MW-DN-113S Result Error
_	6: 4						
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	•	ND (30)	-
Lanthanum-140	pCi/L	ND (15)		ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	~
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30) U*	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	_
Potassium-40	pCi/L	59.93	+/-35.54	RNI	-	RNI	_
Radium-226	pCi/L	RNI	-	RNI	_	RNI	-
Thorium-228	pCi/L	RNI	-	RNI	_	RNI	_
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	_

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- -- Non-detect value, +/- value not reported.

TABLE 5.3 Page 20 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:	Units	MW-DN-114I WG-DN-MW-DN-114I-081406-GL-025 8/14/2006	MW-DN-114I Result Error	MW-DN-114S WG-DN-MW-DN-114S-081106-GL-020 8/11/2006	MW-DN-114S Result Error	MW-DN-114S WG-DN-MW-DN-114S-081106-GL-021 8/11/2006 Duplicate	MW-DN-114S Result Error
Target Radionuclides	umis						
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)		ND (10)	-	ND (10)	=
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	_
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	_
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	<u>-</u>
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	_
Strontium-90	pCi/L	NA	-	NA	•	NA	_
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	<u>-</u>	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	_
Radium-226	pCi/L	RNI		RNI	-	RNI	_
Thorium-228	pCi/L	RNI	-	RNI	_	RNI	_
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	_

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity
concentration exceeds Minimum
Detectable Concentration and 3 sigma.

- - Non-detect value, +/- value not reported.

TABLE 5.3 Page 21 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		MW-DN-1151 WG-DN-MW-DN-115I-081106-GL-019 8/11/2006	MW-DN-115I Result Error	MW-DN-115S WG-DN-MW-DN-1155-081406-GL-024 8/14/2006	MW-DN-115S Result Error	MW-DN-116I WG-DN-MW-DN-116I-080906-GL-011 8/9/2006	MW-DN-116I Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	_
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	_
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	_
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-
Radium-226	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-228	pCi/L	RNI	-	RNI	_	RNI	_
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum

 Detectable Concentration and 3 sigma.
- -- Non-detect value, +/- value not reported.

TABLE 5.3 Page 22 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		MW-DN-116S WG-DN-MW-DN-116S-080906-GL-012 8/9/2006	MW-DN-116S Result Error	MW-DN-117I WG-DN-MW-DN-117I-081006-GL-015 8/10/2006	MW-DN-117I Result Error	MW-DN-118S WG-DN-MW-DN-118S-081006-GL-016 8/10/2006	MW-DN-118S Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	_
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	_
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	_
Cobalt-58	pCi/L	ND (15)	-	ND (15)		ND (15)	_
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	_
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	_
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	_
Strontium-90	pCi/L	NA	-	NA	-	NA	_
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	_
Radium-226	pCi/L	RNI	-	RNI	_	RNI	-
Thorium-228	pCi/L	RNI	-	RNI	-	RNI	-
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND() Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- -- Non-detect value, +/- value not reported.

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		MW-DN-1191 WG-DN-MW-DN-1191-081106-GL-018 8/11/2006	MW-DN-119I Result Error	MW-DN-119S WG-DN-MW-DN-119S-081106-GL-017 8/11/2006	MW-DN-119S Result Error	MW-DN-1201 WG-DN-MW-DN-1201-080806-GL-006 8/8/2006	MW-DN-1201 Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	_
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	_
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	_
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Iron-59	pCi/L	ND (30)	•	ND (30)	-	ND (30)	_
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	_
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	_
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	_	ND (2)	_
Strontium-90	pCi/L	NA	-	NA	-	NA	_
Zinc-65	pCi/L	ND (30)	-	ND (30)	_	ND (30)	_
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	_	RNI	_
Potassium-40	pCi/L	RNI	-	RNI	-	102.5	+/-50.21
Radium-226	pCi/L	RNI	-	RNI	-	RNI	-7-50.21
Thorium-228	pCi/L	RNI	-	RNI	_	RNI	<u>-</u>
Thorium-232	pCi/L	RNI	-	RNI	_	RNI	-
						ANL 14	-

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 - Detectable Concentration and 3 sigma.
- - Non-detect value, +/- value not reported.

TABLE 5.3 Page 24 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		MW-DN-120S WG-DN-MW-DN-120S-080806-GL-007 8/8/2006	MW-DN-120S Result Error	MW-DN-121S WG-DN-MW-DN-121S-080806-GL-003 8/8/2006	MW-DN-121S Result Error	MW-DN-122I WG-DN-MW-DN-1221-080806-GL-001 8/8/2006	MW-DN-1221 Result Error
	Units						
Target Radionuclides							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	_
Cesium-134	pCi/L	ND (10)	-	ND (10)		ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	_
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	_
Lanthanum-140	pCi/L	ND (15)	-	ND (15)		ND (15)	_
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	•
Niobium-95	pCi/L	ND (10)	-	ND (10) U*	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	_
Strontium-90	pCi/L	NA	-	NA	-	NA	_
Zinc-65	pCi/L	ND (30)	-	ND (30)		ND (30)	_
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Actinium-228	pCi/L	RNI	-	RNI	-	RNI	_
Potassium-40	pCi/L	RNI	-	RNI	-	104.2	+/-48.34
Radium-226	pCi/L	RNI	-	RNI	-	RNI	1) 10.01
Thorium-228	pCi/L	RNI	-	18.26	+/-7.47	RNI	_
Thorium-232	pCi/L	RNI	-	RNI	-	RNI	_

Notes:

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90
- RNI- Radionuclide Not Identified during analysis.
- NA Data not available or not analyzed.
- ND () Non-detect; value in parentheses is the LLD.
- LLD Lower limit of detection.
- U* Compound / Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- -- Non-detect value, +/- value not reported.

TABLE 5.3 Page 25 of 25

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN GROUNDWATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		MW-DN-122S WG-DN-MW-DN-122S-080806-GL-002 8/8/2006	MW-DN-122S Result Error	MW-DN-123I WG-DN-MW-DN-123I-080806-GL-004 8/8/2006	MW-DN-123I Result Error
	Units				
Target Radionuclides					
Barium-140	pCi/L	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10) U*	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10) U*	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-
Zinc-65	pCi/L	ND (30) U*	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)					
Actinium-228	pCi/L	RNI	-	RNI	-
Potassium-40	pCi/L	RNI	-	RNI	-
Radium-226	pCi/L	RNI	-	RNI	-
Thorium-228	pCi/L	12.67	+/-7.215	RNI	-
Thorium-232	pCi/L	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown

- (1) These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.
- (2) These sample results were considered invalid since the Strontium-89/90 (Total) was less than the Strontium-90

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

- U* Compound/Analyte not detected.

 Peak not identified, but forced activity
 concentration exceeds Minimum
 Detectable Concentration and 3 sigma.
- - Non-detect value, +/- value not reported.

TABLE 5.4 Page 1 of 1

ANALYTICAL RESULTS SUMMARY - TRITIUM IN SURFACE WATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Sample Identification	QC Sample	Sample Date	Tritium (pCi/L)	Result Result Error
SW-DN-101	WS-DN-SW-101-053106-JH-023		5/31/2006	ND (200)	-
SW-DN-102	WS-DN-SW-102-053106-JH-024		5/31/2006	ND (200)	-
SW-DN-103	WS-DN-SW-103-053106-JH-021		5/31/2006	ND (200)	-
SW-DN-104	WS-DN-SW-104-060106-JH-026		6/1/2006	ND (200)	-
SW-DN-105	WS-DN-SW-105-060106-JH-025		6/1/2006	ND (200)	-
SW-DN-106	WS-DN-SW-106-060106-JH-027		6/1/2006	ND (200)	-
SW-DN-106	WS-DN-SW-106-060106-JH-028	Duplicate (027)	6/1/2006	ND (200)	-

Notes:

Samples analyzed by: Teledyne Brown Engineering, Inc.

QC - Quality Control

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

^{- -} Non-detect value, +/- value not reported.

TABLE 5.5 Page 1 of 2

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN SURFACE WATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		SW-DN-101 WS-DN-SW-101-053106-JH-023 5/31/2006	SW-DN-101 Result Error	SW-DN-102 WS-DN-SW-102-053106-JH-024 5/31/2006	SW-DN-102 Result Error	SW-DN-103 WS-DN-SW-103-053106-JH-021 5/31/2006	SW-DN-103 Result Error	SW-DN-104 WS-DN-SW-104-060106-JH-026 6/1/2006
Target Radionuclides	Units							
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-	ND (2)
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)
Zirconium-95	pCi/L	ND (10)	•	ND (10)	-	ND (10)	-	ND (10)
Non-Target Radionuclides (1)								
Potassium-40	pCi/L	RNI	-	RNI	-	RNI	-	RNI

Notes:

Samples analyzed by: Teledyne Brown

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

RNI- Radionuclide Not Identified during analysis.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

-- Non-detect value, +/- value not reported.

Revision 1

TABLE 5.5 Page 2 of 2

ANALYTICAL RESULTS SUMMARY - RADIONUCLIDES IN SURFACE WATER FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location: Sample Identification: Sample Date:		SW-DN-104 Result Error	SW-DN-105 WS-DN-SW-105-060106-JH-025 6/1/2006	SW-DN-105 Result Error	SW-DN-106 WS-DN-SW-106-060106-JH-027 6/1/2006	SW-DN-106 Result Error	SW-DN-106 WS-DN-SW-106-060106-JH-028 6/1/2006 Duplicate	SW-DN-106 Result Error
Target Radionuclides	Units							
Barium-140	pCi/L	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	-	ND (10)	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	-	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	-	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89/90 (Total)	pCi/L	-	ND (2)	-	ND (2)	-	ND (2)	-
Zinc-65	pCi/L	-	ND (30)	•	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)								
Potassium-40	pCi/L	-	84.3	+/-42.86	RNI	-	RNI	-

Notes:

Samples analyzed by: Teledyne Brown
(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

RNI- Radionuclide Not Identified during analysis.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

⁻⁻ Non-detect value, +/- value not reported.

APPENDIX A

MONITORING WELL LOGS

Page 1 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1011

DATE COMPLETED: May 10, 2006

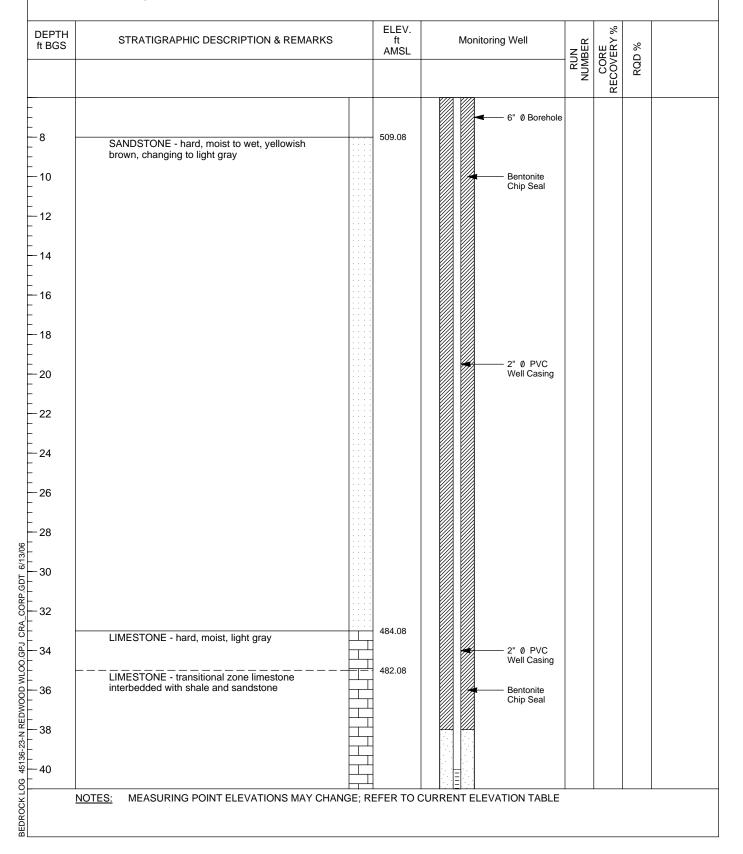
DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	Monitoring Well			SAMF	
	TOP OF RISER GROUND SURFACE	520.48 517.08		NUMBER	INTERVAL	REC (%)	'N' VALUE
2	Overburden, not logged. Cleared using soft dig.		- Concrete Surface Seal	_	=		-
6 -	END OF OVERBURDEN HOLE @ 8.0ft BGS		− 6" Ø Borehole				
10							
14							
16							
18							
20							
22							
24							
26							
28							
30							
32							
34							
NO	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	URRENT ELEVATION TABLE				

Page 2 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1011

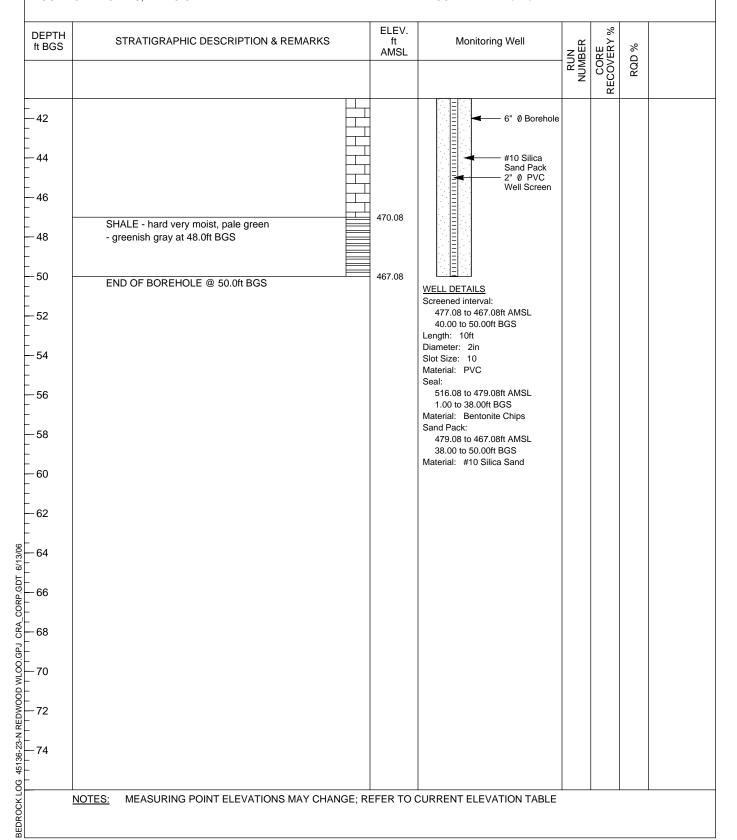
DATE COMPLETED: May 10, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

Page 3 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-101I

DATE COMPLETED: May 10, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-101S

DATE COMPLETED: May 5, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

FIELD PERSONNEL: K. Duwal

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	Monitoring Well			SAME	
	TOP OF RISER GROUND SURFACE	520.30 517.10		NUMBER	INTERVAL	REC (%)	'N' VALUE
-2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32	TOP OF RISER GROUND SURFACE Overburden not logged, cleared by soft dig. Rock/gravel Fill END OF OVERBURDEN HOLE @ 8.0ft BGS	520.30	Concrete Surface Seal Bentonite Chip Seal 2" Ø PVC Well Casing 6" Ø Borehole		INTERV	REC (%	IN. VALL
-36 -38							

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-101S

DATE COMPLETED: May 5, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

FIELD PERSONNEL: K. Duwal

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN NUMBER	CORE RECOVERY %	RQD %	
-8	SANDSTONE, tan/gray	509.10	6" Ø Borehole		ш.		
-10	CANDOTONE, tall/gray		#10 Silica				
14			#10 Silica Sand Pack 2" Ø PVC Well Screen	1	AR		
16			Well Screen				
20	END OF BOREHOLE @ 20.0ft BGS	497.10	<u> - - </u>				
22	END OF BOREHOLE & 20.011 BGS		WELL DETAILS Screened interval: 507.10 to 497.10ft AMSL 10.00 to 20.00ft BGS				
24			Length: 10ft Diameter: 2in Slot Size: 10 Material: Sch 40 PVC				
26			Seal: 516.10 to 510.60ft AMSL 1.00 to 6.50ft BGS Material: Bentonite Chips				
30			Sand Pack: 510.60 to 497.10ft AMSL 6.50 to 20.00ft BGS Material: Silica Sand				
- 32			iviateriai. Silica Sariu				
34							
-36							
-38							
-40							
- 42							
-44							
NO	TES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	CURRENT ELEVATION TABLE				

Page 1 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-102I

DATE COMPLETED: May 10, 2006

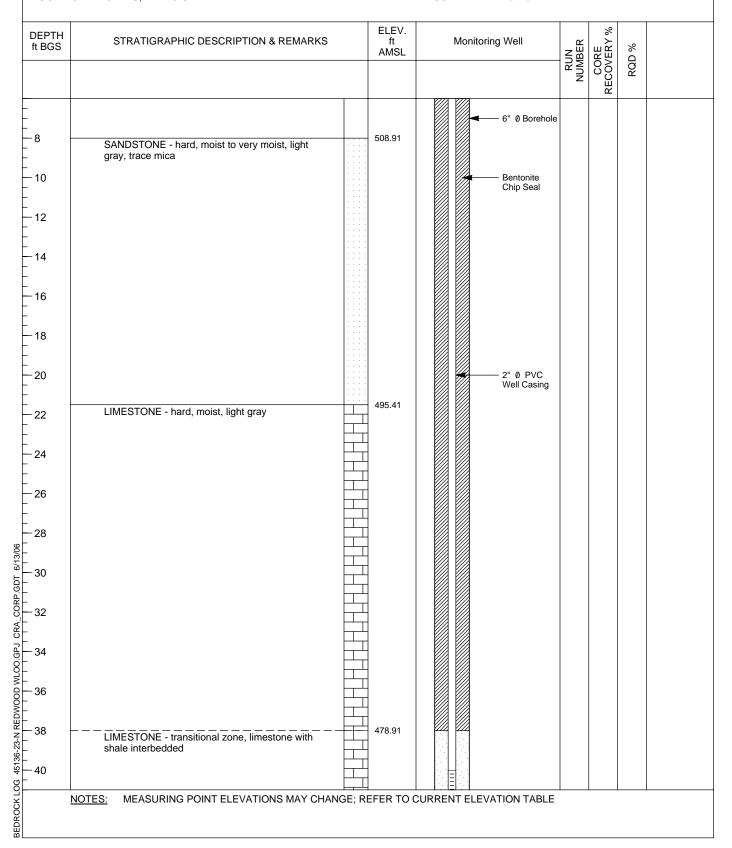
DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well			SAME	PLE	
ft BGS		AMSL	Worldoning Well	3ER	\\	(%)	TOE	
	GROUND SURFACE TOP OF CASING	516.91 516.63		NUMBER	INTERVAL	REC (%)	'N' VALUE	
- - - 2 - - - - - 4	Overburden not logged. Cleared using soft dig.		Concrete Surface Seal					
- - - - - - 8	END OF OVERBURDEN HOLE @ 8.0ft BGS		6" Ø Borehole					
- - - - - - -								
12 - -								
14 								
_ 16								
_ _ 18 _								
20								
_ 22 								
22 24 26 28 30 32 34								
26								
_ 28								
 - -								
- 30								
-32								
_ 34								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO (CURRENT ELEVATION TABLE	I	1			

Page 2 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-102I

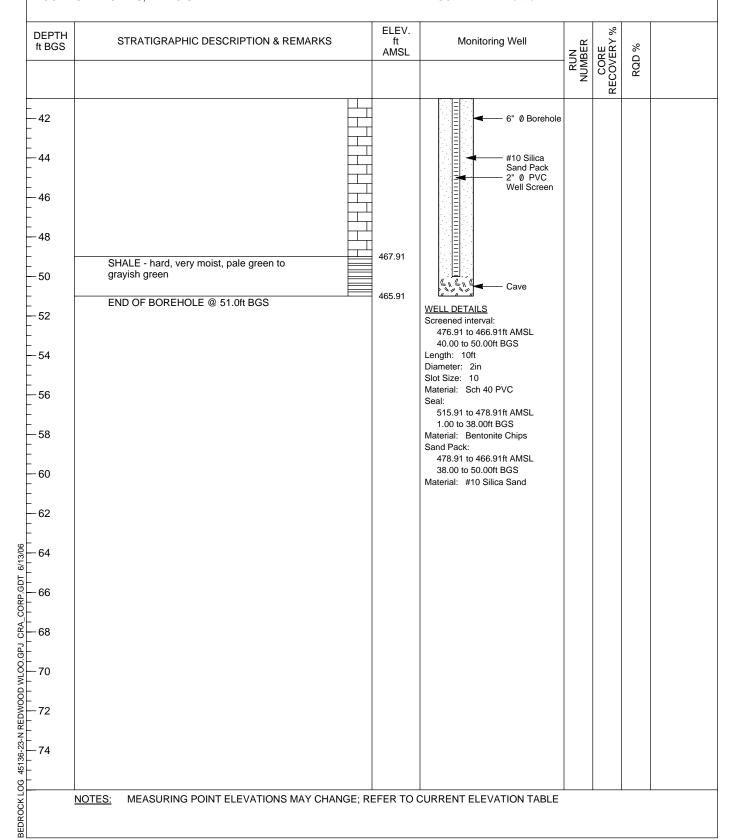
DATE COMPLETED: May 10, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

Page 3 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-102I

DATE COMPLETED: May 10, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-102S

DATE COMPLETED: May 4, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig/Tricone

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	Monitoring Well			SAMI		
	GROUND SURFACE	516.98		NUMBER	INTERVAL	REC (%)	'N' VALUE	
	TOP OF CASING	516.68		ĬŅ.	INT	RE	Ž	
	Overburden not logged. Cleared using soft dig.		Concrete Surface Seal					
-2			Bentonite Chip Seal					
			Omp ocal					
-4			6" Ø Borehole					
-6								
0			2" Ø PVC Well Casing					
-8	END OF OVERBURDEN HOLE @ 8.0ft BGS	1						
-10								
12								
-12								
-14								
-16								
10								
-18								
-20								
-22								
-24								
- 26 - 28								
-28								
-30								
-32								
-34								
-36								
-38								

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-102S

DATE COMPLETED: May 4, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig/Tricone

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
-8 -10 -12	SANDSTONE - hard, moist to very moist, dark brown changing to yellowish brown changing to light gray	508.98	#10 Silica Sand Pack 2" Ø PVC Well Casing				
- 14 	END OF BOREHOLE @ 15.0ft BGS	501.98	WELL DETAILS Screened interval: 511.98 to 501.98ft AMSL 5.00 to 15.00ft BGS Length: 10ft Diameter: 2in				
· 20			Slot Size: 10 Material: Sch 40 PVC Seal: 515.98 to 512.98ft AMSL 1.00 to 4.00ft BGS				
24			Material: Bentonite Chips Sand Pack: 512.98 to 501.98ft AMSL 4.00 to 15.00ft BGS Material: #10 Silica Sand				
28							
-30							
-32							
34							
36							
-38							
40							
· 42 · 44							

Page 1 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-103I

DATE COMPLETED: May 2, 2006

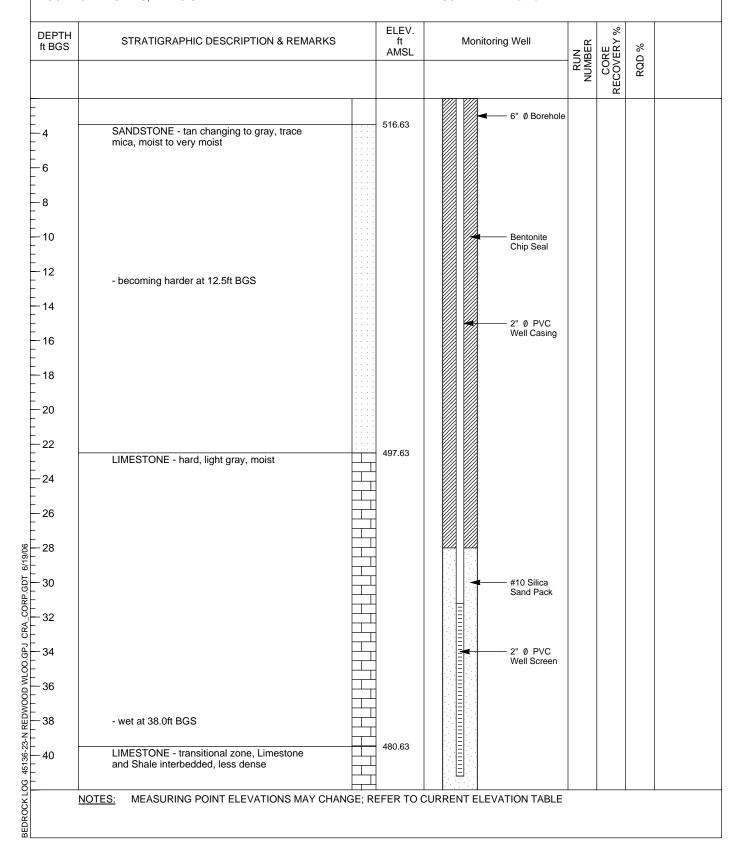
DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well			SAME	PLE	
ft BGS		AMSL	Worldon's ven	3ER	:VAL	(%)	TOE	
	TOP OF RISER GROUND SURFACE	522.72 520.13		NUMBER	INTERVAL	REC (%)	'N' VALUE	
-	Overburden not logged. Cleared for utilities using soft dig.		Concrete Surface Seal					
_2								
- -4	END OF OVERBURDEN HOLE @ 3.5ft BGS		6" Ø Borehole					
-6 -								
-8								
_ 10								
_ 12								
- 12								
- 14								
16								
- - -18								
E								
<u></u> 20								
22								
- 24								
- I								
26 								
28								
26 - 26 - 26 - 28 - 28 - 28 - 28 - 20 - 20 - 20 - 20								
32								
34								
36								
38 								
32 34 36 36 38 38 38 38 38 38 38 38 38 38 38 38 38								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	LURRENT ELEVATION TABLE					
;								

Page 2 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-103I

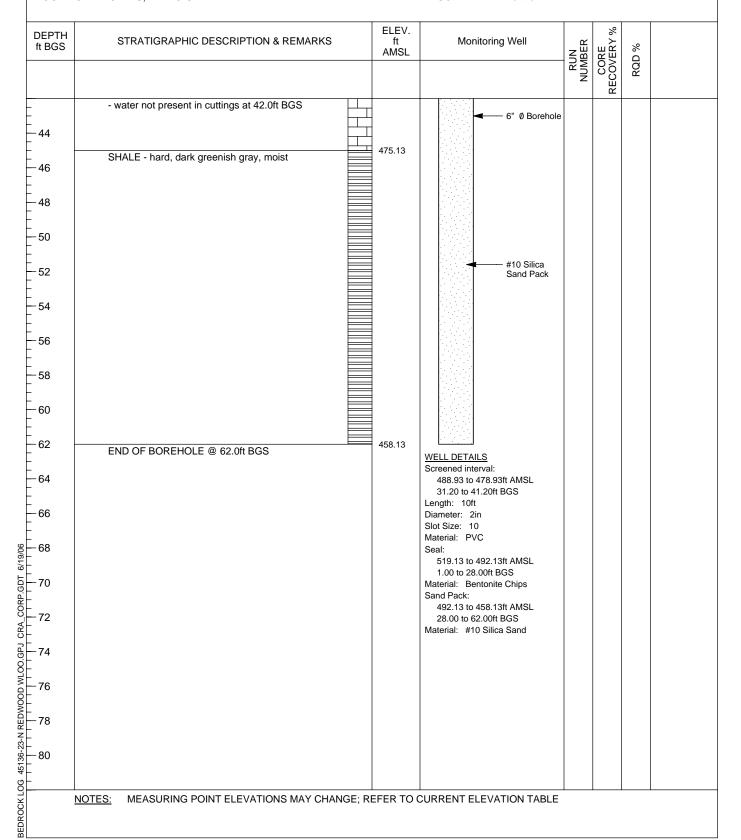
DATE COMPLETED: May 2, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

Page 3 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-103I

DATE COMPLETED: May 2, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-103S

DATE COMPLETED: May 3, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	Monitoring Well			SAMI	PLE
ft BGS		AMSL	Worldshing Well	BER	3VAL	(%)	LUE
	TOP OF RISER GROUND SURFACE	522.12 519.53		NUMBER	INTERVAL	REC (%)	'N' VALUE
	Overburden not logged. Cleared using soft dig.		Concrete Surface Seal				
-2			Bentonite				
-4	END OF OVERBURDEN HOLE @ 3.4ft BGS		Chip Seal				
-6							
-8							
-10							
12							
14							
16							
18							
-20							
-22							
-24							
- 26							
00							
-28							
-30							
-32							
-34							
-36							
-38							
	OTEO. MEAGLIDING DOINT ELEVATIONS MAY SUAVES	FEED TO	CUIDDENT ELEVATION TAS: 5				
<u>INC</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFEK IU (CONKENT ELEVATION TABLE				

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-103S

DATE COMPLETED: May 3, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	Monitoring Well	RUN NUMBER	CORE RECOVERY %	RQD %	
	SANDSTONE - hard, light brown, moist to very moist - yellowish brown at 4.5ft BGS - light brown at 6.0ft BGS		516.13	Bentonite Chip Seal 2" Ø PVC Well Casing 6" Ø Borehole				
	- dark brown, trace mica at 12.5ft BGS			#10 Silica Sand Pack				
— 16 - - - - - 18 - -	- light gray at 16.5ft BGS			2" Ø PVC Well Screen				
20 22 	END OF BOREHOLE @ 20.0ft BGS		499.53	WELL DETAILS Screened interval: 509.53 to 499.53ft AMSL 10.00 to 20.00ft BGS				
				Length: 10ft Diameter: 2in Slot Size: 10 Material: PVC Seal: 518.53 to 513.53ft AMSL				
- - - 28 - - - - - - 30				1.00 to 6.00ft BGS Material: Bentonite Chips Sand Pack: 513.53 to 499.53ft AMSL 6.00 to 20.00ft BGS Material: #10 Silica Sand				
- 32 - - - 34				Machan #10 Silica Sara				
- 36 - 36 								
- - - - - - - - - - - -								
<u>_</u>	NOTES: MEASURING POINT ELEVATIONS MAY CHA	NGE; RI	EFER TO	CURRENT ELEVATION TABLE				

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-104S

DATE COMPLETED: May 9, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

FIELD PERSONNEL: N. Kuhl

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well			SAMI		
IL DOS	GROUND SURFACE	AMSL	<u> </u>	NUMBER	INTERVAL	REC (%)	'N' VALUE	
	TOP OF CASING	516.38		N N	IN IN	REC	<u> </u>	
-2	Overburden, not logged. Cleared using soft dig.		Concrete Surface Seal					
- 4			Bentonite					
	END OF OVERBURDEN HOLE @ 4.5ft BGS							
-6								
-8								
-10								
12								
-14								
16								
-18								
- 20								
- 22								
- 24								
- 26								
-28								
-30								
- 32								
-34								
-36								
-38								
NC NC	DTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	FEER TO (LIDDENT ELEVATION TARLE					

Page 1 of 1

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-104S

DATE COMPLETED: May 9, 2006
DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: N. KUHL

DEPTH ft BGS	STRATIGRAPHIC DESCRIP		ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
	NORTHING: 1720545.8 EASTING: 1001497.04	GROUND SURFACE TOP OF CASING	516.60 516.38		Z	REC	œ	
2 4 6 8 10 12 14	SANDSTONE - orange			Concrete Bentonite 2" PVC Well Casing 6" Borehole 2" PVC Well Screen Sand Pack				
18	END OF BOREHOLE @ 20.0ft	BGS	496.60	WELL DETAILS				
22 24 26				Screened interval: 506.60 to 496.60ft AMSL 10.00 to 20.00ft BGS Length: 10ft Diameter: 2in Slot Size: 0.010 Material: PVC Seal: 515.60 to 508.60ft AMSL				
28 30 32 34 36 38				1.00 to 8.00ft BGS Material: Bentonite Chips Sand Pack: 508.60 to 496.60ft AMSL 8.00 to 20.00ft BGS Material: #3 Sand				
32								
36							·	

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-105S

DATE COMPLETED: May 5, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

FIELD PERSONNEL: K. Duwal

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft Monitoring Well		SAMPLE				
ft BGS		AMSL 516.68		NUMBER	INTERVAL	REC (%)	'N' VALUE	
	TOP OF RISER GROUND SURFACE	516.52		NUN	INTE	REC	, , , ,	
	Gravel and Rock Fill below asphalt		Concrete Surface Seal					
-2			Bentonite Chip Seal					
-4	END OF OVERBURDEN HOLE @ 3.0ft BGS		Cnip Seal					
-6								
-8								
-10								
-12								
-14								
-16								
-18								
-20								
-22								
-24								
-26								
20								
-28								
-30								
-32								
-34								
-36								
-26 -28 -30 -32 -34 -36 -38								
<u>No</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (CURRENT ELEVATION TABLE					

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-105S

DATE COMPLETED: May 5, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

FIELD PERSONNEL: K. Duwal

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN NUMBER	CORE RECOVERY %	RQD %	
-4 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38	SANDSTONE - light to dark gray with tan END OF BOREHOLE @ 20.0ft BGS	513.52	Bentonite Chip Seal 2" Ø PVC Well Casing 6" Ø Borehole #10 Silica Sand Pack WELL DETAILS Screened interval: 506.52 to 496.52ft AMSL 10.00 to 20.00ft BGS Length: 10ft Diameter: 2in Slot Size: 10 Material: PVC Seal: 515.52 to 510.02ft AMSL 1.00 to 6.50ft BGS Material: Bentonite Chips Sand Pack: 510.02 to 496.52ft AMSL 6.50 to 20.00ft BGS Material: #10 Silica Sand		REC		
-40							

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-106S

DATE COMPLETED: May 3, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well	SAMPLE				
ft BGS		AMSL	morning vvon	BER	3VAL	(%)	LUE	
	TOP OF RISER GROUND SURFACE	516.42 513.88		NUMBER	INTERVAL	REC (%)	'N' VALUE	
	Overburden not logged. Cleared using soft dig.		Concrete Surface Seal					
-2			Bentonite Chip Seal					
-4	END OF OVERBURDEN HOLE @ 2.5ft BGS							
· ·								
-6								
-8								
-10								
-12								
. 12								
-14								
- 16								
- - -18								
-20								
-22								
24								
- 20								
-28								
30								
-32								
-34								
-36								
-26 -28 -30 -32 -34 -36 -38								
NC	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	CURRENT ELEVATION TABLE					

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-106S

DATE COMPLETED: May 3, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN NUMBER	CORE RECOVERY %	RQD %	
4 6 8 10 12 14 16	SANDSTONE - hard, moist to very moist, yellowish brown, changes to light gray	- 511.38	Bentonite Chip Seal 2" Ø PVC Well Casing #10 Silica Sand Pack 2" Ø PVC Well Screen		CC RECO	RC	
-20 -22 -24	END OF BOREHOLE @ 20.0ft BGS	- 493.88	WELL DETAILS Screened interval: 503.88 to 493.88ft AMSL 10.00 to 20.00ft BGS Length: 10ft Diameter: 2in Slot Size: 10				
-26			Material: PVC Seal: 512.88 to 505.88ft AMSL 1.00 to 8.00ft BGS Material: Bentonite Chips Sand Pack: 505.88 to 493.88ft AMSL				
-30 -32			8.00 to 20.00ft BGS Material: #10 Silica Sand				
-34							
-36							
-38							
-40							

Page 1 of 1

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-107S

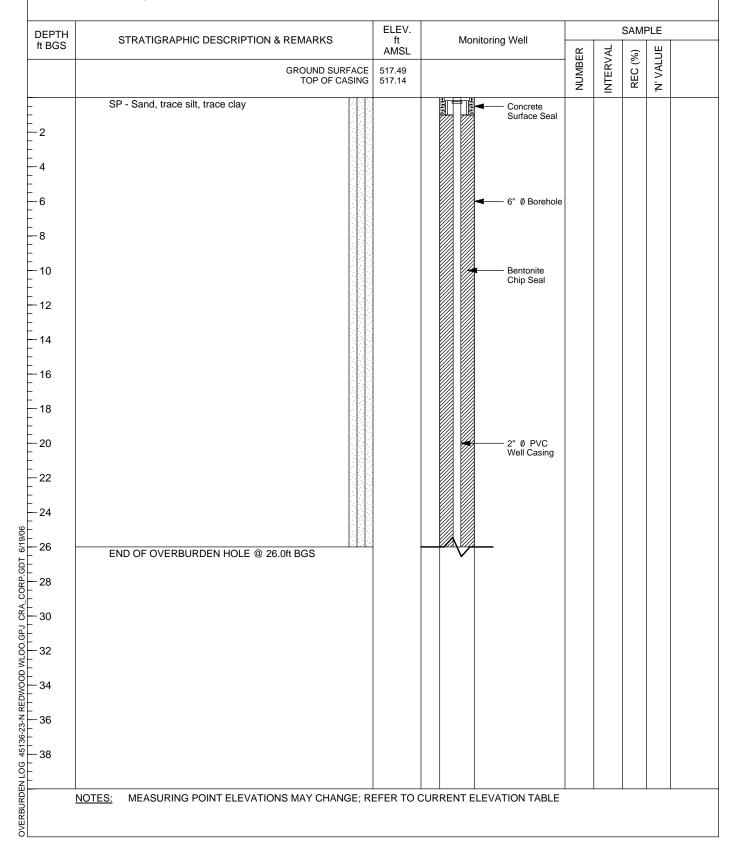
DATE COMPLETED: May 15, 2006 DRILLING METHOD: Vacuum Truck

FIELD PERSONNEL: D. Deitner ELEV. SAMPLE DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS Monitoring Well ft BGS VALUE AMSL NTERVAL NUMBER %) TOP OF RISER REC (518.23 GROUND SURFACE 516.63 ž SM SAND with silt, trace fine grained angular Concrete gravel, loose, medium brown, moist Surface Seal 2" Ø PVC Well Casing Bentonite Chip Seal - 2 6" Ø Borehole - 4 #10 Silica Sand Pack - wet at 5.0ft BGS 2" Ø PVC Well Screen -6 Cave OVERBURDEN LOG 45136-23-N REDWOOD WLOO.GPJ CRA_CORP.GDT 6/13/06 508.63 - 8 END OF BOREHOLE @ 8.0ft BGS WELL DETAILS Screened interval: 515.13 to 510.13ft AMSL 1.50 to 6.50ft BGS Length: 5ft Diameter: 2in Slot Size: 10 Material: PVC Seal: - 10 516.13 to 515.13ft AMSL 0.50 to 1.50ft BGS Material: Bentonite Chips Sand Pack: 515.13 to 510.13ft AMSL 1.50 to 6.50ft BGS Material: #10 Silica Sand MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

Page 1 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-108I

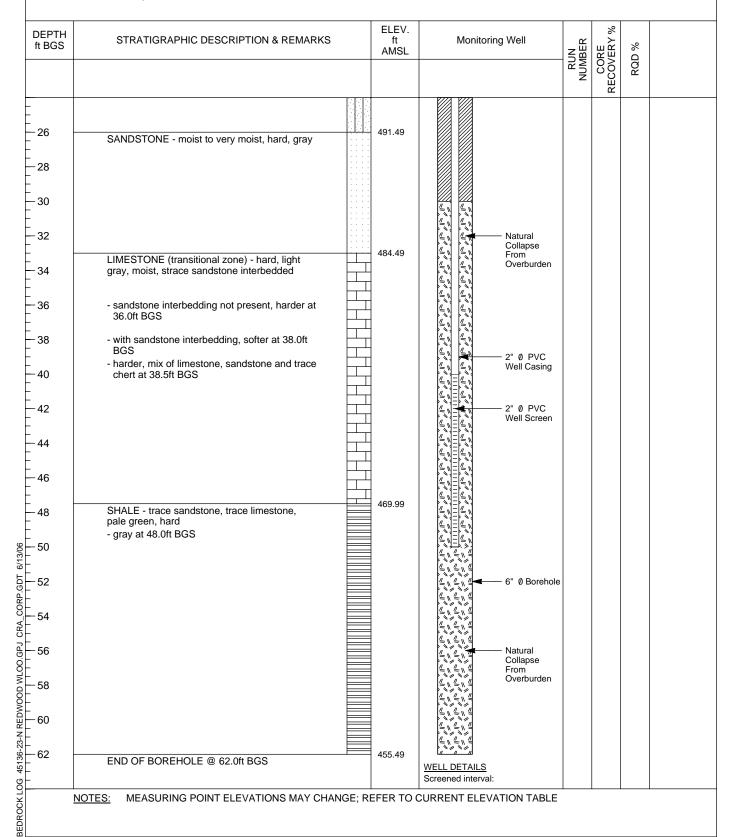
DATE COMPLETED: May 10, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

Page 2 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-108I

DATE COMPLETED: May 10, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

Page 3 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-108I

DATE COMPLETED: May 10, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
				Z	REC		
-66			477.49 to 467.49ft AMSL 40.00 to 50.00ft BGS Length: 10ft Diameter: 1in				
-68			Slot Size: 10 Material: PVC Seal:				
-70			516.49 to 487.49ft AMSL 1.00 to 30.00ft BGS Material: Bentonite Chips				
-72			Sand Pack: 487.49 to 467.49ft AMSL 30.00 to 50.00ft BGS Material: Natural Collapse used				
-74			as filter pack from overburden				
- 76							
-78							
-80							
-82							
-84							
-86							
- 88							
- 90							
-92							
-94							
-96							
-98							
- 100							
-102							
	TES: MEASURING POINT ELEVATIONS MAY CHANGE;						

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-109I

DATE COMPLETED: May 9, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

FIELD PERSONNEL: N. Kuhl

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well			SAM		—
	TOP OF RISER	516.31		NUMBER	INTERVAL	REC (%)	'N' VALUE	
	GROUND SURFACE	516.27	141 161	ž	Ē	22	Ž	
-2	Overburden, not logged. Cleared using soft dig.		Concrete Surface Seal Bentonite Chip Seal					
- 4	END OF OVERBURDEN HOLE @ 2.5ft BGS		Chip Seal					
-6								
- 8								
-10								
12								
14								
16								
18								
20								
- 22								
- 24								
-26								
- 28								
-30								
-32								
-34								
-36								
-38								
NC	TES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO C	CURRENT ELEVATION TABLE					

Page 2 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-109I

DATE COMPLETED: May 9, 2006

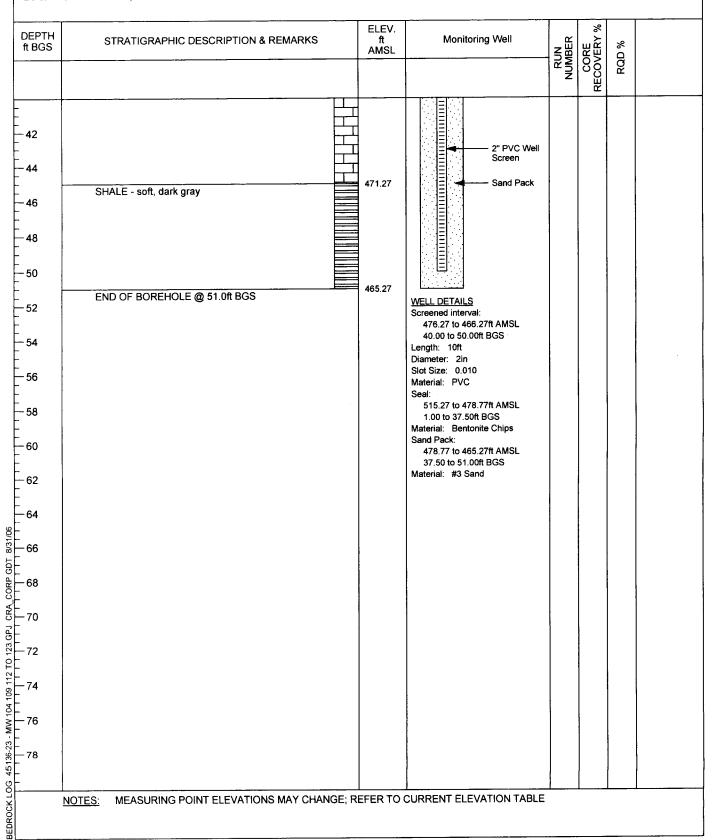
DRILLING METHOD: AIR ROTARY FIELD PERSONNEL: N. KUHL

DEPTH ft BGS	STRATIGRAPHIC DESCRIP	TION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
	NORTHING: 1720244.36 EASTING: 1001238.2	TOP OF CASING GROUND SURFACE	516.31 516.27		N. N. S.	CC RECO	RQ	
	SANDSTONE - orange			Concrete				
_								
-2				Bentonite				
. 4								
- 4]	2" PVC Well				
-6				Casing				
-0								
- 8			508.27					
Ü	SANDSTONE - gray		000.27					
- 10								
-12								
- 14								
- 16								
-18		1.1						
	- wet at 18.5ft BGS							
-20								
-22								
-24								
- 26			:					
-28		::::						
	LIMESTONE - gray		487.27					
-30								
-32								
		F						
- 34								
. 26		H						
-36								
-38								
50				← 6" Borehole				
	NOTES: MEASURING POINT ELEV		j ,					

Page 3 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1091

DATE COMPLETED: May 9, 2006
DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: N. KUHL

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-109S

DATE COMPLETED: May 9, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

FIELD PERSONNEL: N. Kuhl

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well			SAMI	
יי סטט	TOP OF RISER	AMSL	-	NUMBER	INTERVAL	REC (%)	'N' VALUE
	GROUND SURFACE	516.29		N N	INTE	REC	<u>Z</u>
	Overburden, not logged. Cleared using soft dig.		Concrete Surface Seal				
-2	END OF OVERDURDEN HOLE & A 54 DOG		Bentonite Chip Seal				
-4	END OF OVERBURDEN HOLE @ 2.5ft BGS						
-6							
-8							
40							
-10							
-12							
-14							
-16							
-18							
-20							
-22							
-24							
-26 -28							
20							
-28							
-30							
-32							
32							
-34							
-36							
20							
-38							
	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; F	FEER TO (LIDDENT ELEVATION TABLE				

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-109S

DATE COMPLETED: May 9, 2006
DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: N. KUHL

DEPTH ft BGS	STRATIGRAPHIC DESCRIPT	ION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN NUMBER	DRE VERY %	RQD %	
	NORTHING: 1720244.12 EASTING: 1001233.26	TOP OF CASING GROUND SURFACE	516.32 516.29		N S	CORE RECOVERY	RQ	
-2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32		GROUND SURFACE	516.32 516.29	Concrete Bentonite 2" PVC Well Casing 6" Borehole 2" PVC Well Screen Sand Pack Screened interval: 506.29 to 496.29ft AMSL 10.00 to 20.00ft BGS Length: 10ft Diameter: 2in Slot Size: 0.010 Material: PVC Seal: 515.29 to 508.29ft AMSL 1.00 to 8.00ft BGS Material: Bentonite Chips Sand Pack: 508.29 to 496.29ft AMSL 8.00 to 20.00ft BGS Material: #3 Sand	NUM.	OC RECOV	RQ	
-36								
38						ł.		

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-110I

DATE COMPLETED: May 4, 2006

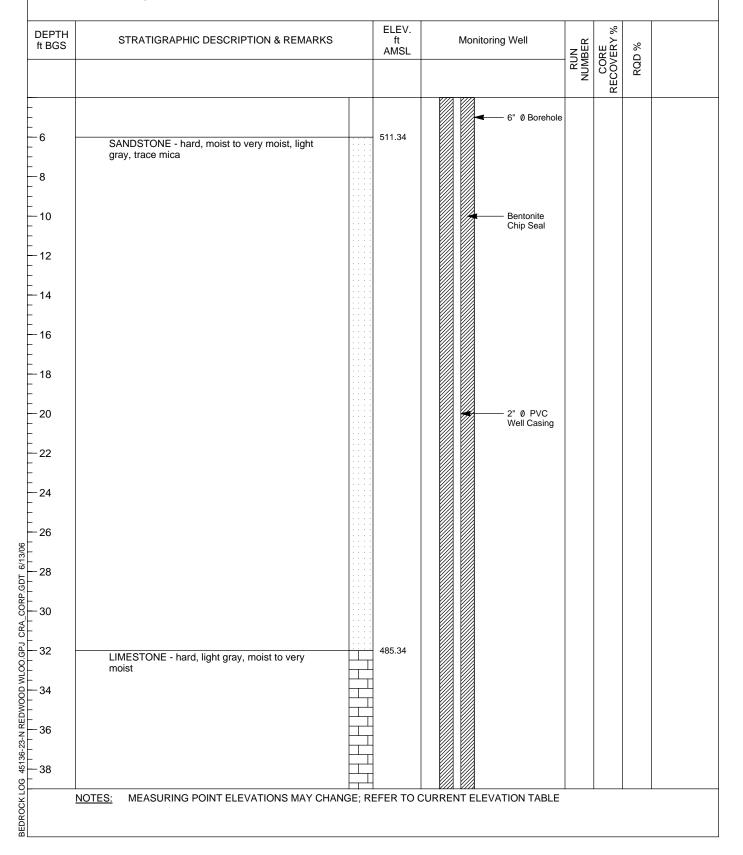
DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	Monitoring Well			SAMI		
200	TOP OF RISER	517.41		NUMBER	INTERVAL	REC (%)	'N' VALUE	
	GROUND SURFACE	517.34		₹	Ē	A.	ž	
	Overburden not logged. Cleared using soft dig.		Concrete Surface Seal					
-2								
- 4								
			6" Ø Borehole					
-6	END OF OVERBURDEN HOLE @ 6.0ft BGS							
-8								
-10								
12								
12								
14								
-16								
-18								
-20								
-22								
-24								
-26								
20								
-28								
-30								
-32								
- 34								
J-								

Page 2 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-110I

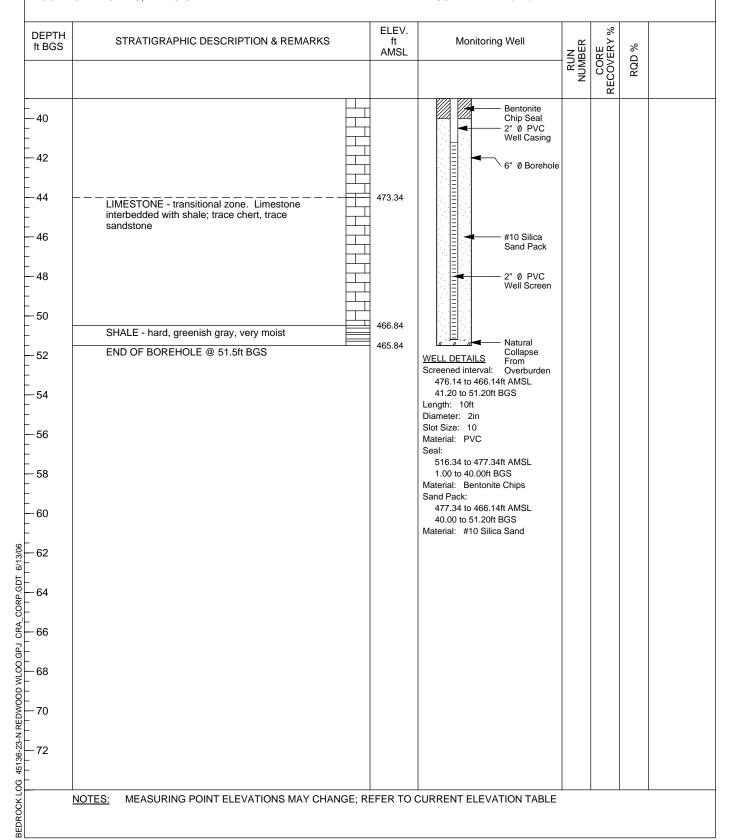
DATE COMPLETED: May 4, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

Page 3 of 3

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-110I

DATE COMPLETED: May 4, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-110S

DATE COMPLETED: May 4, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

TOP OF RISER STIZE	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well			SAMI	PLE	
Cverburden not logged. Cleared using soft dig. Cverburden not logged. Cleared using soft Surface Seal Surface Seal Surface Seal Surface Seal Chap	ft BGS		AMSL	g / te	MBER	ERVAL	(%)	'ALUE	
2 dig. Surface Seal Buntoning Chip Seal Chip S		GROUND SURFACE	517.16		Ž	E E	RE(ž	
END OF OVERBURDEN HOLE & 6.011 BGS -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36	-4	dig.		Surface Seal Bentonite Chip Seal 2" Ø PVC					
10		END OF OVERBURDEN HOLE @ 6.0ft BGS							
12	8								
14 16 18 20 22 24 26 28 30 32 34 36	10								
16 18 20 22 24 26 28 30 32 34 36	12								
18 20 22 24 26 28 30 32 34 36	14								
20	16								
22 24 26 28 30 32 34 36	18								
22 24 26 28 30 32 34 36	20								
24 26 28 30 32 34 36				·					
26 28 30 32 34 36									
28 30 32 34 36	24								
-30 -32 -34 -36	- 26								
-32 -34 -36	-28								
-34	- 30								
-36	-32								
-36	-34								
-38									
	-38								

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-110S

DATE COMPLETED: May 4, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
-6	SANDSTONE - hard, moist to very moist, light		511.16	2" Ø PVC Well Casing		ш.		
-8	gray			6" Ø Borehole				
-10				#10 Silica Sand Pack				
14				#10 Silica Sand Pack 2" Ø PVC Well Screen				
18				2" Ø PVC Well Screen				
20	END OF BOREHOLE @ 20.2ft BGS	::::	496.96	WELL DETAILS				
- 22				Screened interval: 506.96 to 496.96ft AMSL 10.20 to 20.20ft BGS				
- 24				Length: 10ft Diameter: 2in Slot Size: 10				
- 26				Material: PVC Seal: 516.16 to 511.16ft AMSL				
- 28				1.00 to 6.00ft BGS Material: Bentonite Chips Sand Pack:				
-30				511.16 to 496.96ft AMSL 6.00 to 20.20ft BGS Material: #10 Silica Sand				
-32								
-34								
- 36								
- 38								
- 40								
- 42								
NC	DTES: MEASURING POINT ELEVATIONS MAY CHA	ANGE; RI	L EFER TO (L CURRENT ELEVATION TABLE	1			

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-111S

DATE COMPLETED: May 4, 2006

DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	Monitoring Well		ı	SAMI		
ft BGS		AMSL		NUMBER	INTERVAL	REC (%)	'N' VALUE	
	TOP OF CASING	517.19		N N	INTE	REC	<u>`</u> Z	
-2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38	Overburden not logged. Cleared using soft dig. END OF OVERBURDEN HOLE @ 10.0ft BGS	517.19 516.63	Concrete Surface Seal Bentonite Chip Seal 2" Ø PVC Well Casing 6" Ø Borehole		INTE	REC	7\.\V.	
-36 -38								

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-111S

DATE COMPLETED: May 4, 2006

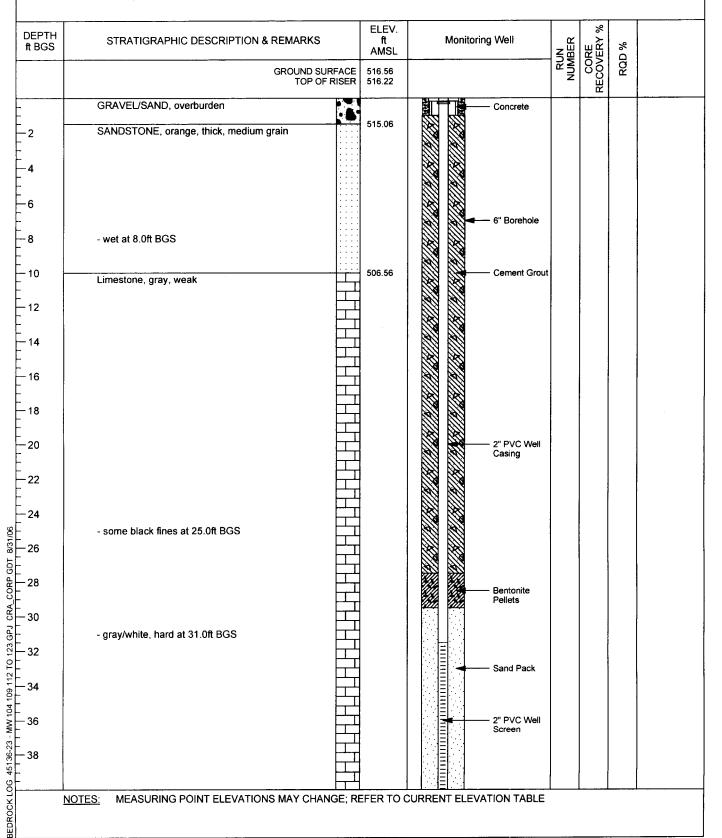
DRILLING METHOD: 6" Air Rotary - Barber Rig

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
-10	SANDSTONE - hard, moist to very moist, yellowish brown then changing to light gray	507.19	6" Ø Borehole		<u>«</u>		
-14			#10 Silica Sand Pack				
· 16 · 18			#10 Silica Sand Pack				
20	END OF BOREHOLE @ 20.0ft BGS	497.19					
- 22	END OF BOREHOLE @ 20.011 BGS		WELL DETAILS Screened interval: 507.19 to 497.19ft AMSL 10.00 to 20.00ft BGS				
- 24			Length: 10ft Diameter: 2in Slot Size: 10 Material: PVC				
26			Seal: 516.19 to 510.19ft AMSL 1.00 to 7.00ft BGS				
-30			Material: Bentonite Chips Sand Pack: 510.19 to 497.19ft AMSL 7.00 to 20.00ft BGS				
-32			Material: #10 Silica Sand				
- 34							
-36							
-38							
- 40							
- 42							
-44							
-46							
<u>NO</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE;	REFER TO	CURRENT ELEVATION TABLE				

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1121

DATE COMPLETED: July 20, 2006
DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: J. WINTERINK

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-112

DATE COMPLETED: July 20, 2006
DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: J. WINTERINK

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
	SHALE, green, soft	476.56		-	E.		
-42	END OF BOREHOLE @ 41.5ft BGS	475.06	WELL DETAILS				
-44			Screened interval: 485.06 to 475.06ft AMSL 31.50 to 41.50ft BGS Length: 10ft				
-46			Diameter: 2in Slot Size: 0.010 Material: PVC				
-48			Sand Pack: 487.06 to 475.06ft AMSL 29.50 to 41.50ft BGS Material: #7 Sand				
-50			Waterial. #7 Sanu				
- 52							
-54							
- 56							
- 58							
-60							
-62							
-64							
-66							
-66 -68							
-70							
-70 -72 -74 -76 -78							
- 74							
-76							
- 78							
 <u>NO</u>	TES: MEASURING POINT ELEVATIONS MAY CHANGE; I	REFER TO	L CURRENT ELEVATION TABLE	E	[1	

Page 1 of 1

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-112S

DATE COMPLETED: July 21, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: J. WINTERINK

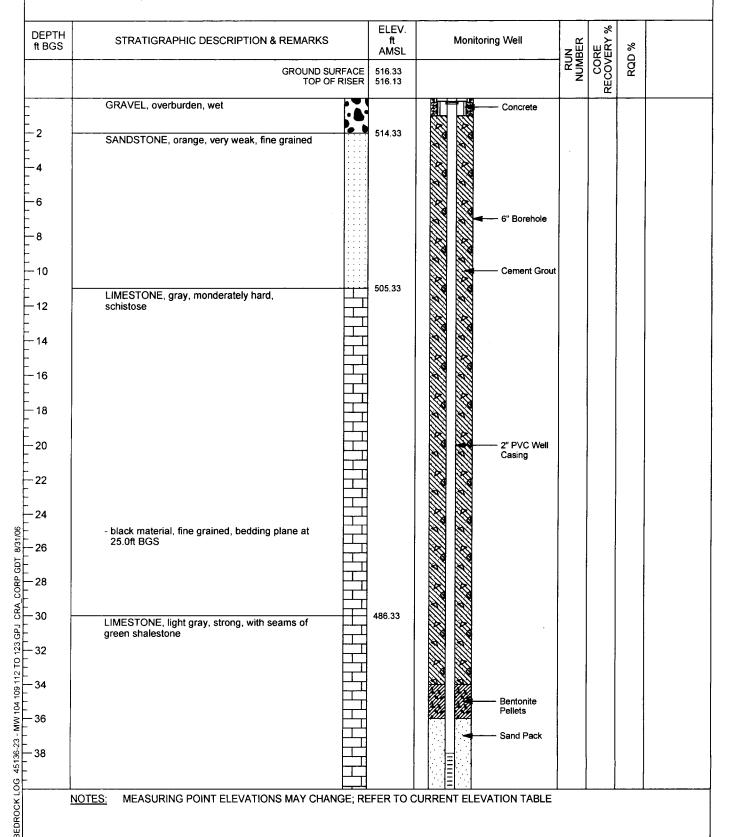
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	RE ÆRY %	RQD %	
	GROUND SURFACE TOP OF RISER	516.72 516.35		N	CORE RECOVERY %	g.	
	GRAVEL/SAND, overburden (soft dig)		Concrete				
-2	SANDSTONE, orange, thick, medium grain	515.22	1868 1868				
-4			Bentonite Pellets				
			2" PVC Well Casing				
-6			6" Borehole				
-8	- wet at 8.0ft BGS		Sand Pack				
- 10			2" PVC Well				
-10	LIMESTONE, gray	505.72	Screen				
-12	END OF BOREHOLE @ 12.0ft BGS	504.72	WELL DETAILS				
- 14			Screened interval: 509.72 to 504.72ft AMSL				
			7.00 to 12.00ft BGS Length: 5ft				
-16			Diameter: 2in Slot Size: 0.010				
-18			Material: PVC Sand Pack:				
- 20			510.72 to 504.72ft AMSL 6.00 to 12.00ft BGS				
20			Material: #7 Sand				
-22							
-24							
.							
-26							
-28							
-30							
-32							
-34							
- 36							
30							
∙38							
	<u>OTES:</u> MEASURING POINT ELEVATIONS MAY CHANGE; F	FEED TO	CURRENT ELEVATION TARLE				

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC


LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1131

DATE COMPLETED: July 21, 2006

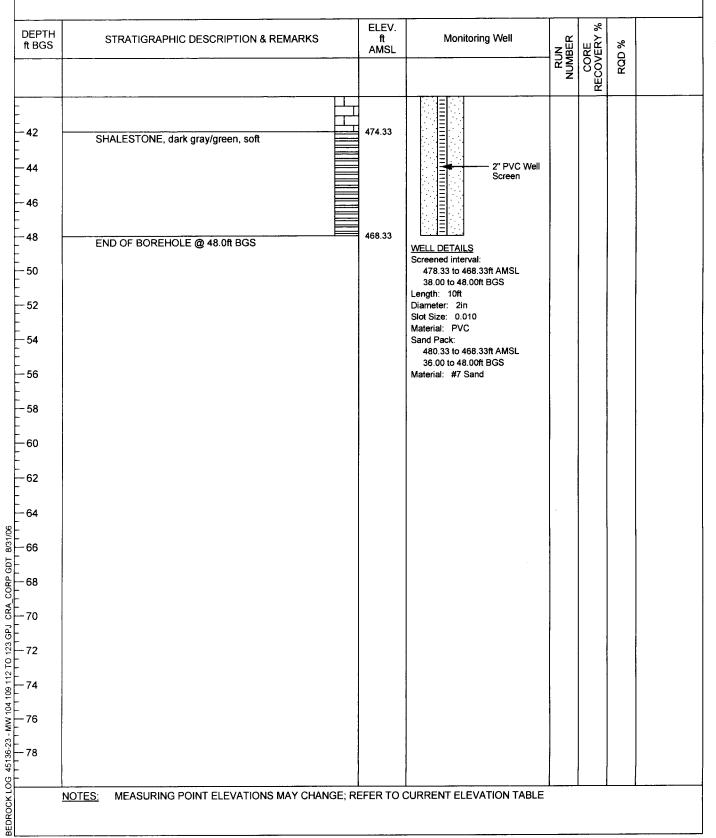
DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: J. WINTERINK

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1131

DATE COMPLETED: July 21, 2006
DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: J. WINTERINK

Page 1 of 1

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-113S

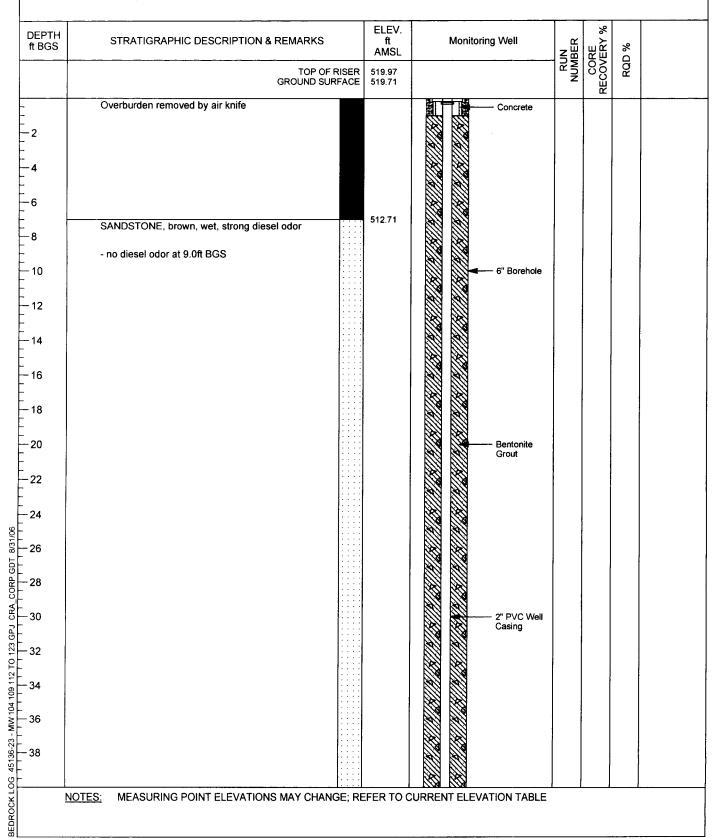
DATE COMPLETED: July 24, 2006
DRILLING METHOD: 6" HAMMER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	NE ÆRY %	RQD %	
	GROUND SURFACE TOP OF RISER	516.36 516.13		2 Z	CORE RECOVERY	RQ	
-2	SAND and GRAVEL (Fill), coarse sand, fine-coarse gravel SANDSTONE, light gray, fine grained, soft,	514.36	Concrete				Pauli (P
- 4 -6	loose	:	Bentonite Pellets 2" PVC Well Casing 6" Borehole				
-8			Sand Pack				
-10 -12	END OF BOREHOLE @ 11.0ft BGS	505.36	2" PVC Well Screen WELL DETAILS				
-14			Screened interval: 510.36 to 505.36ft AMSL 6.00 to 11.00ft BGS Length: 5ft				
-16			Diameter: 2in Slot Size: 10 Material: PVC Sand Pack:				
-18			512.36 to 505.36ft AMSL 4.00 to 11.00ft BGS Material: 20/40 Sand				
-20 -22							
-24							
-26							
-28							
-30							
-32 -34							
-36							
-38							
NO NO	TES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO	L CURRENT ELEVATION TABLE		L		

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1141

DATE COMPLETED: July 31, 2006 DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: C. PINTER/K. DUWAL

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-114I

DATE COMPLETED: July 31, 2006 DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: C. PINTER/K. DUWAL

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN NUMBER	CORE RECOVERY %	RQD %	
-42	- some limestone interbedding at 40.0ft BGS LIMESTONE, some sandstone interbedding, light gray/pink, wet	478.71	Bentonite Pellets				
46		T T T T T	Sand Pack				
- 48		☐ ☐ ☐ 468.71	2" PVC Well Screen		:	da military y	
52	SHALE, limestone interbedding, pale green/gray, wet END OF BOREHOLE @ 53.0ft BGS	466.71	WELL DETAILS			:	
56			Screened interval: 471.71 to 466.71ft AMSL 48.00 to 53.00ft BGS Length: 5ft Diameter: 2in				
58			Slot Size: 10 Material: PVC Sand Pack: 474.71 to 466.71ft AMSL				
-60			45.00 to 53.00ft BGS Material: #7 Sand				
-64							
-66							
- 68							
-72							
- 74							
76							
	OTES: MEASURING POINT ELEVATIONS MAY CHANGE				<u> </u>		

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-114S

DATE COMPLETED: July 25, 2006

DRILLING METHOD: AIR ROTARY FIELD PERSONNEL: C. PINTER

ELEV. DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS Monitoring Well RUN NUMBER CORE RECOVERY ft AMSL RQD % ft BGS GROUND SURFACE 516.76 TOP OF RISER 516.31 Overburden removed by air knife Concrete - 2 6" Borehole - 4 Bentonite Grout 6 509.76 SANDSTONE, brown, wet, strong diesel odor 8 - no diesel odor at 9.0ft BGS 2" PVC Well - 10 Casing - 12 - 14 - 16 - 18 20 Bentonite - 22 24 CORP.GDT 8/31/06 -- 26 - 28 - 30 Sand Pack 2" PVC Well Screen NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-114S

DATE COMPLETED: July 25, 2006
DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: C. PINTER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
-42	- some limestone interbedding at 40.0ft BGS LIMESTONE, some sandstone interbedding, light gray/pink, wet END OF BOREHOLE @ 42.0ft BGS	475.76 474.76	WELL DETAILS				
-44			Screened interval: 485.76 to 475.76ft AMSL 31.00 to 41.00ft BGS Length: 10ft Diameter: 2in				
-48			Slot Size: 10 Material: PVC Sand Pack: 487.76 to 474.76ft AMSL 29.00 to 42.00ft BGS				
- 50			Material: #7 Sand				
-52							
-54							
- 56 - 58							
-60							
-62							
-64							
-66							
-66 -68					ALC: N		
-70							
-70 -72 -74 -76 -78						!	
-74							
-76							
-78							
NC NC	DTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	CURRENT ELEVATION TABLE	Ξ		•	•

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1151

DATE COMPLETED: July 27, 2006

DRILLING METHOD: 6" HAMMER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	Monitor	ing Well	ZER ZER	RE SEY 9	% (
	GROUND S TOP C	URFACE F RISER	516.88 516.63			RUN NUMBER	CORE RECOVERY %	RQD %	
	GRAVEL and SAND, coarse sand, fine-coarse gravel, loose	1			— Concrete				
2	g.ave., 10000								
-	SANDSTONE, loose, fine grained, brown, dry		513.88						
4									
6									
°	- gray at 7.0ft BGS								
8	• •								
10					— 6" Borehole				
12	 black shale layers, soft from 11.0 to 12.0ft BGS 								
12									
14									
	- black shale layer, soft at 15.0ft BGS								
16									
18	- little moisture at 18.0ft BGS								
	- Ittle Moisture at 10.01t BOS								
20					- Bentonite				
					Grout				
22									
24	- wet at 23.0ft BGS								
24									
26									
28									
30	- little shale zone at 29.7ft BGS		486.88		2" PVC Well Casing				
	LIMESTONE, medium-coarse grained, chips, cohesive				Casing				
32									
24	- little shale zone at 33.0ft BGS	丑							
34									
36		井							
38									
NO	TES: MEASURING POINT ELEVATIONS MAY CHA	NGE; RE	FER TO C	CURRENT ELEV	ATION TABLE				

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1151

DATE COMPLETED: July 27, 2006
DRILLING METHOD: 6" HAMMER

ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
-42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62 -64 -66 -70 -72 -74 -76 -78	- a lot of water at 43.0ft BGS dolomite limestone, very fine grained, crystalline, pale white-cream from 43.0 to 48.0ft BGS - little shale layer 0.5' at 56.0ft BGS END OF BOREHOLE @ 63.0ft BGS	453.88	Time Release Bentonite Tablets 1/4" Sand Pack 2" PVC Well Screen Time Release Bentonite Tablets 1/4" WELL DETAILS Screened interval: 470.88 to 460.88ft AMSL 46.00 to 56.00ft BGS Length: 10ft Diameter: 2in Slot Size: 10 Material: PVC Sand Pack: 472.88 to 453.88ft AMSL 44.00 to 63.00ft BGS Material: #5 Sand				

Page 1 of 1

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-115S

DATE COMPLETED: July 28, 2006
DRILLING METHOD: 6" HAMMER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMAR	RKS	ELEV. ft AMSL	Monitoring Well	RUN	ORE VERY %	ROD %	
	GROUN TO	ID SURFACE OP OF RISER	516.89 516.58		N S	CORE RECOVERY 9	P. P.	
	SAND and GRAVEL (Fill), coarse sand, fine-coarse gravel, well graded, loose		545.00	Concrete				
2	SANDSTONE, fine grained, soft, powder		515.39					
				6" Borehole				
4								
6						:		
				2" PVC Well Casing				
8								
10								
12								
14								
				Bentonite Pellets				
16								
18								
20								
			1					
22	1'44'		1					
24	- little moisture at 23.0ft BGS			Sand Pack	į			
24				Janu rack				
26								
20			ļ	2" PVC Well				
28				2" PVC Well				
20				Screen				
30			486.89			i		
	END OF BOREHOLE @ 30.0ft BGS			WELL DETAILS				
32				Screened interval: 491.89 to 486.89ft AMSL				
				25.00 to 30.00ft BGS				
34				Length: 5ft Diameter: 2in				
				Slot Size: 10 Material: PVC				
36				Sand Pack:				
				494.89 to 486.89ft AMSL 22.00 to 30.00ft BGS				
38				Material: #5 Sand				
İ								
	OTEO. MEADURING BOINT ELEVATIONO MAY	CHANCE: D		CURRENT ELEVATION TARI S	 :	l]	
NC	<u>OTES:</u> MEASURING POINT ELEVATIONS MAY	CITAINGE, R	LLEK IO	CONNEINT ELEVATION TABLE	•			

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1161

DATE COMPLETED: July 24, 2006
DRILLING METHOD: 6" HAMMER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	i	ELEV. ft AMSL	Monitori	ng Well	RUN NUMBER	CORE RECOVERY %	% Q	
	GROUND S TOP C	SURFACE OF RISER	517.30 516.84			N. N.	RECO	RQD	
2	SAND and GRAVEL (Fill)(overburden), coarse sand, fine-coarse gravel, loose				- Concrete				
-2									
-4			512.05						
-6	SANDSTONE, brown, fine grained, soft		312.03						
-8									
-10	- gray sand at 10.0ft BGS				— 6" Borehole				
- 12									
-14									
-16									
-18									
-20					Bentonite Grout				
-22									
-24	- wet at 24.5ft BGS								
- 26									
-28	LIMESTONE, fine grained, cohesive, trace pyrite		490.30					i	
-30					— 2" PVC Well Casing				
-32					— 1/4" Coated Bentonite				
-34					Tablets		i		
36					— Sand Pack				
38									
NC.	OTES: MEASURING POINT ELEVATIONS MAY CHA	NICE: DE	TEED TO 0	I I I I I I I I I I I I I I I I I I I	ATION TABLE	ı			

BEDROCK LOG

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-116I

DATE COMPLETED: July 24, 2006 DRILLING METHOD: 6" HAMMER

FIELD PERSONNEL: J. CLOSE

ELEV. DEPTH CORE RECOVERY 9 ft AM\$L STRATIGRAPHIC DESCRIPTION & REMARKS Monitoring Well RUN NUMBER ft BGS RQD% 42 2" PVC Well Screen 44 46 48 - shale, soft, dark gray at 49.0ft BGS 468.30 END OF BOREHOLE @ 49.0ft BGS WELL DETAILS 50 Screened interval: 481.80 to 471.80ft AMSL 35.50 to 45.50ft BGS 52 Length: 10ft Diameter: 2in Slot Size: 10 - 54 Material: PVC Sand Pack: 484.80 to 468.30ft AMSL 56 32.50 to 49.00ft BGS Material: 20/40 Sand 58 60 -62 -64 8/31/06 -66 20 CRA CORP GDT 8 F 70 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

Page 1 of 1

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

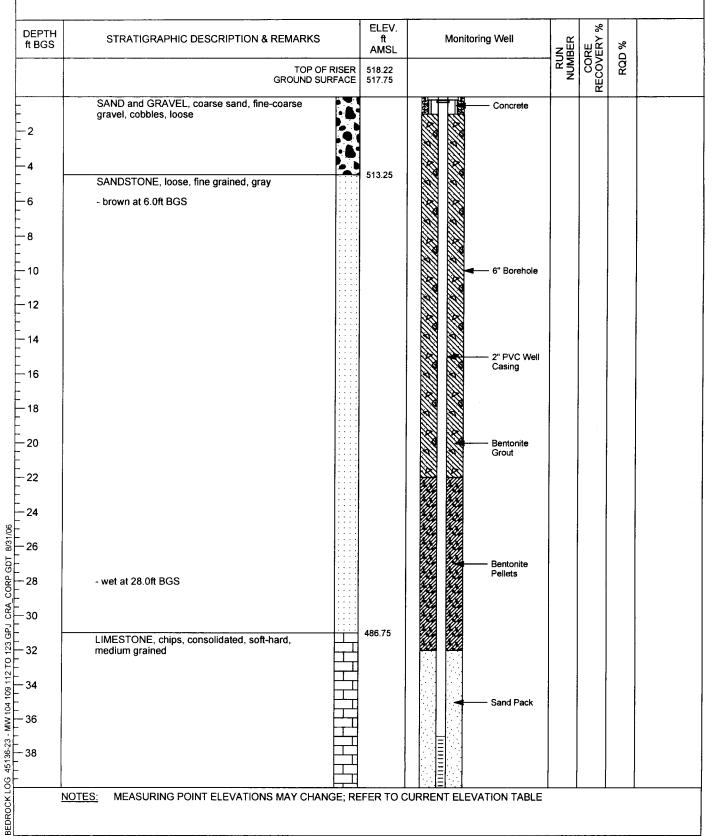
HOLE DESIGNATION: MW-DN-116S

DATE COMPLETED: July 25, 2006
DRILLING METHOD: 6" HAMMER
FIELD PERSONNEL: J. CLOSE

ELEV. **DEPTH** STRATIGRAPHIC DESCRIPTION & REMARKS CORE RECOVERY ft AMSL Monitoring Well RUN NUMBER ft BGS RQD % **GROUND SURFACE** 517.40 TOP OF RISER 517.11 SAND and GRAVEL (overburden) coarse Concrete sand, fine-coarse gravel - 2 6" Borehole 6 511.40 SANDSTONE, gray, fine grained, loose 2" PVC Well 8 10 - orange from 11.0 to 12.0ft BGS 12 - gray at 13.0ft BGS 14 **Bentonite** Pellets 16 - 18 -20 - 22 Sand Pack -24 8/31/06 - 26 2" PVC Well Screen GDT CORP - 28 489.40 - limestone at 28.0ft BGS END OF BOREHOLE @ 28.0ft BGS WELL DETAILS Screened interval: -30 494.40 to 489.40ft AMSL 랾 23.00 to 28.00ft BGS Length: 5ft - 32 Diameter: 2in 앋 Slot Size: 10 Material: PVC 109 1 - 34 Sand Pack: 496.40 to 489.40ft AMSL MM - 36 21.00 to 28.00ft BGS Material: #5 Sand 45136-23 -500 **BEDROCK 1** NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION


PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-117I

DATE COMPLETED: July 25, 2006
DRILLING METHOD: 6" HAMMER

BEDROCK LOG 45136-23 - MW 104 109 112 TO 123 GPJ CRA_CORP GDT 8/31/06

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1171

DATE COMPLETED: July 25, 2006
DRILLING METHOD: 6" HAMMER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
-42 -44 -46 -48 -50 -52 -54 -56	SHALE, black END OF BOREHOLE @ 48.0ft BGS	470.75 469.75	WELL DETAILS Screened interval: 480.75 to 470.75ft AMSL 37.00 to 47.00ft BGS Length: 10ft Diameter: 2in Slot Size: 10 Material: PVC Sand Pack: 485.75 to 469.75ft AMSL 32.00 to 48.00ft BGS Material: #5 Sand		Σ.		
60						V	
64							
-68							
70							
72 74 76 78							

BEDROCK LOG

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-118S

DATE COMPLETED: July 25, 2006 DRILLING METHOD: AIR ROTARY FIELD PERSONNEL: C. PINTER

ELEV. DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS RUN NUMBER CORE RECOVERY Monitoring Well ft AMSL ft BGS RQD % **GROUND SURFACE** 516.38 TOP OF RISER 516.13 Overburden cleared by air knife Concrete - 2 514.38 SANDSTONE, orange/brown, dry 6" Borehole -6 - gray, moist at 6.0ft BGS 2" PVC Well Casing 8 -10 12 14 Bentonite Pellets 16 18 20 22 Sand Pack 24 - 26 2" PVC Well 46136-23 - MW 104 109 112 TO 123 GPJ CRA, CORP GDT 3 GPJ 3 G Screen - wet at 27.0ft BGS 483.38 LIMESTONE, light gray, wet 481.38 END OF BOREHOLE @ 35.0ft BGS WELL DETAILS Screened interval: 493.38 to 483.38ft AMSL 23.00 to 33.00ft BGS Length: 10ft Diameter: 2in Slot Size: 10 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-118S

DATE COMPLETED: July 25, 2006

DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: C. PINTER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
-42			Material: PVC Sand Pack: 493.38 to 481.38ft AMSL		RE		
-44			23.00 to 35.00ft BGS Material: #7 Sand				
- 46							
- 48							
- 50							
- 52							
-54							
- 56							
- 58							
-60							
-62							
-64							
- 66							
-68							
-70							
-72							
76							
- 66 - 68 - 70 - 72 - 74 - 76 - 78							
, 0							
NOTI	ES: MEASURING POINT ELEVATIONS MAY CHANGE; F	REFER TO C	URRENT ELEVATION TABLE	L			

BEDROCK LOG 45136-23 - MW 104 109 112 TO 123 GPJ CRA_CORP GDT 8/31/06

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-119I

DATE COMPLETED: July 26, 2006
DRILLING METHOD: 6" HAMMER

EPTH t BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	;	ELEV. ft AMSL	Monitori	ng Well	N N N N N N N N N N N N N N N N N N N	RE ERY %	% (
	GROUND S TOP O	URFACE OF RISER	518.45 517.97		,	RUN	CORE RECOVERY %	RQD %	
2	SAND and GRAVEL (overburden)				Concrete				
0	SANDSTONE, fine grained, loose, light brown, soft		512.45		Oli Davahala		7 7 7 88		
2	- gray from 10.5 to 13.5ft BGS				— 6" Borehole				
6	- brown from 13.5 to 15.0ft BGS - gray at 15.0ft BGS				— 2" PVC Well Casing				
8	- wet at 18.0ft BGS		498.45		— Bentonite				
2 4	LIMESTONE, chips, medium-coarse grained, gray		430.43		Grout		·		
5	- water bearing zone from 28.0 to 33.0ft BGS				— Bentonite Pellets				
1 1 5					─ Sand Pack				
8					– 2" PVC Well Screen				

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1191

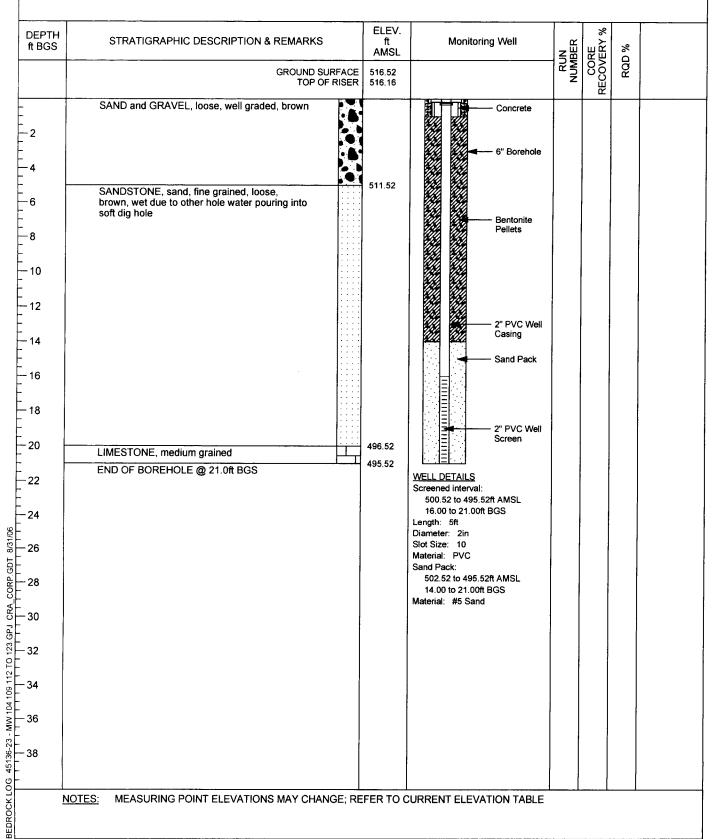
DATE COMPLETED: July 26, 2006
DRILLING METHOD: 6" HAMMER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN NUMBER	CORE RECOVERY %	RQD %	
				ž	REC		
-42	SHALE	476.45					-
-44	END OF BOREHOLE @ 43.0ft BGS	475.45	WELL DETAILS Screened interval: 486.45 to 476.45ft AMSL				
-46			32.00 to 42.00ft BGS Length: 10ft Diameter: 2in				i
-48			Slot Size: 10 Material: PVC Sand Pack:				
-50			488.45 to 475.45ft AMSL 30.00 to 43.00ft BGS Material: #5 Sand				
-52 -54							
-56							
- 58							
-60							
-62							
-64							
-66							
- 70							
-72					;		
74						į	
76							
78							
NO ¹	TES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO C	CURRENT ELEVATION TABLE			[

Page 1 of 1

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-119S

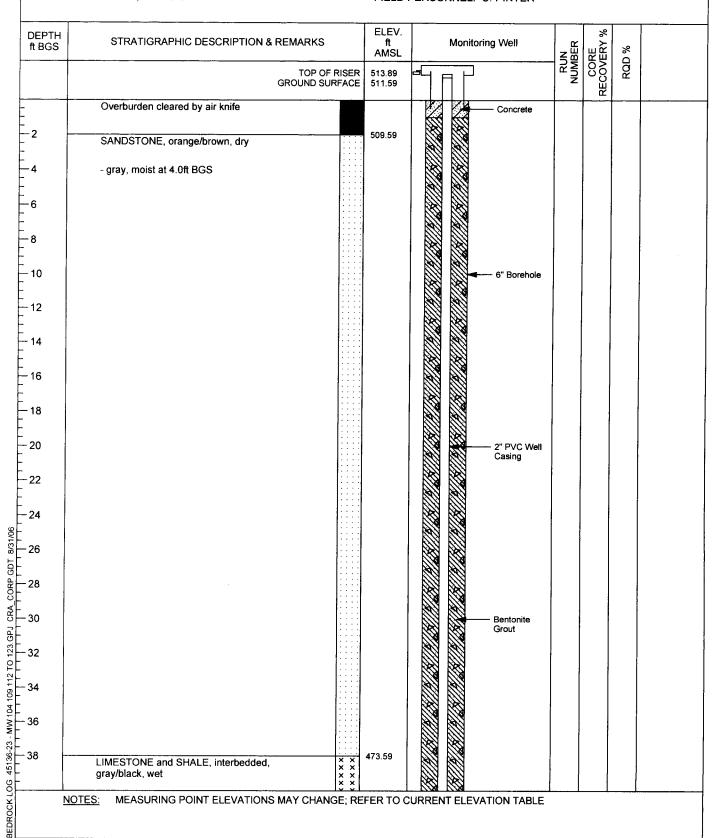
DATE COMPLETED: July 26, 2006
DRILLING METHOD: 6" HAMMER

FIELD PERSONNEL: J. CLOSE

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

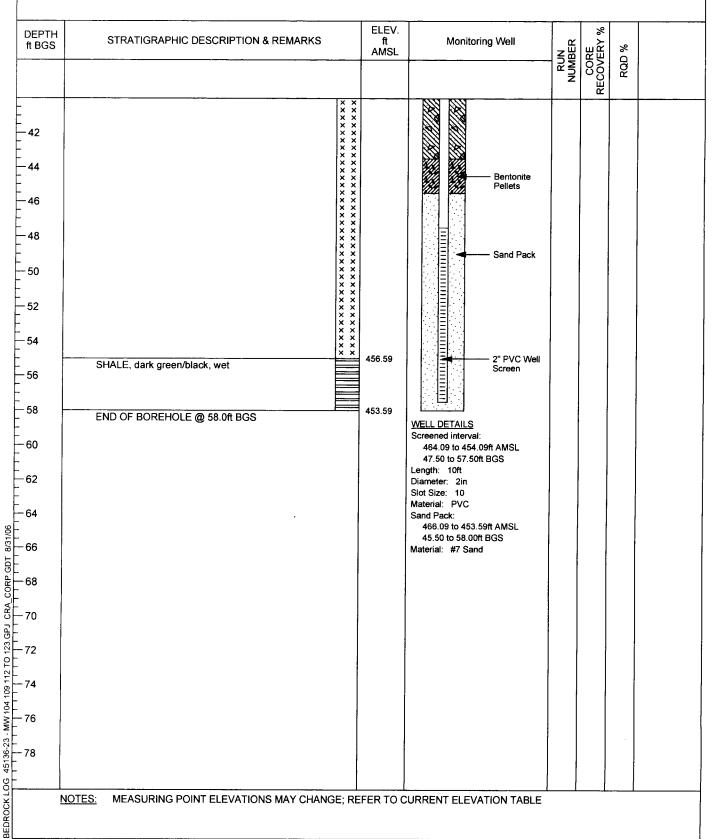
HOLE DESIGNATION:

MW-DN-1201

DATE COMPLETED: July 21, 2006 DRILLING METHOD: AIR ROTARY

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION


PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

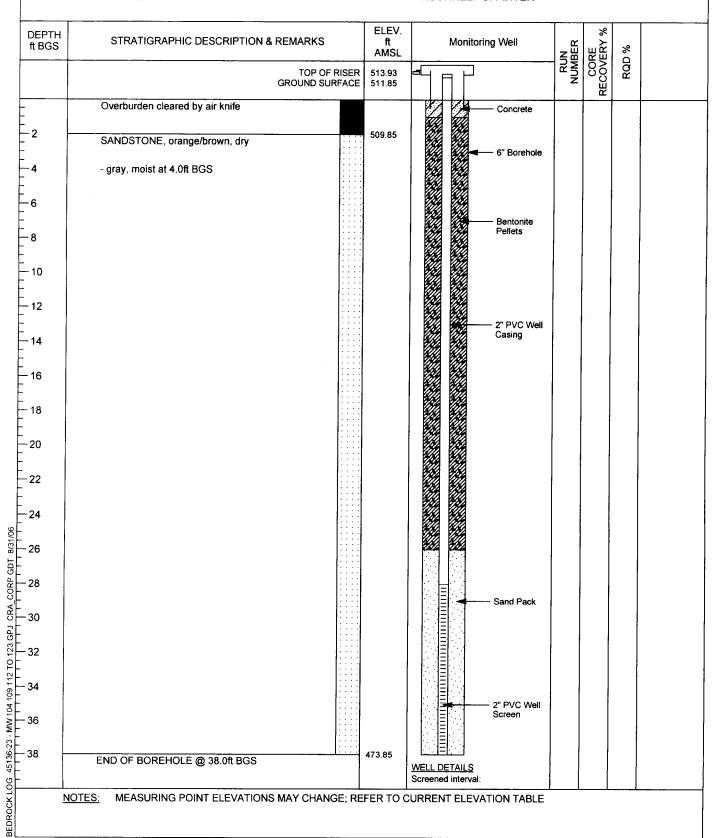
LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1201

DATE COMPLETED: July 21, 2006
DRILLING METHOD: AIR ROTARY

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION


PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-120S

DATE COMPLETED: July 21, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: C. PINTER

BEDROCK LOG 45136-23 - MW 104 109 112 TO 123 GPJ CRA_CORP.GDT 8/31/06

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

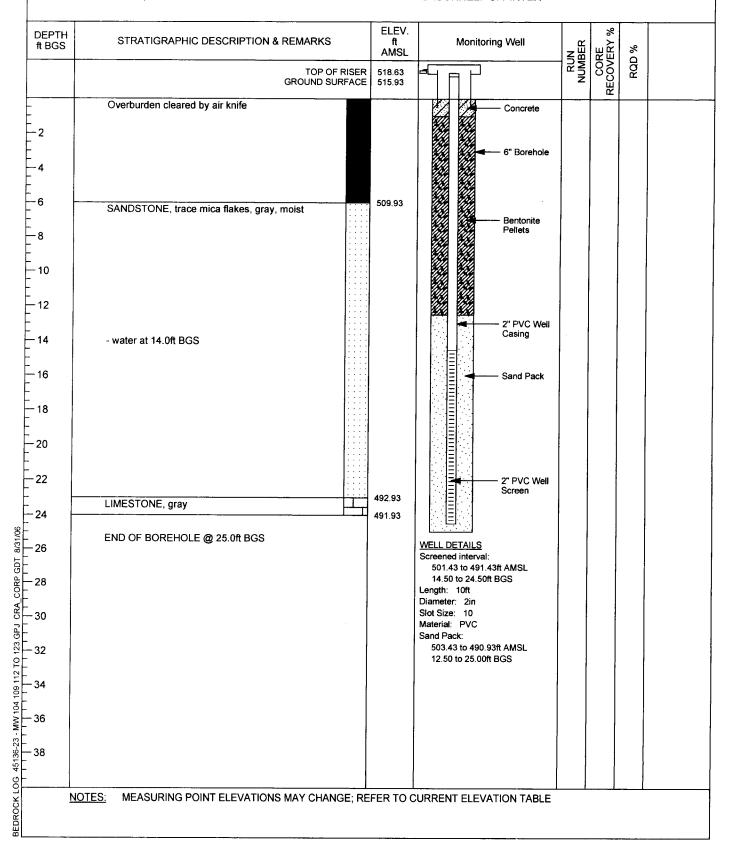
HOLE DESIGNATION: MW-DN-120S

DATE COMPLETED: July 21, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: C. PINTER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
			402.05 12.470.05% 13.00	ž	REC	<u>α</u>	
42			483.85 to 473.85ft AMSL 28.00 to 38.00ft BGS Length: 10ft Diameter: 2in				
44			Slot Size: 10 Material: PVC Sand Pack:				
46			485.85 to 473.85ft AMSL 26.00 to 38.00ft BGS Material: #7 Sand				
48							
50							
52							
54							
56							
58							
60							
62							
64							
66		, , , , , , , , , , , , , , , , , , ,					
68							
70		;					
72							
74							
76							
78							

Page 1 of 1

PROJECT NAME: DRESDEN GENERATING STATION


PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

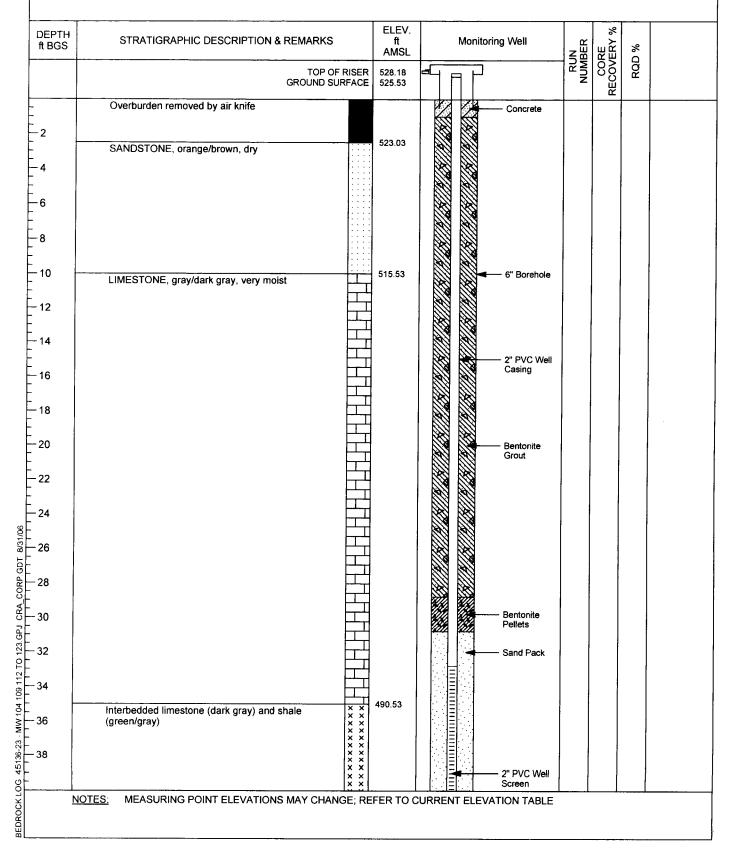
HOLE DESIGNATION: MW-DN-121S

DATE COMPLETED: July 19, 2006
DRILLING METHOD: AIR ROTARY

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1221

DATE COMPLETED: July 19, 2006

DRILLING METHOD: AIR ROTARY

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

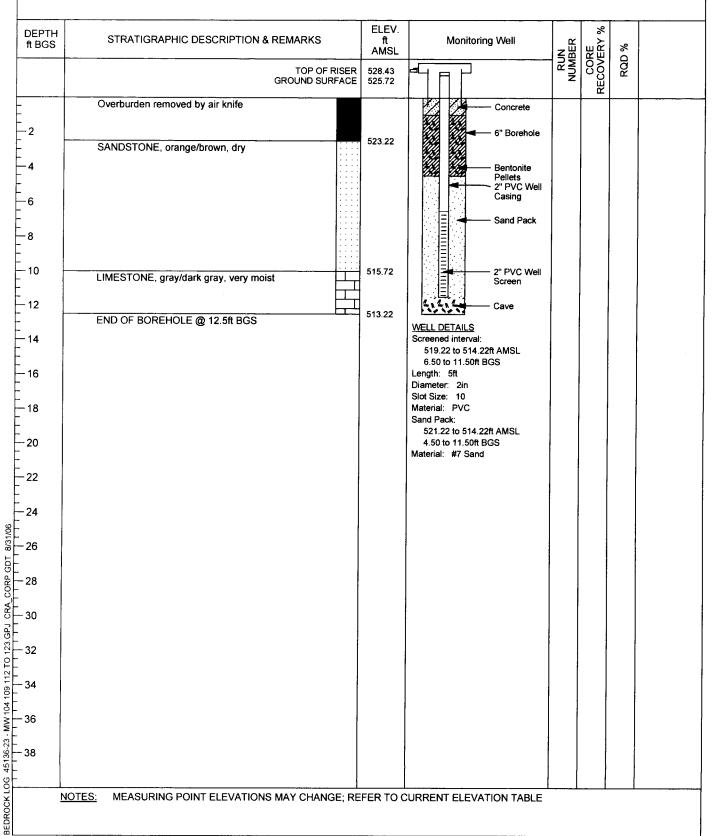
HOLE DESIGNATION: MW-DN-1221

DATE COMPLETED: July 19, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: C. PINTER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %
				N N	RECO	8
-42	SHALE, soft, green/gray	484.53				
- 44	END OF BOREHOLE @ 43.0ft BGS	482.53	WELL DETAILS Screened interval:			
-46			492.73 to 482.73ft AMSL 32.80 to 42.80ft BGS Length: 10ft			
-48			Diameter: 2in Slot Size: 10 Material: PVC			
-50			Sand Pack: 494.73 to 482.53ft AMSL 30.80 to 43.00ft BGS			
-52			Material: #7 Sand			
- 54						
-56						
-58						
-60						
-62						
-64			·			
-66						
-68						
-70						
·72						
74					Ī	
76						
78						
NO1	TES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO C	CURRENT ELEVATION TABLE	<u> </u>	1.	<u>l</u>

Page 1 of 1

PROJECT NAME: DRESDEN GENERATING STATION


PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

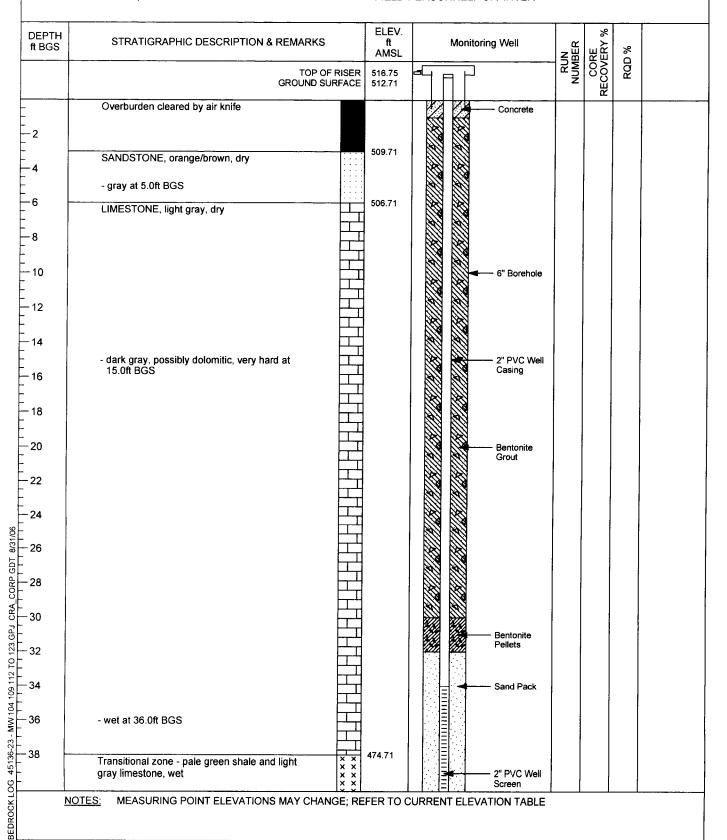
LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-122S

DATE COMPLETED: July 19, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: C. PINTER

Page 1 of 2

PROJECT NAME: DRESDEN GENERATING STATION


PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-1231

DATE COMPLETED: July 24, 2006
DRILLING METHOD: AIR ROTARY

BEDROCK LOG 45136-23 - MW 104 109 112 TO 123 GPJ CRA_CORP GDT 8/31/06

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 2

PROJECT NAME: DRESDEN GENERATING STATION

PROJECT NUMBER: 45136-23

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

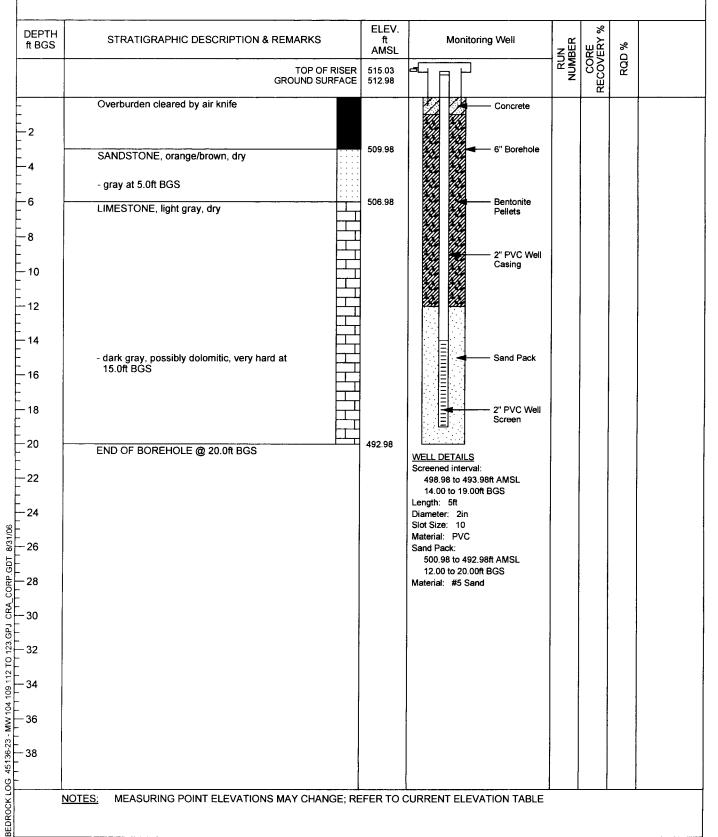
HOLE DESIGNATION: MW-DN-1231

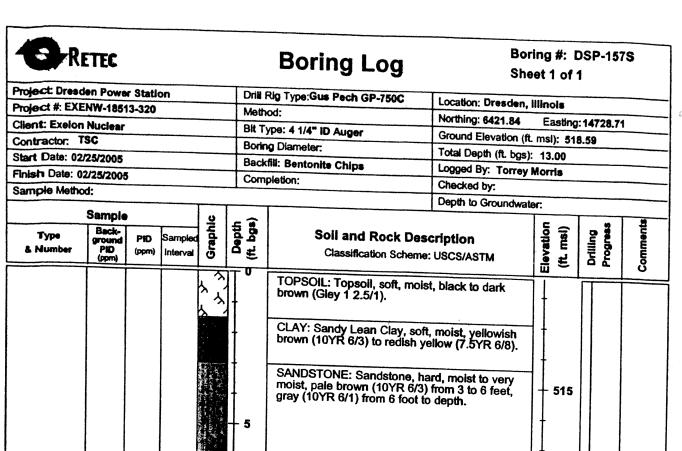
DATE COMPLETED: July 24, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: C. PINTER

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
	× × × × × × ×			ž	REC	<u></u>	
12	× × × × × × × × × × × × × × × × × × ×						
4	END OF BOREHOLE @ 44.5ft BGS	468.21					
.6	END OF BONEFIOLE & 44.01 BGS		WELL DETAILS Screened interval: 478.71 to 468.71ft AMSL 34.00 to 44.00ft BGS				:
8			Length: 10ft Diameter: 2in Slot Size: 10				
0			Material: PVC Sand Pack: 480.71 to 468.21ft AMSL				
2			32.00 to 44.50ft BGS Material: #5 Sand				
6							
8							
0							
2				:			
4							
6							
3							
0							
2							
ı							
5							
,							
				1 1	1	- 1	

Page 1 of 1

PROJECT NAME: DRESDEN GENERATING STATION


PROJECT NUMBER: 45136-23

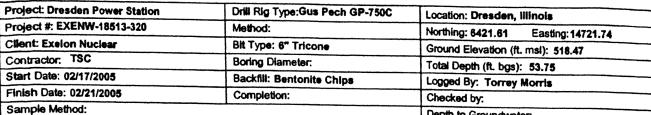

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: MORRIS, ILLINOIS

HOLE DESIGNATION: MW-DN-123S

DATE COMPLETED: July 24, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: J. CLOSE

Remarks and Datum Used:	
The RETEC Group, Inc.	Sample Type
8605 W. Bryn Mawr Ave, Ste. 301 Chicago, IL 60631	SS = Soil Sample
Phone: (773) 714-9900 Fax: (773) 714-9805	



Boring #: DSP-157M

Sheet 1 of 1

Sample

Type Background PID Sampled (ppm) Interval

Number PD Sampled (ppm) Interval

TOPSOIL: Topsoil, soft, moist, black to dark brown (Gley 1 2.5/1).

CLAY: Sandy Lean Clay, soft, moist, yellowish brown (10YR 5/4).

SANDSTONE: Sandstone, hard, moist to wet, pale brown (10YR 6/3) to gray (10YR 6/1).

		+	brown (Gley 1 2.5/1).	1 t	
		† + 5	CLAY: Sandy Lean Clay, soft, moist, yellowish brown (10YR 5/4).	515	;
		† † † 10	SANDSTONE: Sandstone, hard, moist to wet, pale brown (10YR 6/3) to gray (10YR 6/1).	† 510	
		15		505	;
		20	•	500	
		25	LIMESTONE: Limestone, very hard, wet, white	495	
		30	to light gray (5Y 7/1) to pinkish white (7.5YR 8/2), occasional pyrite, clay and sand stringers.	490	
		± 35		485	
		40	- IMPOZONE -	480	
		45	LIMESTONE: Transitional zone, Limestone and Shale interbedding, Limestone (same as above) majority of zone, Shale (weathered small servaral inch thick lenses), hard, wet, pale green (Gley 1 6/2).	475	
i.* h		50	SHALE: Shale, hard, moist to wet, very dard greenish gray (Gley 1 3/1).	470	
				+ 465	
Remarks an	d Datum Used				A (

Remarks and Datum Used:	Sample Type
The RETEC Group, Inc. 8605 W. Bryn Mawr Ave, Ste. 301 Chicago, IL 80831 Phone: (773) 714-9900 Fax: (773) 714-9805	SS = Soil Sample

Boring #: DSP-157D Sheet 1 of 3

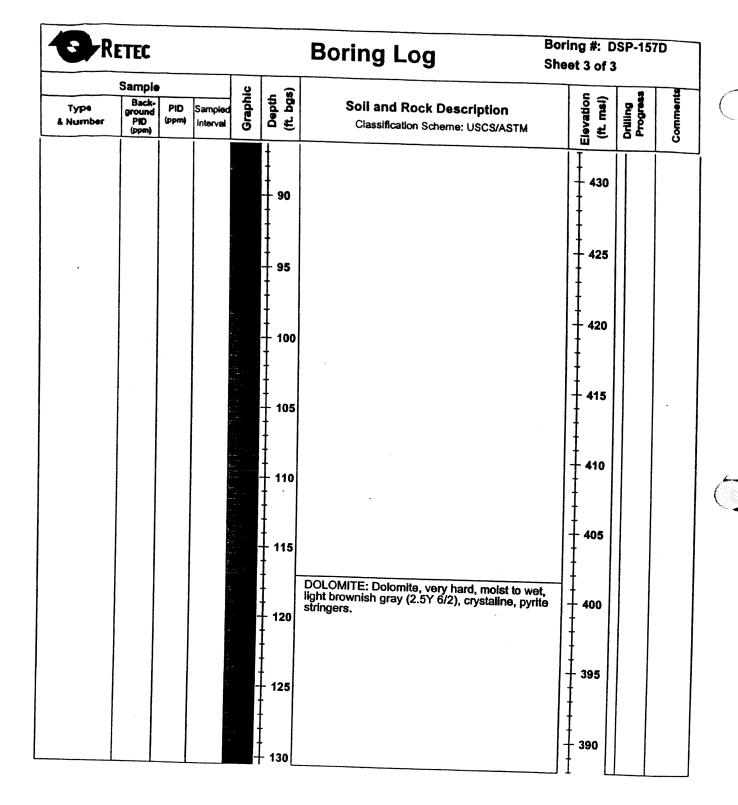
Project: Dresden Power Station	Drill Rig Type:Gus Pech GP-750C	Locality Development
Project #: EXENW-18513-320	Method:	Location: Dresden, Illinois
Client: Exelon Nuclear		Northing: 6420.97 Easting: 14714.44
Contractor: TSC	Bit Type: 8" Tricone	Ground Elevation (ft. msl): 518.46
	Boring Diameter:	Total Depth (ft. bgs): 130.50
Start Date: 02/16/2005	Backfill: Bentonite Chips	
Finish Date: 02/25/2005	Completion:	Logged By: Torrey Morris
Sample Method:	- Compidation.	Checked by:
		Depth to Groundwater:
Commis		

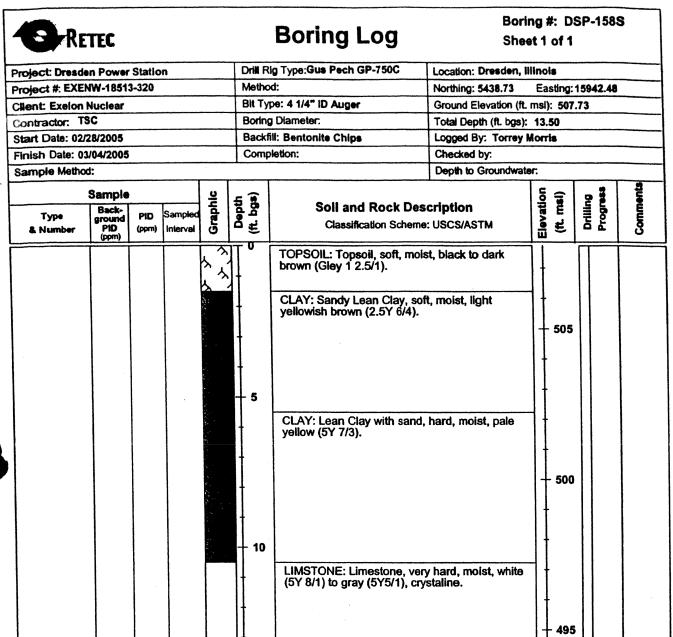
Sample			Sample		_ ~		T			T-
Type & Number	Back- ground PID (ppm)	PID (ppm)	Sampled Interval	S	Depth (ft. bgs)	Soil and Rock Description Classification Scheme: USCS/ASTM	Elevation	(T. mst)	Drilling Progress	
					5	TOPSOIL: Topsoil, soft, moist, black to dark brown (Gley 1 2.5/1). CLAY: Sandy Lean Clay, soft, moist, yellowish brown (10YR 5/4). SANDSTONE: Sandstone, hard, moist to wet, pale brown (10YR 6/3) to gray (10YR 6/1), black mica stringers.	5	15		
					15		50	05		
					25	LIMESTONE: Limestone, hard, wet, white to light gray (5Y 7/1), pyrite, clay stringers.	49	95		
			THE REPORT OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO		30		+ 49 + 48!			

Remarks and Datum Used:

The RETEC Group, Inc.
8805 W. Bryn Mawr Ave, Ste. 301
Chicago, IL 60631
Phone: (773) 714-9900
Fax: (773) 714-9805

Sample Type SS = Soil Sample

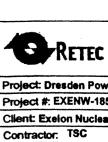




	e				<u>`</u>		eet 2 of		
Type & Number	Back- ground PID (ppm)		Sampled Interval	Graphic	Depth (ft. bgs)	Soil and Rock Description Classification Scheme: USCS/ASTM	Elevation (ft. msl)	Drilling Progress	- transco
& Number	(ppm)	(ppm)	Interval	5	- 40 - 45 - 45 - 50 - 55 - 60 - 65 - 70 - 75	LIMESTONE: Transitional zone, Limestone, Sandstone and Shale Interbedding, Limestone (same as above) majority of zone, Shale (weathered small several inch thick lenses), hard, wet, pale green (Gley 1 6/2), at 41.5 to 42 feet Sandstone lense. SHALE: Shale (weathered), hard, wet, pale green (Gley 1 6/2). SHALE: Shale, hard, wet, very dark greenish gray (Gley 1 3/1).	-	5	83
					+ 80 - - - - - 85		† 		
Remarks and he RETEC Grou 805 W. Bryn Ma hicago, IL 6063 hone: (773) 714	up, inc. iwr Ave, Si	7						Sample SS = Soll	

Remarks and Datum Used:	1
The RETEC Group, Inc. 8605 W. Bryn Mawr Ave, Ste. 301 Chicago, IL 60631	Sample Type SS = Soil Sample
Phone: (773) 714-9900 Fax: (773) 714-9805	
T A. (173) 114-8803	

Remarks and Datum Used:	Sample Type
The RETEC Group, Inc. 8605 W. Bryn Mawr Ave, Ste. 301 Chicago, IL 60631 Phone: (773) 714-9900 Fax: (773) 714-8805	SS = Soil Sample


RETEC		Boring Log	Bor She	SP-15	ВМ			
Project: Dresden Power Station	Drill F	Rig Type:Gus Pech GP-750C	Lacotton Drandon	11111-				
Project #: EXENW-18513-320	Meth		Location: Dresden,					
Client: Exelon Nuclear	Bit Ty	/pe: 6" Air Hammer	Northing: 5442.41		15939.0	8		
Contractor: TSC		g Diameter:	Ground Elevation (ft		7.97			
Start Date: 03/02/2005		fill: Bentonite Chips	Total Depth (ft. bgs)					
Finish Date: 03/02/2005		pletion:	Logged By: Torrey Morris Checked by:					
Sample Method:								
Comple	T		Depth to Groundwat	er:		·		
Type Back- ground PID (ppm) Sampled Interval	Graphic Depth (ft. bgs)	Soil and Rock Des Classification Scheme		Elevation (ft. msl)	Drilling Progress	Comments		
	10 	TOPSOIL: Topsoil, soft, mois brown (Gley 1 2.5/1). CLAY: Sandy Lean Clay, soft brown (2.5Y 6/4). CLAY: Lean Clay, stiff, moist (5YR 6/8) to gray (Gley 1 6/N) (Gley 1 4/N), laminated. LIMESTONE: Limestone, ver moist, crystaline, light gray (Gley 1 6/N) 11 to 22 feet bgs gray (Gley 1 8/1) to white (Gle 22, small very dark gray (Gle stingers from 11 to 22 feet bg	redish yellowish redish yellow to dark gray y hard, dry to very Sley 1 7/N) to gray s, light greenish ey 1 8/N) below	505 500 495 490 485 480 475 470				

Remarks and Datum Used:	Sample Type
The RETEC Group, Inc. 8605 W. Bryn Mawr Ave, Ste. 301 Chicago, IL 60631	SS = Soil Sample
Phone: (773) 714-9900 Fax: (773) 714-9805	

LIMESTONE: Transitional zone, Limestone and Shale interbedding, Limestone (same as above) majority of zone, Shale (weathered small several inch thick lenses), hard, wet, pale green (Gley 1 6/2).

SHALE: Shale, hard, moist to wet, very dark greenish gray (Gley 1 3/1).

455

Boring #: DSP-158D

Sheet 1 of 3

Project: Dresden Power Station	Drift Rig Type:Gus Pech GP-750C	Location: Dresden, Illinois			
Project #: EXENW-18513-320	Method:	Northing: 5448.08 Easting: 15934.92			
Client: Exelon Nuclear	Bit Type: 8" & 6" Air Hammer	Ground Elevation (ft. msl): 507.79			
Contractor: TSC	Boring Diameter:	Total Depth (ft. bgs): 135.00 Logged By: Torrey Morris Checked by:			
Start Date: 02/25/2005	Backfill: Bentonite Chips				
Finish Date: 03/03/2005	Completion:				
Sample Method:	Depth to Groundwater:				

Sample	Sample v a				2
Type Back-ground PID Sampled PID (ppm) Interval	유 a 로	Soil and Rock Description Classification Scheme: USCS/ASTM	Elevation (ft. msl)	Drilling Progress	Comments
		TOPSOIL: Topsoil, soft, moist, black to dark brown (Gley 1 2.5/1).] †		
	+ 5	CLAY: Sandy Lean Clay, moist, soft, light yellowish brown (2.5Y 6/4).	505		
	- 10	CLAY: Lean Clay, hard, moist, dark gray (Gley 1 4/N), some Limestone pieces mixed in clay.	500		
	15	LIMESTONE: Limestone, very hard, dry to wet, light gray (Gley 1 7/N) to gray (Gley 1 6/N), crystaline, fossils can be seen in larger cuttings.	495		
	+ 20		490		
	25		485		
	+ 30		480		
	35		475		
·F	+ 40		470		

The RETEC Group, Inc. 8605 W. Bryn Mawr Ave, Ste. 301 Chicago, IL 60631 Phone: (773) 714-9900 Fax: (773) 714-9805

Remarks and Datum Used:

Sample Type SS = Soil Sample

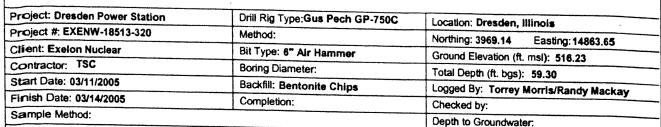
RETEC					1 14 15 14 15 1 6 7 17 1	Boring Sheet		SP-158	D	
Type Background PID (ppm)		Sampled Interval	Graphic	Depth (ft. bgs)	Soil and Rock Description Classification Scheme: USCS/ASTM		(ft. msl)	Drilling Progress	Comments	
Remarks and Datum U	7				LIMESTONE: Transitional zone, Limestone as Shale interbedding, Limestone (same as abowith color change to light greenish gray (Gle 8/1)), Shale (weatherd small several inch thilenses), hard, wet, pale green (Gley 1 6/2). SHALE: Shale, hard, wet, very dark greenish gray (Gley 1 3/1).	and ove y 1 ck	- 465 - 460 - 455 - 450 - 445 - 440 - 435 - 420 - 425	Gample T		
Chicago, IL 80631 Phone: (773) 714-9900 Fax: (773) 714-9805	e. 301 -								-	

	RETEC					RETEC						Boring Log	Boring #: Sheet 3 c		P-158	D
		Sample			2	- îs		ç		2	캺					
	Type & Number	Back- ground PID (ppm)	PID (ppm)	Sampled Interval	Graphic	Depth (ft. bgs)	Soil and Rock Description Classification Scheme: USCS/ASTM	Elevation	(ft. msi)	Drilling Progress	Comments					
				Acceptable Control of the Control of		95			* *							
	·					† † † 100			05							
						105			00							
						110			95							
						+ + 115 + +			90							
)						† † 120 †			85							
					ATT ATT ATT	† + 125	DOLOMITE: Dolomite, very hard, moist to w light brownish gray (2.5Y 6/2), crystaline									
					を発える。	† + 130			80							
					6 · 3 · 4 · 5 · 4 · 5 · 4 · 5 · 4 · 5 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6	† 135			75							

	Remarks and Datum Used:	Sample Type	
•	The RETEC Group, Inc. 8605 W. Bryn Mawr Ave, Ste. 301 Chicago, IL 60631	SS = Soil Sample	
	Phone: (773) 714-9900 Fax: (773) 714-9805		

Boring #: DSP-159S Sheet 1 of 1

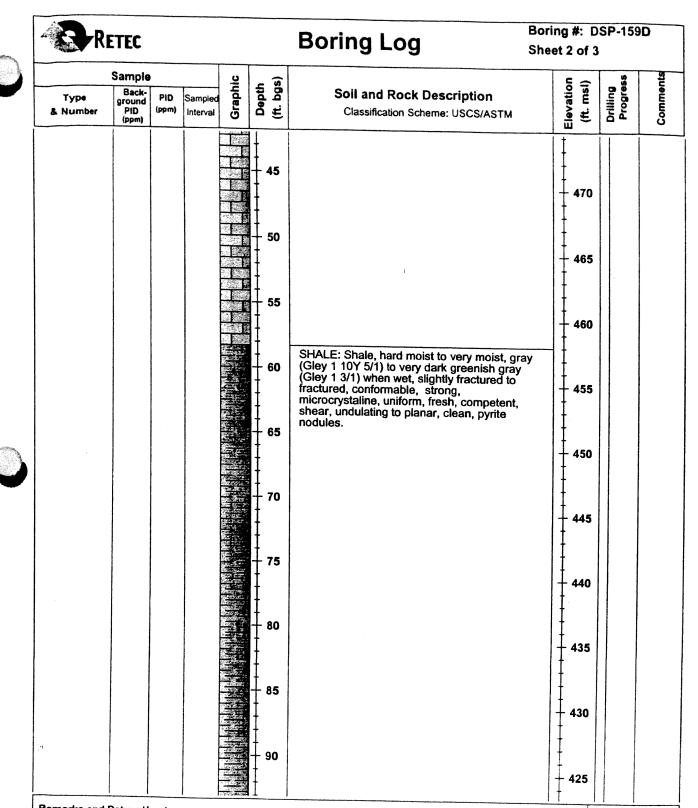
Project: Dresden Power Station	Drill Rig Type:Gus Pech GP-750C	Location: Dresden, Illinois				
Project #: EXENW-18513-320	Method:	Northing: 3962.1 Easting: 14862.98				
Client: Exelon Nuclear	Bit Type: 3 1/4" ID Auger	Ground Elevation (ft. msl): 516.27				
Contractor: TSC	Boring Diameter:	Total Depth (ft. bgs): 16.00 Logged By: Torrey Morris Checked by:				
Start Date: 03/04/2005	Backfill: Bentonite Chips					
Finish Date: 03/07/2005	Completion:					
Sample Method:	Denth to Groundwater					

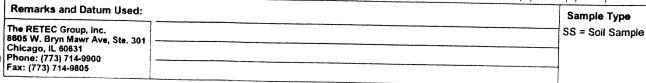

arripic receio	J.	 				Depth to Groundwal	er:				
Type & Number	Sample Back- ground PID (ppm)	 Sampled Interval	Graphic	Depth	ط (ft. bgs)	Soil and Rock Description Classification Scheme: USCS/ASTM	Elevation	(ft. msl)	Drilling	Progress	Comments
					U	FILL: Fill	+	515			
					5	CLAY: Sandy Lean Clay, soft, very moist, yellowish brown (10YR 5/4).		510			
					10	LIMESTONE: Limestone, hard, wet, white (5Y 8/1) to gray (5Y 5/1), crystaline.		505			
					15						

Remarks and Datum Used:	Sample Type
The RETEC Group, Inc. 8605 W. Bryn Mawr Ave, Ste. 301	SS = Soil Sample
Chicago, IL 60631 Phone: (773) 714-9900 Fax: (773) 714-9805	

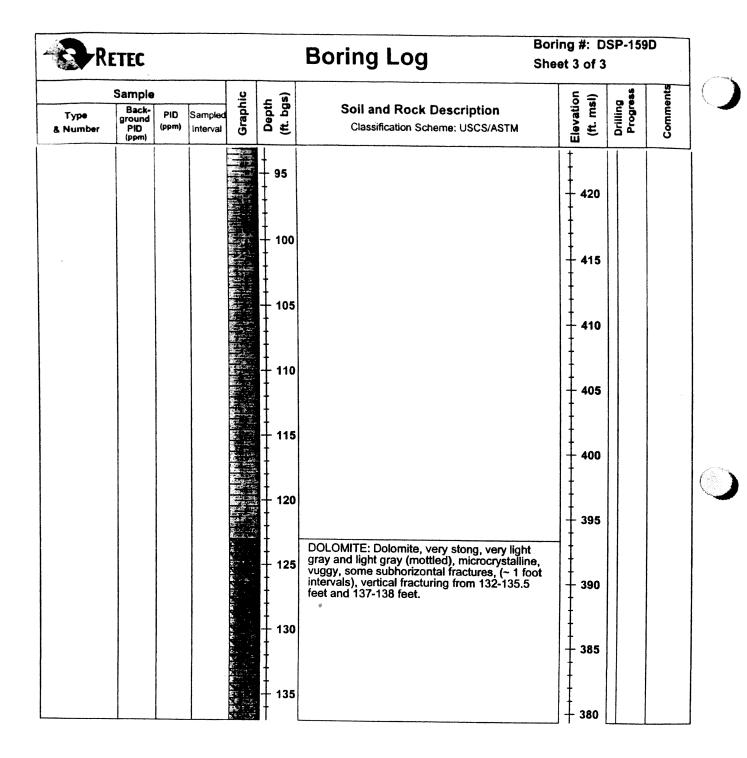
Boring #: DSP-159M Sheet 1 of 1

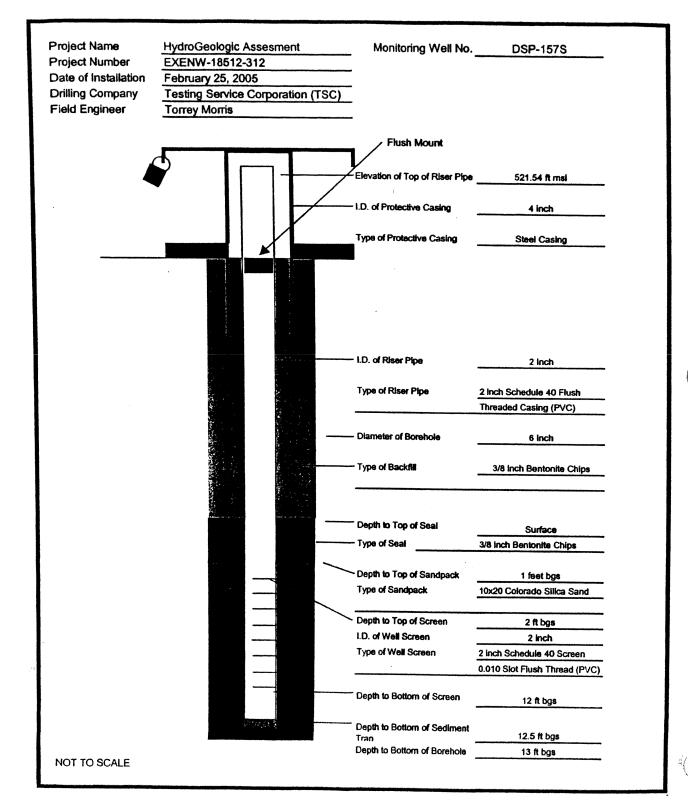
l		
Remarks and Datum Used:	Sample Type	1
The RETEC Group, Inc. 8605 W. Bryn Mawr Ave, Ste. 301 Chicago, IL 60631	SS = Soil Sample	
Phone: (773) 714-9900 Fax: (773) 714-9805		


Boring #: DSP-159D Sheet 1 of 3


Project: Dresden Power Station	Drill Rig Type:Gus Pech GP-750C	Location: Dresden, Illinois				
Project #: EXENW-18513-320	Method:	Northing: 3978.34 Easting: 14863.78				
Client: Exelon Nuclear	Bit Type: 8" & 6" Air Hammer	Ground Elevation (ft. msl): 516.32				
Contractor: TSC	Boring Diameter:	Total Depth (ft. bgs): 137.00				
Start Date: 03/07/2005	Backfill: Bentonite Chips	Logged By: Torrey Morris/Randy Mackay Checked by:				
Finish Date: 03/14/2005	Completion:					
Sample Method:	Depth to Groundwater:					

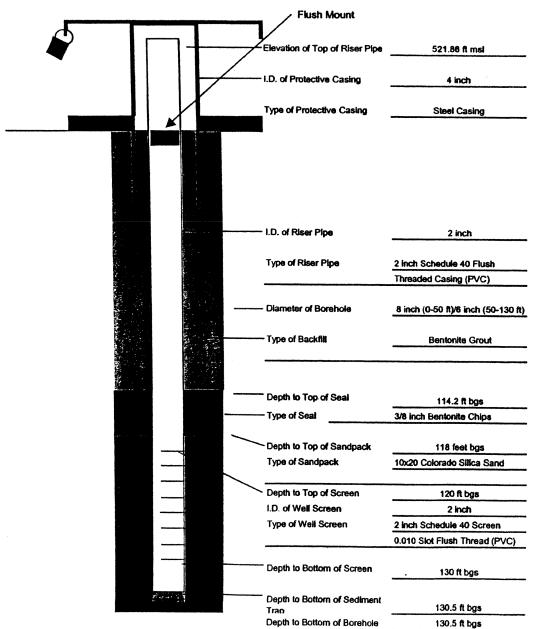
Sample Graphic Elevation (ft. msl) Depth (ft. bgs) Back-ground PID (ppm) Soil and Rock Description Type PID Sampled Classification Scheme: USCS/ASTM & Number Interval (ppm) FILL: Fill 515 510 CLAY: Sandy Lean Clay, soft, very moist, yellowish brown (10YR 5/4). 10 LIMESTONE: Limestone, light blueish gray (Gley 2 7/1), with white (Gley 1 8/1) speckles, texture is microcrystaline to fine grained, conformable, dry, small Shale lenses thoughout dark blueish gray (Gley 2 4/1) to pale green (Gley 1 6/2), fractured, pyrite stringers 505 15 500 20 495 25 490 30 485 480 40


Remarks and Datum Used:	Sample Type
The RETEC Group, Inc. 8605 W. Bryn Mawr Ave. Ste. 301	SS = Soil Sample
Chicago, IL 60631 Phone: (773) 714-9900	
Fax: (773) 714-9805	



Remarks and Datum Used:	Sample Type
The RETEC Group, Inc. 8605 W. Bryn Mawr Ave, Ste. 301	SS = Soil Sample
Chicago, IL 60631 Phone: (773) 714-9900	
Fax: (773) 714-9805	

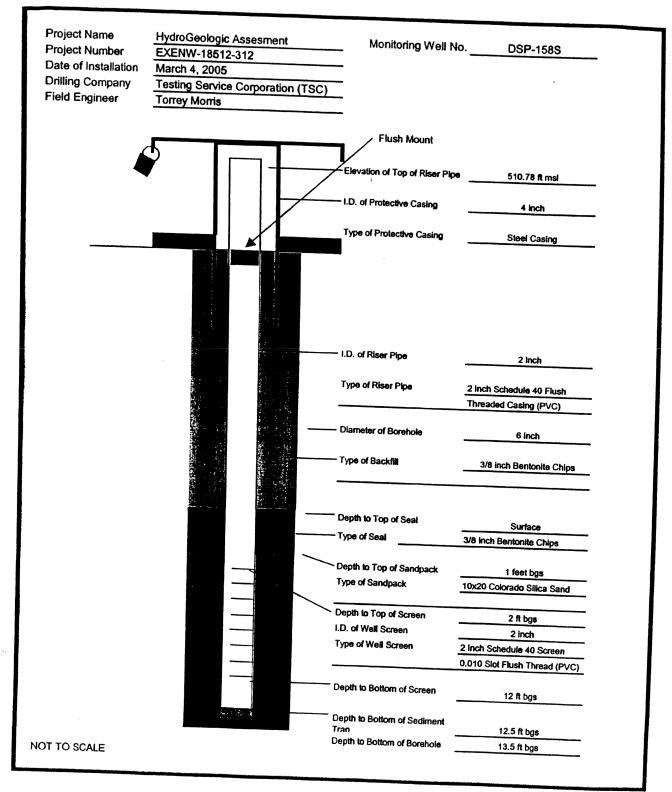
Project Name HydroGeologic Assesment Monitoring Well No. Project Number DSP-157M EXENW-18512-312 Date of Installation February 21, 2005 **Drilling Company** Testing Service Corporation (TSC) Field Engineer **Torrey Morris** Flush Mount Elevation of Top of Riser Pipe 521.80 ft msl I.D. of Protective Casing 4 inch Type of Protective Casing Steel Casing I.D. of Riser Pipe 2 inch Type of Riser Pipe 2 inch Schedule 40 Flush Threaded Casing (PVC) Diameter of Borehole 6 inch Type of Backfill Bentonite Grout Depth to Top of Seal 33 ft bgs Type of Seal 3/8 inch Bentonite Chips Depth to Top of Sandpack 35.5 feet bgs Type of Sandpack 10x20 Colorado Silica Sand Depth to Top of Screen 38 ft bgs I.D. of Well Screen 2 Inch Type of Well Screen 2 inch Schedule 40 Screen 0.010 Slot Flush Thread (PVC) Depth to Bottom of Screen 48 ft bgs Depth to Bottom of Sediment 48.5 ft bgs Depth to Bottom of Borehole NOT TO SCALE 53.75 ft bgs



Project Name **Project Number** Date of Installation **Drilling Company** Field Engineer

HydroGeologic Assesment EXENW-18512-312 February 25, 2005 Testing Service Corporation (TSC) **Torrey Morris**

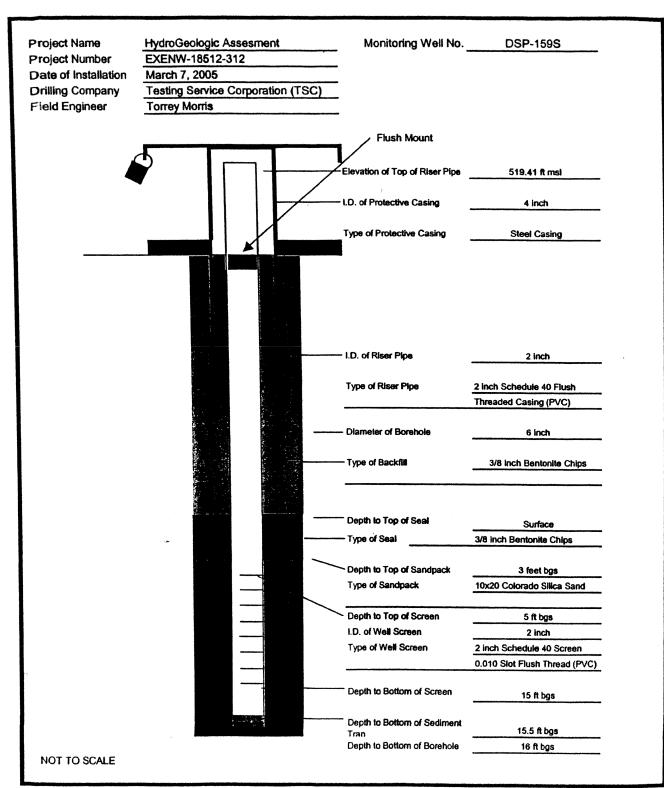
Monitoring Well No. DSP-157D



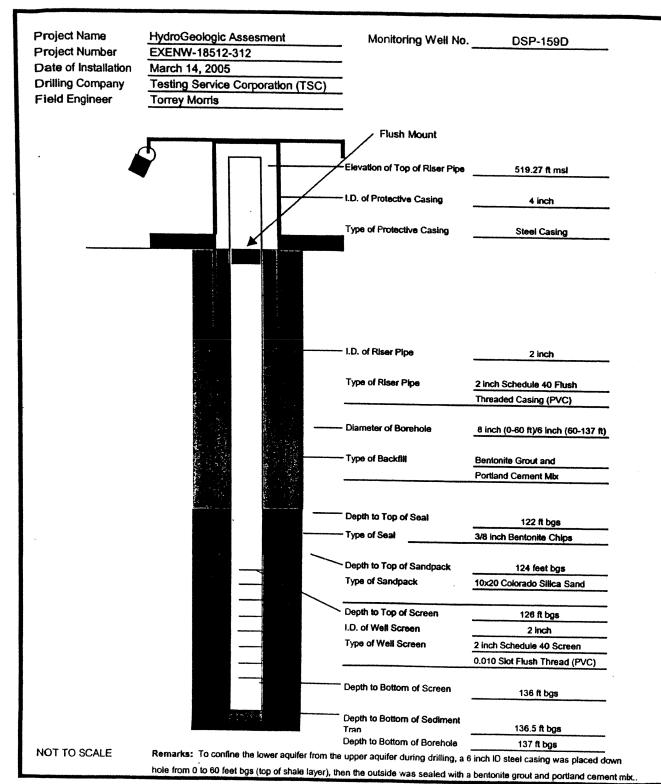
NOT TO SCALE

Remarks: To confine the lower aquifer from the upper aquifer during drilling, a 6 inch ID steel casing was placed down

hole from 0 to 50 feet bgs (top of shale layer), then the outside was sealed with bentonite grout.


Project Name Project Number Date of Installation Drilling Company Field Engineer	HydroGeologic Assesment EXENW-18512-312 March 2, 2005 Testing Service Corporation (TSC) Torrey Morris	Monitoring Well No.	DSP-158M
		/ Flush Mount	
		1/	
4		ZElevation of Top of Riser Pipe	510.64 ft msl
	" /	-I.D. of Protective Casing	4 inch
		Type of Protective Casing	Steel Casing
		-	
			0 lash
		I.D. of Riser Pipe	2 inch
		Type of Riser Pipe	2 inch Schedule 40 Flush
			Threaded Casing (PVC)
		Diameter of Borehole	6 inch
		Damois of Doronord	
		Type of Backfill	Bentonite Grout and
			Portland Cement mbx
		Depth to Top of Seal	41 ft bgs
		Type of Seal	3/8 inch Bentonite Chips
		Depth to Top of Sandpack	43.5 feet bgs
		Type of Sandpack	10x20 Colorado Silica Sand
		Depth to Top of Screen	46 ft bgs
		I.D. of Well Screen	2 inch
		Type of Well Screen	2 Inch Schedule 40 Screen
			0.010 Slot Flush Thread (PVC)
		Depth to Bottom of Screen	56 ft bgs
	67 E 50 EA	Depth to Bottom of Sediment	56.5 ft bgs
		Tran Depth to Bottom of Borehole	57.5 ft bgs
NOT TO SCALE		Topal to Detail of Dorolloid	

Project Name HydroGeologic Assesment Monitoring Well No. **Project Number DSP-158D** EXENW-18512-312 Date of Installation March 3, 2005 **Drilling Company** Testing Service Corporation (TSC) Field Engineer Torrey Morris Flush Mount Elevation of Top of Riser Pipe 510.39 ft msl I.D. of Protective Casing 4 inch Type of Protective Casing Steel Casing I.D. of Riser Pipe 2 inch Type of Riser Pipe 2 Inch Schedule 40 Flush Threaded Casing (PVC) Diameter of Borehole 8 inch (0-57 ft)/6 inch (57-135 ft) Type of Backfill Bentonite Grout and Portland Cement Mix Depth to Top of Seal 121 ft bgs Type of Seal 3/8 inch Bentonite Chips Depth to Top of Sandpack 123 feet bgs Type of Sandpack 10x20 Colorado Silica Sand Depth to Top of Screen 125 ft bgs I.D. of Well Screen 2 inch Type of Well Screen 2 Inch Schedule 40 Screen 0.010 Slot Flush Thread (PVC) Depth to Bottom of Screen 134.5 ft bgs Depth to Bottom of Sediment 135 ft bgs Depth to Bottom of Borehole NOT TO SCALE Remarks: To confine the lower aquifer from the upper aquifer during drilling, a 6 inch ID steel casing was placed down hole from 0 to 57 feet bgs (top of shale layer), then the outside was sealed with bentonite quickgel and portland cement mix.



4			
Project Name	HydroGeologic Assesment	Monitoring Well No.	DSP_150M
Project Number	EXENW-18512-312	-	DOF-100M
Date of Installation		-	
Drilling Company	Testing Service Corporation (TSC)		
Field Engineer	Torrey Morris	-	
-	A distribution of the second o	-	
ı		/ Flush Mount	
ı	1	1/	
1		Elevation of Top of Riser Pipe	519.37 ft msi
		Libraria. 15p J. Lange	318.37 K Hist
	I -/	I.D. of Protective Casing	4 inch
l	$\mathbf{I} \cup \mathbf{I} \mathbf{V}$	tible of Française Consideration	7 HRAL
l		Type of Protective Casing	Steel Casing
<u> </u>			Older Charles
k		-	
A			
A .			
A			
A		•	
A			
A		I.D. of Riser Pipe	2 inch
1			
(Type of Riser Pipe	2 inch Schedule 40 Flush
(Threaded Casing (PVC)
(٤
		- Diameter of Borehole	6 inch
1		· · · · · · · · · · · · · · · · · · ·	
1		Type of Backfill	Bentonite Grout
1			
1	<u></u>	Depth to Top of Seal	
		Type of Seal	43.75 ft bgs
t		- Type or Sear	3/8 Inch Bentonite Chips
1		Depth to Top of Sandpack	AR Fraktiss
1		Type of Sandpack	46 feet bgs
1		Type or cerepeon	10x20 Colorado Silica Sand
1		Depth to Top of Screen	48 ft bgs
1		I.D. of Well Screen	2 inch
1		Type of Well Screen	2 inch Schedule 40 Screen
1		Type or true date	0.010 Slot Flush Thread (PVC)
1			0.010 SIOL FIUSH THEBAU (1 VC)
1		Depth to Bottom of Screen	58 ft bgs
1		•	20 II UJ9
1	(1 m of 1 m	Depth to Bottom of Sediment	
1		Tran	58.5 ft bgs
NOT TO SCALE		Depth to Bottom of Borehole	59.3 ft bgs
1401 10 00, 122			
4			

APPENDIX B

WATER SUPPLY WELL INVENTORY

PRIVATE/PUBLIC WATER SUPPLY WELL LOCATIONS

(Withheld)

TABLE B.1

Comments													Inundated by Dresden cooling lake				
Source of Information	7			2	. ~	2	2	2	2	2	. 2		1 1	2	2	2	6
Gradient																	٠.
Well Depth (ft bgs)	1499	275	8	203	383	788	706	35.	113	105	157	190	95	197	203	190	188
Direction	•	South	South	East	South	West	South	West	West	West	West	South		1		. .	ı
Approximate Distance From the Site (ft)		5100	1000	1000	300	1100	006	2800	1000	2000	400	200		•	•		1
Address	On-Site	V/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Well Owner	Dresden Nuclear Power Station					General Electric Co	Reichhold Chem Inc						Goose Lake Sch.		State of Illinois		5
County Well ID	Grundy 908	Grundy 1154	Grundy 1336	Grundy 1337	Grundy 1509	Grundy 1519	Grundy 1525	Grundy 1769	Grundy 1770	Grundy 1777	Grundy 1782	Grundy 1784	Grundy 1788	Grundy 1999	Grundy 2000	Grundy 2001	Grundy 2010

Сотіненія									-								
Source of Information	. 7	2	2	2	7	2		2		2	2	7	. .	. ~			2
Gradient										ř							
Well Depth (ft bgs)	240	237	164	204	200	200	146	267	114	210	200	38	. 592	S	145	100	245
Direction .	South	West	West	ı	South	South	South	South	•	West		ſ	West	West	East	East	East
Approximate Distance From the Site (ft)	1000	1000	2000		200	300	200	300		1500		. '	300	2800	1500	1500	300
Address	N/A	N/A	N/A		N/A	A/N	N/A	N/A		N/A			<u>\$</u>		A/X	N/A	N/A
Well Owner										Reichhold Inc		Tri-County Well & Pump					
County Well ID	Grundy 2011	Grundy 2012	Grundy 2013	Grundy 2014	Grundy 2019	Grundy 2020	Grundy 2021	Grundy 2022	Grundy 2024	Grundy 22367	Grundy 22428	Grundy 22583	Grundy 22585	Grundy 22793	Grundy 22795	Grundy 22796	Grundy 22804

Connents											,						
	•																
Source of Information	-	2	7	2	2	1		2	2			1	. ["	7		, pref	
Gradient								,					,				
. Well Depth (ft bgs)	. 125	165	300	230	82	385	220	290	460	167	3	200	287	300	280	400	78
Direction	South	East		East	West	West	South	West	West	South	West	West	South	West	West	South	South
Approximate Distance From the Site (ft)	4500	1800	ı	1200	100	. 700	1000	1200	006	. 700	500	3000	1100	1400	200	200	200
Address		N/A	On-Site	A/X	N/A	MOTTS, 1L	CIB, IL	W/N	N/A	CHYTE	and the second		City, IL	N/A	Morris IL		C117, 12
Well Owner			National Concrete Unit		Schmitt, Frank & Claudette				Dresden Nuclear Power Plant			All (
County Well ID	Grundy 22928	Grundy 22948	Grundy 23159	Grundy 23313	Grundy 23493	Grundy 23526	Grundy 23548	Grundy 23550	Grundy 23556	Grundy 23603	Grundy 23663	Grundy 23768	Grundy 23769	Grundy 23861	Grundy 23974	Grundy 24054	Grundy 24244

TABLE B.1

	Comments					Inundated												
Source of	Information	1	. 2		2.			1		-		1	1		1	1	Ţ.	1
	Gradient																	
Well Depth	(k p8s)	909	205	. 280	320	130	125	95	810	95	775	260	502	175	105	380	380	305
	Direction	South	South	West	West		Southeast	South	Southeast	South	North	Northeast	East	East	Southeast	North	North	North
Approximate Distance From the	Site (ft)	4700	200	1800	400	,	0001	200	13400	300	2800	2700	2300	0089	7500	200	200	200
	Address	CIP, IL	N/A	Morris, IL	N/A		N/A	A/N .	N/A	N/A	۷/۷.	N/A	ar troughment.	N/A	N/A	٧/٧	A/N	N/A
	Well Owner						1811		Des Plaines Game Farm	Lorenzo Store	Ulinois Dept. of Conservation	Illinois Dept. Of Conservation						
County	Well ID	Grundy 24338	Grundy 24381	Grundy 24430	Grundy 24461	Will 672	Will 695	Will 696	Will 1209	Will 1669	Will 24931	Will 25594	Will 27909	Will 27922	Will 27923	Will 28332	Will 28332	Will 28375

Comments																	
Source of Information	1	1	. 1	п	1		,	1	1	1		1	1	1		F.	1
Gradient											•						
Well Depth (ft bgs)	213	. 029	35 .	180	645	340	110	300	74	545	100	445	165	88	156	420	180
Direction	Southeast	Southeast	Southeast	East	North	South	Southeast	Northeast	East	North	Northeast	North	Northeast	South	Southeast	Northeast	North
Approximate Distance From the Site (ft)	10000	10700	11200	1400	300	400	0098	2500	.2300	200	2400	200	2600	300	9200	2000	200
Address	Ň/A	. V V	N/A	mmmigron, 1L		A/N	Y/Z	Wilmington, IL	Wilmington, IL	wunungton, IL	T.	Wilmington, IL	Wilmington, IL	N/N	WEITENBROWFIE	Winimigron, 12	Winnungton, 1L
Well Owner						Abia.					House Of Radiators						
County Well ID	Will 28396	Will 28445	Will 28844	Will 29116	Will 30362	Will 31229	Will 31230	Will 34472	Will 34899	Will 35954	Will 36613	Will 36689	Will 36795	Will 36875	Will 37132	Will 37160	Will 37497

	Comments					.*												
Source of	Information	₽.	Ħ	1	, i d	-		1	1		,		1		,			-
	Gradient											-						
Well Depth	(s\$q tf)	. 580	946	. 009	009	300	420	110	009	520	625	. 605	312	009	200	320	. 990	645
. -	Direction	South	East	Southeast	South	East	South	North	Southeast	Southeast	Southeast	Southeast	South	Southeast	Southeast	South	Northeast	Southeast
Approximate Distance From the	Site (ft)	200	2300	0006	2800	2300	200	200	10700	10400	10500	9500	100	10200	10600	1500	1400	8600
	Address	Wilmington, IL	TI Junior III	Wilmington, IL	wmmngton, IL	winnington, IL	N/A	minurgion, IL	71 200 9 100	windington, IL	vvmnurgron, 1L	11	Wilmington, 1L	Wilmington, 12	Wilmington, IL;	wilmington, IL.	Wumungton, IL	N/A
-	Well Owner																	
County	Well ID	Will 37529	Will 37939	Will 38148	Will 38149	Will 38213	Will 28238	Will 38376	Will 38443	Will 38718	Will 38785	Will 38910	Will 38915	Will 39297	Will 39433	Will 40232	Will 40428	Will 40430

SUMMARY OF PRIVATE/PUBLIC WATER WELLS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Comments							
Source of Information	, ,		÷	П.	-	1.	-
Gradient							
Well Depth Direction (ft bgs)	620	520	320	009	425	180	165
Direction	Southeast	North	North	Northeast	North	North .	North
Approximate Distance From the Site (ft)	10800	200	200	300	200	200	200
Address	N/A	Transporting II	Changian Branch	Tr. tuesday		TL SHOW WATER	
Well Owner			Service .				
County Well ID	Will 40914	40917	Will 41189	Will 41399	Will 41398	Will 41459	Will 41578

Notes:

This listing is a summary of wells within approximately 2 miles of the Dresden nuclear generating station.

- Sundance Environmental and Energy Specialists Ltd., January 31, 2006

- Illinois State Geological Survey Online Well Data
N/A - Not available.

TOWN ditch juncture. Rg E AUTHORITY Drill Hole DATE DRILLED

<u>•</u> . ∫	TRATA	Thickn	ENS .	Name of	
		Peet	ln.	Pepth Feet	In
Peat	•	7	6		
Clay, peaty	', greun	3		3	6
Treate of co	A 1	3	6	. 7	1
Clay, dark	gray, plastic	1	1 _ 1	7	
Jovan Doney			3	7	3
Clay, light	STAY above,	<u> </u>	2	7	5
AMT VOT DET	JW. With Anna	ł	i /	1	
j wholugh ir	Acture .	_		Į	
Coal	j	3	10	11	3
Clay, dark	YERV /	1)	9	13	•
Ulay, dendy	shale wared	1	6	14	6
	i and oala- i			1	_
Cray, se abo)Ve but wi+ኤ	5 /	11	20/	5
rraces or c	ATROPPAGGUE	- }	į	- 1	
matter and	thin sandy	!	i	Ì	
her ridea		. !		- 1	
Herd sandy z	one	1	L	21 6	;
Shale, dark	to light and	3	5	21 3	
With sandy	to light gray zones of 1"	1	į		
00 0	i		į ·		
Hard Sray Zor	ne /	11 5	1 .	33 2 34 1	:
onale, dark	to light and	. 1	1	34 1	
" - was seened to a	709aa 30 a ba	9 5	İ	ļ	
THE STEEL	. R.I. Otto v	9 5	ĺ	43 6	
The sand	Iness amout			1	
PJ + + VGD Stre	als near	.	ļ		
bottom	1	8 6	ļ	ا م	
Ant		م ام	ļ	52	
(2)(MIY No. 578	ĺ	İ		

PLEVATION COLLECTOR

CONFIDENTIAL.

11-33N-8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Water Well	·			Top	Botton
soil			,	0	3
yellow clay			•	3	19
limestone-shale				. 19	39
shale			:	39	110
soapstone .			ė	110	130
Total Depth			:	•	. 130
					· .
		•			.i
			i		
Driller's Log filed		,	i		•
•	•		i	•	
			i		•
•			Ì		ı
		•	į		i
			ĺ		i .
			!		:
					!
					1
•			.		
			1		1
			!		1 .
				٠	ļ
•					İ
Permit Date:		Permit #	. 0		
COMPANY			: :		
PARM			į		
DATE DRILLED January 1, 1948		NO.	}		
ELEVATION 510GL	COIN	TY BO. 00672	:	→ I :-i	- 5 1 4

API 121970067200

COUNTY Will

Water Wall			Top	Bottom
soil			0	. 2
gravel			2	15
blue clay			15	23
limestone			23	61
shale	•		61	95
limestone			95	125
Total Depth				125
		•		
	•		ļ	
Driller's Log filed				!
			Ì	
	•			
				1.
			İ	
		•		!
	•			
		•		
Permit Dete:	·	Permit 0: 0	<u> </u>	<u> </u>
COMPANY				
PARM DRILLED January	W)	•		

COUNTY NO. 00695

ELEVATION 0

LOCATION 300'N line, 300'E line of section

LATITUDE 1

LONGITUDE

COUNTY Will

API 121970069500

17 - 33N - 9E

Township Tilmington MAPN 21 Eardwell, Jr.
HONETT T.F. Anderson
NATION 530 ľ . HOLE No. 1/W LECTOR H.E.C. DATE DRILLED ME NE Jan. 15, 11d1

STRATA	T'1 a='-	Salue R	184	Dayy	=
	Elev.	Part	; <u>in</u>	Ficer	
Cond to be made uses	£ 0.2.				
Sand & hard pan	503	27	!	: 27 j	
Shale, green	498	5		32	
Shale	485	13	į :	45	
Shell rock, hard	435	50	: i	95	
Casing 4E' of 7".		,			
COUNTY	ic 696		:		
				ļ	
	}	•	, :		
				l !	
	!		' }	İ	
	!		. !	Ī	
sk1 5+6426 - *	88 A \$4	3 ·4-1 i	:	; 	
		;	i i		
म्हिल्. हा	;		Ì	ļ	
	į	į		· [
		. :	ļ	!	
	; 1	.!		i	
•	:	į	: :	.	
	<u>:</u>	į	:		
<i>ξ</i> ,	;	1	;	İ	
O ENVELOPE		:	i		
Listation L	- !	1	Ì	- 1	

voty Will RILL RECORD

Page 1 ILLINUI:	SSTATI	g Geologi	CAL S	URVEY	
Water Well			!	Тор	Potton
Total Depth			;		149
•			:		
•					i
					į .
Oriller's Log filed Survey Sample Study filed			ļ		
Sample set # 30332 (0' - 7)	85'1		1	•	
Sample set # 56258 (0° - 1	500.)				: ;
•			.		
	•		!		
	Ÿ		1		
			Ì		ŀ
•			i		
			.		•
			j		:
•			:		!
·					
•			i		1
	. •		į		
		•	į	•	
					-
ermit Date:		Permit	9 : 0		
COMPANY Wehling Well Wo.	rks Inc.				
'ARM Dresden Nuc Pow	Sta				
DATE DRILLED January 1, 19	57	NO. 1		- - 	
CLEVATION 510GL		NTY NO. 009	08		
OCATION 690 N line. 240 ATITUDE 41.387750		f section DE - 8 <mark>8</mark> .2696	39		
COUNTY Grundy	API	1206300908	900	35 - 34	N - 8E

CLOAN INTU Lusting Meith ng يايا 39285€ 4579431.9 520 Divine Township Felix R. BE Company Farm. Illinois Clay Products Go. Sec. Authorn Summary Sample Study 30 N Elevation520 top. map Collector Confidential Date Driller 100's 1700's State of 1 strate Payne, June Fle 37 1 No samples, no record PROPRIETAR SYSTER 71 71 Lohewkian series dalena formation Dolomite, white to light i brown, to tam, medium, vesicular 44 1 Dolomite, tan to buff to 115 white, medium, shely surfaces; clay, white, dolomitic, smooth 10 125 Colomite, light buff, medium, vesicular 60 Dolomite, light buff, 185 medium, vesicular, slightly cherty; clay, green Dolomite, slightly cherty, 190 light buff, medium 20 Decored for action 210 Lolomite, light buff to gray, shaly surfaces; shale, brown 25 Shale, calcareous, brown; 235 dolomite, brown to light buff, shaly surfaces Alatteville formation 10 245 Dolomite, light brown to buff, fine to medium, shaly surfaces at base Dolomite, brown to buff to 35 280 J gray, fine, slightly cherty 10 Dolomite, pantly angilla-290

COUNTY Grundy Sample Set #329 10-33N-8E

TOWN
COMPANY
FARM
AUTHORIT
AUTHORIT
AUTHORIT
AUTHORIT
COLLECTOR H. E. C.
DATE DRILLED

HLL RECORD

SEE 6

September 18, 1920

Yo.	Comment of the second	- CP CP (III)	er 18.	1920	بننا
	2	PRATA	Elev.	Tauce yes	
	Surface Soapstone Sand rock,h Shale, hard Linestone,	(Mag?) Galena	500	20 56 4 60 160	20 76 80 140 300
	6 foot Casing: 113° of 27° of		ized.		
1 3	Easting 95507.05	Herthing 457795	j -	512.	
<u> </u> 					
	O ENVELOPE				
_r G	rundy				1

Index No. 0613

. con arriver, N. Y. Muster tol bolot in favor Petrone, FORM (00000)

Grundy UNTY

INDEX NO. 0614

ILL RECORD 579-LEM-10-10)

illinois geological survey, urbana

14-33N-8E

ible Tools	Phintown	Dept.	<u></u> -
Studied by T.C. Buschbach 9/49	Post	ho. Fatt	\$a.
ei sivalite everei	20	20	;
"Sand"	20	31.	
"Clay"	1 <u>1</u>		;
"Sand"	2	36	
ASILYATAN SYSTEM	20	75	
"Shale"	39	83	}
alimestone"	8	85	
"Shele"	2 16	101	:
"Sandstone"		164	1
ⁿ Shale ^s	63	104	1
DOMICIAL SISTE	•		•
Galena formation	6	170	
"Limestone"		10	:
Dolomite, very calcareous, white	 .	•	£
light buff, fine to medium, cry-			ĺ ,
stalline; grades to limestone,			[
dolomitic, white, sublithographi	105	275	;
to coarse, fossiliferous	105	12	;
			:
			i

a country Summary Sample Study

sarion 550' T.M (set)

900' S. line, 70' E. line of Section

UNDY

S.S. #5633

W111

COUNTY

	Тор	Bottom
s,wh-orn,fmd,tr crs.subangr-subrndd,inco	. 0	6
si,calc.orm,tgh:dol,vy sty,grm,vfly xlm	6	j 10
shale,dolc,sty,bf,wk;dol,as abv,brn-grn	10	İ 25
shale, dolc, sty.grn-gry.wk:dol as abv	! 25	. 40
shale,dolc,sty.bf,wk:dol,gry,vy fly xln	; ; 40	: 50
sh.dolc.sty,gry;dol.sty,bf,gry,vfly xln	50	75
sh,calc,sty.bf-gry,wk;ls,bf,lthog-f xln	. 75	110
ls.vy pyrc.sty.gry.subl,f xln.mtld.fosf	110	: 140
ls.med xln;dol,sty,calc,brn,f xln,si	140	145
sh.sty.calc.brm,wk;si.dolc-calc.brn;ls,x	145	165
shale, sty, calc. brn, weak; si, as above	165	170
si.vy calc,bf-gry,brit,grdg to ls.sty,lt	170	175
sh.sty,calc,brn,wk;ls,bf.vy f-f xln;si	175	229
dol,sty,calc,bf,fmd,vf xln,grdg ls,dolc	229	250
dol,as above,red-brn sh ptg,grdg to ls	250	275
dol,sty,pyrc,buff,f-med,vy f xln	275	290
ls.pyrc.sty.dolc.bf.wh.vf xlm.grdg dol	290 .	315.
dol, as above, grading to ls, as above	315 j	320
dol,calc,sty,bf,f,f-med xln,orn dolc cmt	320	395
ls,colc,sty.buff,f-med xln,blk,rd spkld	395	420
dol,calc.sty.buff.f xln,trc chert	420	465
ls,doc,bf,lithog,vt f xln,grdg to dol	465	470
dol,calc,gry-wh,vy f xln.mtld	470	490
dol.brn,buff.vy f xln.mtld	490	560
Pormit Date: Permit #: 0	<u> </u>	
COMPANY Layne Western Co., Inc.	117	T
PARM TO THE PARM T	- -	
DATE DRILLED January 1, 1961 NO. 1		+-
ELEVATION 552ES COUNTY NO. 01209		
LOCATION 1650'N line 500 B line of section	.] [

API 121970120900

22 - 33N - 9E

ng milinang an ingganggan manganggan		 		
		į	1	
		:		
dol,calc,buff-gray,vy f x	dn,mtld	:	560 Ì	578
ss,wh.vf-med,trc crs.rndd	l-subrodd, frstd	•	578	590
.ss,wh.f-med,trc crs,rndd-	subradd, frosted	į	590	655
ss. as above		;	655	690
ss. as above		•	690 [!]	720
ss,dolc,sty.trc crs,rndd/	sub, frstd, incoh	•	720	810
medium white sandstone		•	810	813
Total Depth		;		810
		i	ì	

Driller's Log filed Survey Sample Study filed Sample set # 39950 (0° - 810°)

Additional Lot , subdivision. location info:

Address of well:

Location source:

Layne Western Co., Inc.

COUNTY Will

API 121970120900 22 - 33M - 9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Water Well	Тор	Bottom
.s.#9826 0' - 90'	o o	(
oil, rock & clay	0	20
imestone	20	. 40
rown sandstone	. 40	. 62
hale	62	90
otal Depth		90
Casing: 4.5° PIPE from 0' to 33'		ĺ
lize hole below casing: 4.5°	•	
later from shale at 0° to 90°.		ļ
tatic level 10' below casing top which is 0' above GL pumping level 0' when pumping at 12 gpm for 22 hours willer's Log filed ample set # 9826 (0' - 90')		
ample Set # 9020 (0 - 90)		i
	•	
		İ
		;
: -	•	
		İ
	•	
ermit Date: June 16, 1943 Permit #: 0		1
COMPANY		
YARM		
DATE DRILLED June 24, 1943 NO.		
COUNTY NO. 01336	; ;	

API 120630133600

COUNTY Grundy

35 - 34N - 8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

***			T
Water Well	· · · · · · · · · · · · · · · · · · ·	Top	Bottom
Total Depth			203
Driller's Log filed			
			1
		j ·	1
		1	
•			
		1 1	ļ
	•	İ	
	•	į	
		!	!
		!	i i
	·		
		:	
		i	j .
•			
		i	ŧ
ermit Dete:	Permit 9:0	•	
COMPANY	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
YARM (1)			
DATE DRILLED January 1, 1920	BIO .		
	COUNTY NO. 01337		
CLEVATION 508GL COCATION SW SW	4 .		
	ITUDE		
COUNTY Grundy A		•	

ILLINOIS STATE GEOLOGICAL SURVEY

	=======================================		: :===
Water Well		Top	Botton
Total Depth		!	383
Driller's Log filed		İ	I ·
Sample set # 55591 (5' - 383')			
		1	
		1	į
,			
•		İ	
		. "	!
	•	İ	
		!	
·			: !
			ļ
		į ·	I
•			
			ļ
			Ι
·			
		1.	1
*.			ı
	ú		
		İ	!
Permit Date:	Pormit #: 0	:	<u> </u>
COMPANY Wehling Well Works Inc.			
YARM			
	. 1	 	++-
ELEVATION 0 COUNTY NO	01509		
LOCATION LONGITUDE			
	0150900	35 - 36	M - AE
COUNTY GIGHTS API 14063	0130300	JJ - J6	~

Water Well		······································			Top	Bottom
Total Depth					· • · · · · · · · · · · · · · · · · · · ·	788
		•	•	•	;	! i
		-				
						•
			, ·			:
					į ·	
Driller's Log filed					-	
200						•
					·	i
						}
•						!
					j	•
					;	
						į
					į	ľ
					,	
•						
•					•	!
•					:	
					İ	!
						ļ
					İ	-
•						•
					}	1
					i	!
Permit Date:			Permi	t # 1 0		
COMPANY Wehling Well Works		· · - · · ·	-			1 1
FARM General Elec Co						
DATE DRILLED October 1, 1968			NO.			
ELEVATION SOSTM	CO	UNTY	NO. 019	19	_ i	
LOCATION NE SE SE						
	NGIT	JDE -	88.2697	706	L	≟
COUNTY Grundy	API	120	630151	900	35 - 34	N - 8E

ILLINOIS STATE GEOLOGICAL SURVEY The second secon Bottom Water Well Top 706 Total Depth Driller's Log filed Sample set # 56231 (45' - 706')

COMPANY Layne Western Co., Inc.

PARM Reichhold Chem Inc

DATE DRILLED February 1, 1969 NO. 1

ELEVATION 0 COUNTY NO. 01525

LOCATION 95'N line, 1120'W line of NW.

LATITUDE, 41.388514 LONGITUDE - 88.303102

API 120630152500

COUNTY Grundy

34 - 34N - 8E

LATITUDE

COUNTY Will

ILLINOIS STATE GEOLOGICAL SURVEY

Water Woll	<u> </u>	Тор	Bottom
soil	,	o o	:
gravel		2	
clay - Nigger heads		4	14
hardpan	•	10	. 40
clay .		40	4
gravel		48	. 5
shale	:	58	, 8
limestone & shale		89	, 9
Total Depth	:		j 9
	. :		; i .
	i	i	
·			
			1
Driller's Log filed			l į
•			1
			:
•			i
			į
	•		t
			:
			1.
·			
	•	i i	į
,		:	:
Permit Date:	Permit #1 0	<u>:</u>	!
COMPANY			<u> </u>
FARM			 - -
	STO .		- - · ·
	90. 01669		
LOCATION SE SW SE		:	

API 121970166900

ILLINOIS STATE GEOLOGICAL SURVEY

rage i			====		===
Water Well		<u> </u>		Тор	Bottom
Total Depth					j 94
				.]	1.
				1	1
		,			i
	•				
				i	
			•	ļ	.
				i I	
	•				. !
		•			
				, .	
•			·		:
					j
				÷.	
				.	'
				;	
	•				
				ļ	
	•				
Permit Date:	* * <u>(* 11 </u>	<u> </u>	Permit 8	* 0	
COMPANY					
PARM					
DATE DRILLEI	November 1, 1		NO.	 - -	
ELEVATION 0	<i>3</i>	COUNT	Y NO. 01769	1 A T	
LOCATION N	W SE SE				
LATITUDE		LONGITUDE			33W - 0=
COUNTY Gr	mga.	API 12	2063017690	0 3 -	33M - 8E

SHEET 2 T. 33N R. BE a. COMPANY HOLE NO. PARM Illinois Clay Products Oxole No.

Ma.	Strate	Thickness	Depth	
		Post In	Pest	Len
	coous, gray to brown to			1 -
	buff	1 -		
	Dolomite, gray to brown to	! 5	295	
	buff, fine, compact			
:	Dolomita light book	10 .	305	
	Dolomite, light buff to	:		
	brown, fine, compact	20	325	
:	Lolomite, grayish brown to	•	, 555	
Ą	compact	65	990	
- 1	lenwood formation			
- !	Dolomite, silty, sandy,		,	
		10 '	400	
- 1	*************************************	10	400	
i	6-41 SAUGSTODA, white		i	
	* * 110	3:0	1	
j	Dolomite as above; shale,	10	410	
	sandy, gray		1	
]	Colomite, silty, buff,	10	420	
	very fine	ſ	!	
7	On on the	5	425	
-	Clomite, sandy, buff to g	ŀ	;	
	D^G] BANGETONA, White		i	
- :	TING TO CORTEG. Incohamant	10	435	
ج ر	AGTA! BITICA" GAMMA	5 :		
142	NED Series	₩,	440	
٦t	· Feter formation	,		
S	andstone, dolomitic, light			
1	gray, very fine to coarse		i	
S	andstone, white, very fine	25	465	
	to coarse, incoherent		}	
1	and theoreter !	35	500	
		·	ł	
	•			
1			1	
	<u> </u>		1.	
1			1	
	1	1 1	1	
1	٠ ا ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠	1 1	Ì	

COUNTY Grundy Sample Set #329 10-3311-8E

Page 1

ILLINOIS STATE GEOLOGICAL SURVEY

Water Well			Top	Bottom
Total Depth				113
Driller's Log filed			j	<u> </u> .
			:	•
			į	İ
•				ĺ
			•	Ì
	•		İ	
•		•	:	į
				i İ
			i ·	
	•			
			·	
				!
•			;	İ
				İ
		•	İ	
		,		
•				j
				j
•			İ	-
Permit Date:	· · · · · · · · · · · · · · · · · · · ·	Permit 0: 0	<u> </u>	<u> </u>
COMPANY			[.;] <u>.</u>	
PARM		•		
DATE DRILLED December 1, 1915		NO. 01770		
ELEVATION 0 LOCATION SE NE SE	COUMIT	MO. UXIIO		
	GITUDE ;			
COUNTY Grundy	API . 120	630177000	2 - 33	218 - 14

ILLINOIS STATE GEOLOGICAL SURVEY

No 11-11			T# 1735.57	-
Water Well	<u> </u>		Top	Bottom
Total Depth				105
Driller's Log filed			}	
•				
		•		
			}	
		•		
•				
			İ	
			<u> </u>	
			j ·	
Parmit Date:	•	Permit #: 0		
COMPANY	TOTAL CONTRACTOR OF THE PARTY O		<u> </u>	
FARM				
DATE DRILLED February 1	., 1911	NO.		
ELEVATION 0		Y NO. 01777		
LOCATION NE NW NE	•			
LATITUDE	Longitude			للل
COUNTY Grundy		0630177700	11 - 33	N - 8E
	•			

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

### Water Well ### ### #### #### ################							===
Semistrone	Water Well						i
Driller's Log filed Permit Date: Permit Da	soil					0	3
Soapstone 1 132 157 Total Depth Driller's Log filed Permit Date: COMPANY PARM DATE DRILLED October 1. 1912 ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW. MG.	sandstone				i	3	! .
Permit Date: COMPANY FARM DATE DRILLED October 1. 1912 ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW	limestone				1	53	61
Permit Date: COMPANY FARM DATE DRILLED October 1, 1912 ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW	soapstone					61	132
Permit Dete: COMPANY FARM DATE DRILLED October 1. 1912 NO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW No.	limestone				.	132	157
Permit Dete: COMPANY FARM DATE DRILLED October 1. 1912 NO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW No.	Total Depth			*	<u>!</u> .		157
Permit Date: Permit Date: COMPANY FARM DATE DRILLED October 1. 1912 ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW.					1		1
Permit Date: Permit Date: COMPANY FARM DATE DRILLED October 1. 1912 ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW.		i,			ļ		
Permit Date: Permit B: 0 COMPANY FARM DATE DRILLED October 1. 1912 BO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW.		•					
Permit Date: Permit B: 0 COMPANY FARM DATE DRILLED October 1. 1912 BO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW.							
COMPANY FARM DATE DRILLED October 1, 1912 RO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW	Driller's Log fi	led			. !		
COMPANY FARM DATE DRILLED October 1, 1912 RO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW					1		
COMPANY FARM DATE DRILLED October 1, 1912 RO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW					ł		i .
COMPANY FARM DATE DRILLED October 1, 1912 ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW							•
COMPANY FARM DATE DRILLED October 1, 1912 RO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW				•			į
COMPANY FARM DATE DRILLED October 1, 1912 RO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW							
COMPANY FARM DATE DRILLED October 1, 1912 RO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW					j		
COMPANY FARM DATE DRILLED October 1, 1912 RO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW					ļ		İ
COMPANY FARM DATE DRILLED October 1, 1912 ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW					:		
COMPANY FARM DATE DRILLED October 1, 1912 ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW			•] !		
COMPANY FARM DATE DRILLED October 1, 1912 ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW							İ
COMPANY FARM DATE DRILLED October 1, 1912 ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW							
COMPANY FARM DATE DRILLED October 1, 1912 RO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW	•				}		
COMPANY FARM DATE DRILLED October 1, 1912 RO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW							
COMPANY FARM DATE DRILLED October 1, 1912 RO. ELEVATION 0 LOCATION NE NW NW	Permit Date:			Permit 0	1 0		ļ
DATE DRILLED October 1, 1912 NO. ELEVATION 0 COUNTY NO. 01782 LOCATION NE NW NW	COMPANY			,			
ELEVATION 0 COUNTY NO. 01782					<u> </u>		
LOCATION NE NW NW	DATE DRILLED O	ctober 1, 19			· · ·		
		. W.J. KW.J	COUNT	TY NO. 01782		\vdash	
	LATITUDE NE N	AM VIM	LONGITUDE				

API 120630178200

12 - 33間 - 8底

COUNTY Grundy

-1807 : 말스 4**0**1

Illinois Geological Survey. Urbana

The second secon						
	·		-	Thistmess	Ϋ́œ	Boston
ioil 'ire clay bulders capstone imestone				6 20 14 100 50		6 26 40 140 190
ater Level - flow						
					,	
·						
		•				
ENVELOPE						

YEA.

PRILLED

State Water Survey

LTTOR

NE NU NU

700

CRUMDY

COUNTY ROLL

1 3-3 W- 87

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Thistness	Top	Beaten
rift wale andstone wale		14 41 30 10		14 55 85 95
iter level: 山;	- 20 gallons per mi	mı ə.		
using: 55' of 6	n			
	UTN NADES			
<u>±astrg</u>	Necking	Elec		,
394743,60	45,78044 83	520		
, , , , , , , , , , , , , , , , , , ,			}	
			İ	
•			-	
ENVELOPE				
	•			

DRILLED

ORITY GOTTA

1100

State Water Survey

SW SW SE

CRUNDY

Page 1

ILLINOIS STATE GEOLOGICAL SURVEY

Water Well	·	Top	Bottom
Potal Depth		:	197
Oriller's Log filed			
		i	
	•	-	
	•		
	·		
•		!	
			İ
	-	ļ.	
	-		
•			
		ļ	
	,	i ·	
			ļ
		!	İ
			ļ
•			i
		į ·	
		:	
Permit Date:	Pormit #: 0	<u> </u>	<u> </u>
COMPANY			
FARM			
DATE DRILLED May 1, 1901	MO. COUNTY NO. 01999		
RLEVATION 0 LOCATION SW SE SW			
LATITUDE LONG	SITUDE -	- ئىللىق، ا	المنا
COUNTY Grundy A	PI 120630199900	25 - 3	an - 81

Page 1

ILLINOIS STATE GEOLOGICAL SURVEY

Water Well	Top	Bottom
Total Depth		20:
Driller's Log filed		
		-
•	ł	.
		:
		Ì
	-	
•	·i .	
• •	-	i
	1	-
·	ļ	1
	İ	1
		i
	į	i
		<u>.</u>
•	Ì	
		1 .
· ,	i	!
	!	į
· ·		
	ļ	1
,] .	
ermit Dato: Permit #	0	<u> </u>
OMPANY Anderson & Son, T. F.		
ARM State Of Ill	 	
ATE DRILLED February 1, 1929 MO.		
LEVATION 0 COUNTY NO. 02000		
OCATION SW SW NE	J	
ATITUDE: 41.397555 LONGITUDE - 88.277695	; <u>;</u> ,	1, <u>-≛.,-</u> .,
OUNTY Grundy API 120630200000	26 - 3	419 - 61

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY Water Well Bottom Total Depth 190 Driller's Log filed Permit Date: Pormit #: 0

> > 26 - 34N - 8E

API 120630200100

LONGITUDE

COMPANY

RLEVATION 0
LOCATION NW SW

COUNTY Grundy

LATITUDE

DATE DRILLED January 1, 1911

Water Well		Тор	Botton
Potal Dopth			188
Oriller's Log filed		i	1
		,	1
•		Ì	
			:
		!	İ
		İ	
	•	1	ì
		ì	
	•	į	1
•		1	
•			
			į
		1	
•	<i>,</i>		
		}	:
		:	
	·	!	
		ļ	
ermit Dete:	Pormit #: 0	<u></u>	
COMPANY			
PARM			
DATE DRILLED NOVEMBER 1, 1909	NO. COUNTY EO. 02010		
OCATION SENENE			- - - - -
LONG	SITUDE -	1 ·_L_i	IL
COUNTY Grundy A	PI 120630201000	36 - 36	in – 82

Water Well	Top	Bottom
Total Depth		240
Driller's Log filed		
	•	
	•	
		ĺ
		! !
		<u>}</u>
·		i
		•
<u>.</u>		<u> </u>
·		
Permit Date: Permit #: 0		
COMPANY		
PARM DATE DRILLED August 1, 1916 NO.		
ELEVATION 0 COUNTY NO. 02011		
LOCATION SW SW SW LONGITUDE		
	34 - 341	N - 8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Water Well	Top	Bottom
rotal Depth		237
Driller's Log filed	į	
	ı	I
	!	!
·	ļ	İ
•	! '	1
	ļ	
•	į	ì
	:	•
	<u> </u>	
	!	!
	İ].
		!
	; j .	1
	ļ	}
· ·		ì
	: :	
	Ì	
		ļ
	į	ì
·		!
,		İ
	!	
Permit Date: Permit #: 0	, 	1
COMPANY		
PARM		
DATE DRILLED August 1, 1926 NO.		
ELEVATION 0 COUNTY NO. 02012	· · · · · · · · · · · · · · · · · · ·	
LOCATION SE NE NW		
COUNTY Grundy API 12065U201200	34 - 34	N - AP
COMIT GIANDA VET 190020301300	J u - Ju	- 6D

Water We	11					· - ·		Тор	Bottom
Total Dap	Ł b			,			i		164
Driller's	Log	filed					1		
	•	•		•	,				i
							.'		ļ
	•	•							İ
							ı		i
							!		
	•					•			
							!		ļ
	•								i
							1		!
							Ì		j
					•				
									i !
		•	•						i
							:		!
•							i		·
							•		
									!
							:		
Permit Dat	te:		:,-	7:-	Permi	l t 0: 0	<u> </u>		
COMPANY							 i		
FARM	Ţ	1012			***			. ;	
DATE DRI ELEVATIO		July 1; 1920		COUNTY	NO. NO. 02	013			
LOCATION		E SW NW		;				;	
LATITUDE			LONG				l	الله المال	_: L_:_ /
COUNTY	Gru	ındv	AP	I 120	63020	1300	34	- 34	N - 9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

t to the charge of the charge

Water Well		Тор	Bottom
Total Depth .			204
Oriller's Log filed		!	:
		Į.	İ
			:
		ļ	1
		i .	·
		j	
		.	
		ļ	
		1	
		İ	:
			. '
		1 .	
•		j	
			;
•			}
•		:	
•			
•		ļ	į.
		•	ĺ
		į	
		!	
		•	İ
		,	
Permit Date: .m = Lt =		· • 0	_
OMPANY			T
PARM			
DATE DRILLED July 1, 1905	MO.		
ELEVATION 0	COUNTY NO. 020	14	
LOCATION SE SE NE			
	NGITUDE -	L.+	لـــــالـــــــــــــــــــــــــــــــ
COUNTY Grundy	API 120630201	28 2	14M - 8E

Water Well		· · · · · · · · · · · · · · · · · · ·	Тор	Bottom
rotal Depth				200
•	•			
			ì	
	•		ļ	
		·	İ	j.
	•			
			:	!
			İ	
			1	:
			į	
			ļ	
		·	1 .	1
		•		
				.
	•		<u>.</u>	!
			į	}
			į	!
			į	
			('	ļ
Permit Dete:		Permit 0:	0	1 .
COMPANY				
FARM				
DATE DRILLED September	er 1, 1904	NO.		
ELEVATION 0	CO	UBFTY BO. 02019		
LOCATION NW SW NE	,			
COUNTY Grundy	LONGITO	INE STORY	34 - 3	

Water Well	·	Тор	Botton
Potal Depth			200
Driller's Log filed			i
		į	
		!	
·		, .	i
			:
· .			
		İ	;
•			
			1
		1	
		, ,	
		;	
		į.	;
	•	j	
		! .	
·		İ	. ,
		ļ.	
			ţ
ermit Date:	Permit 0: 0		
OMPANY			
ARM	•		
ATE DRILLED April 1, 1904	NO. COUNTY NO. 02020		
CCATION SE NE SE	- 02020		
ATITUDE LONG	ITUDE (الللا	ا. الللل
COUNTY Grundy Al	PI 120630202000	35 - 34	18 BE

A STATE OF THE STA	· 	
Water Woll	Top	Bottom
Total Depth		1.45
		146
Oriller's Log filed	,	i
	:	
•		i
•	1	
	į	1
	ľ	ļ
•	: -	
:		,
	1	i
· ·	Ì	
		;
	j]
	•	
•	}	Ė
	ľ	j
		İ
		1
		}
	ļ	
	1 .	i
	,	
	1	ľ
ermit Date: Permit 0, 0	_	
ONPANY		
ARN	<u> </u>	
ATE DRILLED April 1, 1904 NO.		
LEVATION 0 COUNTY NO. 02021		
OCATION NW NW SE		
ATITUDE LONGITUDE		J
OUNTY Grundy API 120630202100	35 - 3	4N - 8E

D	
Paga	

Water Well		• Тор	Bottom
Total Depth			267
Driller's Log filed			
,			•
		İ	j
			1
		. [
	• •	i	;
		1	· !
,	•	<u> </u>	
		1	!
			į
•			<u> </u>
		į	i
		·,	
		. ·	!
			<u> </u>
Permit Date:	Permit #: 0	;	l :
COMPANY			
FARM	· .		
DATE DRILLED October 1, 1908	NO.	L	
ELEVATION 0 LOCATION NW NE SE	COUNTY NO. 02022		
	NCITUDE	L.I. I I.	
COUNTY Grundy	API 120630202200	35 - 341	M - 8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Water Well				Тор	Bottom
Total Depth		,			11
Driller's Log filed				1	11
orrina a bog rilea					
					·
			٠.	· .	1 .
				!	İ
				i	ļ
					į .
•				!	
					: .
				! !	
					i
				Ì	
				j	ļ
				!	
	•			•	i
				! ! :	
•				İ	
					1
Permit Date:		Permit #	, 0	i	
					
COMPANY FARM		•			
DATE DRILLED November 1, 1915	•	NO.			
ELEVATION 0		NO. 02024			
LOCATION SE NW NW					
	MOITUDE			<u>L. I 1</u>	ئىلىدا، ا
COUNTY Grundy	API 120	63020240	J .,	35 - 30	N - 81

Water Well	···········	Тор	Dotton
Cotal Depth	,	!	710
Driller's Log filed		ı	
ample set # 61977 (0' - 710')		,	Ì
	•		1
			,
		•	1.
			i
			-
		•	
·			
		1	
•		i	
,		İ	•
		!	İ
			İ
·	•		İ
			1 .
·	•	!	-
		1	
•		!	Ī.
			į
		:	ļ
		ı	i i
	,		
	• .		
ermit Doto:	Permit #r 0	<u> </u>	· . <u></u>
OMPANY Layne Western Co., In-			
'ARM 'Reichhold Inc		_ 	
ATE DRILLED December 1, 1978	MO. 2		
LEVATION 0	COUNTY NO. 22367		
OCATION 45 N line, 940 W line ATITUDE 41,388631 LONG	•		
SMITHWATER 'AT TOOK 71' 7 ANSA'	ITUDE - 00.303766		

Pago 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
top soil	0	2
clay	2	. 5
rock	5	60
hard & soft shale	60	125
rock	; 125	200
Total Depth	.	200
Casing: 5" PLASTIC from 0' to 40'	}	
Grout: CEMENT from 0 to 0. Size hole below casing: 5°	ļ	ļ
Water from rock at 80' to 200'. Static level 80' below casing top which is 1' above G Pumping level 160' when pumping at 0 gpm for 0 hours Permanent pump installed at 160' on June 5, 1984, wit of 0 gpm		
Driller's Log filed Lacation source: Location from permit		
		i
		,
	! [1
		!
•		-
	:	
	.	
·		
Permit Date: May 31, 1984 Permit #: 1	12622	<u> </u>
COMPANY		
FARM		
DATE DRILLED June 1, 1984 HO.		
ELEVATION 0 COUNTY NO. 22428		
LOCATION NW SW SW		.] .]]. [

API 120632242800

Page 1

COUNTY Grundy

ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Top	Bottom
op soil & clay	0	
t. Peters sand	4	3
otal Depth		; ' 3
Casing: 5" A-53 15# from 0' to 38'		
tize hole below casing: 5"		ļ
tater from St. Peters sand at 4' to 38'. Etatic level 12' below casing top which is 1' above GL cumping level 30' when pumping at 0 gpm for 0 hours]
ocation source: Location from permit		
i i		;
		ĺ
1		!
• [
1		
		; ;
	,	
		i
,		İ
ermit Date: April 30, 1979 Poxmit #: 8503	9	
ONPANY		
ARN		
ATE DRILLED May 3, 1979 NO. 1		
LEVATION 0 COUNTY NO. 22583		

API 120632258300

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Weter Well	Top	Potton
clay ·	. 0	, , 5
sand	5	i 15
clay	. 15	140
limestone	140	265
Total Dopth		: 265
Casing: 5" A-53 15# from 0' to 140'		
Size hole below casing: 5	!] .
Water from limestone at 140° to 265°. Static level 150° below casing top which is 1° above GL Pumping level 165° when pumping at 10 gpm for 1 hour Permanent pump installed at 160° on , with a capacity of		: ! !
Address of well: Lorenzo Rd.	!	1
Location source: Location from permit	i	
		į
·	•	1
	:	:
		<u> </u>
		· :
	:	ļ. !
	:	I
	:	
	!	1
Permit Date: March 16, 1976 Permit 0: 45	<u> </u>	<u> </u>
COMPANY		
PARK		
DATE DRILLED May 20, 1976 BO. 1	 	-+
ELEVATION 0 COUNTY NO. 22585	 	
LATITUD SW NW SW	· <u> </u>	
COUNTY Grundy API 120632258500	12 - 33	19 - 9E

ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Top	Bottom
overburden .	0	;
ravel	44	50
otal Depth		. 50
Casing: 5" STEEL 15# from 0' to 44'		
creen: 8' of 0" diameter 30 slot rout: CUTTINGS from 0 to 0. ize hole below casing: 5"		
ater from gravel & sand at 36° to 50°. tatic level 10° below casing top which is 0° above GI umping level 36° when pumping at 20 gpm for 4 hours ermanent pump installed at 40° on , with a capacity o	}	

bootened houses, bookeron from permit

Permit Date:	September	9, 1977		Permit	5 1 66	574		!	
COMPANY								Ī	
PARM						,.	. ;		
DATE DRILL	b September	8, 1977		NO.		-		H	
ELEVATION 0)		COUNTY	BO. 2279	3				
LOCATION 3	350'S line,	355'E, lin	e of NE			!,	J		
LATITUDE		LONG	TTUDE -			اا	<u>-</u> _	Iil	L- <u>-</u> - 1
	سيهم					~ ~		•	

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well			Тор	Bottom
clay			0	39
limestone			35	80
shale		1	80	130
limestone	•		130	145
Total Depth				145
Casing: 5" A-53 15# fre	om 0' to 40'			193
Size hole below casing: 5"			•	
Water from limestone at 13 Static level 35' below cas Pumping level 60' when pum Additional location info:	ing top which is 1' above	GL		
Location source: Location :	from permit			
		ļ		ĺ
		ĺ		
			·	
	•			
•				
		į		
	, .			
		İ	•	
	•			
ermit Date: July 27, 1977	Permit #:	64203		
COMPANY	1.			<u></u>
PARM		-		
DATE DRILLED August 10, 19	NO. 1			
LEVATION 0	COUNTY NO. 22795	<u>.</u> .		
OCATION NEW YORK		· [

API 120632279500

36 - 34N - 8E

Grundy

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
clay	0	39
limestone	39	60
hard shale	60	100
Total Depth		100
Casing: 5" A-53 15# from 0' to 40'		
Size hole below casing: 5"		
Water from limestone at 39' to 60'. Static level 50' below casing top which is 1' above GL Pumping level 65' when pumping at 10 gpm for 1 hour Additional location info:		
Location source: Location from permit		
•		

FARM

DATE DRILLED August 6, 1977.

PLEVATION 0

COUNTY NO. 22796

LOCATION NW NE SW

LATITUDE

LONGITUDE

COUNTY Grundv

API 120632279600

36 - 34N - 8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Hell	Тор	Bottom
clay .	0	8
limestone	8	245
Total Depth		245
Casing: 5" A-53 15# from 0' to 40'		
Grout: CEMENTED from 5 to 40. Size hole below casing: 5"		
Water from limestone at 8° to 245°. Static level 100° below casing top which is 1° above GL Pumping level 100° when pumping at 10 gpm for 1 hour Permanent pump installed at 140° on , with a capacity o		
Address of well: Thorsen Lane		
Location source: Location from permit		
		' . :
, .		,
: :		
remain Patro. July 21, 1976		
Permit Date: July 21, 1976 Formit 5: 498	9 /	
COMPANY		
DATE DRILLED AUGUST 8, 1976 NO. 1		
ELEVATION 0 COUNTY NO. 22804		<u> </u>
OCATION SW SW SW		
ATITUDE LONGITUDE COUNTY Grundy API 120632280400	36 - 361	vi – 812

ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	i	
	Тор	Bottas
clay	i	o .
san d	9	
shale	. 12	: : g
limestone .	96	10
sandstone	. 106	12
Total Depth		12
Casing: 5" A-53 15# from 0' to 96'	:	
Size hole below casing: 5°		
later from sandstone at 96' to 125'. Itatic level 15' below casing top which is 1' above rumping level 40' when pumping at 12 gpm for I hour ermanent pump installed at 60' on June 13, 1987, w of 12 gpm	r i .	;
ddress of well: County Line Rd.		} !
ocation source: Location from permit		
Permit 9: CMPANY N. ATE DRILLED June 12, 1987 RO. 1	132328	
EVATION 0 COUNTY NO. 22928		
CATION SE NE SE		
TITUDE LONGITUDE	L	L

ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Top	Bottom
top soil	0	2
clay	2	25
limestone	25	75
shale -	75	150
limestone	150	165
Total Dapth		165
Casing: 5° A-53 15# from 0' to 40'		j
Grout: CEMENT from -5 to 40. Size hole below casing: 5"	·	
Water from limestone at 40° to 165'. Static level 20° below casing top which is 1° above GL. Pumping level 80' when pumping at 20 gpm for 1 hour Permanent pump installed at 100° on November 13, 1987,	vith a	!
capacity of 12 gpm		:
ocation source: Location from permit		
		j ! !
·		
. !		
;		
	:	
ermit Date: October 22, 1987 Permit 9: 136	i30	
COMPANY		
ARM		
ATE DRILLED November 2, 1987 NO. 1		
LEVATION 0 COUNTY NO. 22948		
OCATION NW SE SW RITITUDE LONGITUDE		

Water Well		Top	Bottom
Total Depth		<u> </u>	300
ample set # 52732 (3' - 300')))		; !
miple see a savsa (s		:	
			·
	•	! .	
		1	1
			1
		:	1
•			
•	•	1	
			i
		1	ļ
•			
		ļ.	
) 1	ļ
		Ì	
		i	
		•	
	•	.	i
		!	
			,
		١.	1
		i	İ
o,			
		:	!
		Ī	
•		! .	
ermit Deter	Permit #	•	
COMPANY Wehling Well Works			
PARM Nat'l Concrete Uni			
,	NO. 2		1 : 1
DATE DRILLED	COUNTY NO. 23159	;	ļ
ELEVATION OGL			
LOCATION 200'N line, 400'E ATITUDE 41.389086	line of NE ONGITUDE - 88.270255	i L.	<u> </u>
COUNTY Grundy	API 12063231590	•	4N - 8E

ILLINOIS STATE GEOLOGICAL SURVEY

Privata Water Well	Top	Bottom
clay	i o	5
shale	5	20
limestone	20	. 70
shale	70	120
limestone	120	290
Total Depth		290
Casing: 5° PVC from 0' to 45'	:	
Grout: BENT SLRY CTGS from 0 to 45. Water from limestone at 120° to 290°. Static level 180° below casing top which is 1° above G Pumping level 200° when pumping at 0 gpm for 4 hours Permanent pump installed at 200° on November 17, 1994,	ì	
capacity of 12 gpm		:
Additional location info:		
Address of well:		! !
Location source: Location from permit	; ;	
		!
		:
		İ
		,
		ļ 1
Permit Date: October 4, 1994 Permit 9:		İ
COMPANY		
PARM		
DATE DRILLED November 7, 1994 NO.		
ELEVATION 0 COUNTY NO. 23313		
OCATION NE NW SW	<u> </u>	
ATITUDE LONGITUDE	·	4 1

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Privato Water Well	Top	Bottom
brown clay	0	
clay & shale	8	1:
gray clay	15	13
sandrock	17	79
Cahokia shale.	79	8:
rotal Depth		82
Casing: 6° SDR 21 from 0' to 32'		1
Grout: BENTONITE from 0 to 12. Size hole below casing: 6"		
Static level 11' below casing top which is 1' above (Pumping level 56' when pumping at 0 gpm for 1 hour Permanent pump installed at 60' on February 4, 1996,	:	
capacity of 12 gpm		
additional ocation info:		
address of well:		
ocation source: Location from permit		:
	: : :	<u> </u>
·		
	į	
·		
ermit Date: October 19, 1995 Permit #:	.,	
COMPANY		
PARM		
DATE DRILLED February 1, 1996 NO.		
COUNTY NO. 23493		
OCATION SW NW SW	· .	
ATITUDE LONGITUDE	, L	i

Pego 1 ILLINOIS STATE GEOLOGICAL SURVEY

	_ !	Top	Bottom
black dirt	•	. 0	! 3
blue clay.		3	15
gray shale		15	. 85
brown limestone		85	385
Total Depth			: •
Casing: 5" A-53 STEEL 15# from -1' to 90'			385
Grout: BENTONITE from 0 to 90. Water from limestone at 85' to 385'. Static level 120' below casing top which is 1' above Pumping level 260' when pumping at 15 gpm for 1 hou Additional location info:	ve GL		
Address of well:			
Location source: Location from permit			
•		!	
· ·		İ	
		!	
	¥.	3	
		1	
	ł		
		. :	
1.7			
N2		· ;	

Arrit Batas Fahruan 20 100			
ermit Date: February 20, 1997 Pormit 8:	063-0	12	
OMPANY	063-0	<u> </u>	
OMPANY ARM	<u>-</u>	<u> </u>	
ermit Date: February 20, 1997 Pormit 0:	<u>-</u>		

page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
topsoil	0	2
claý	. 2	. 6
gravel	6	. 10
clay	10	. 33
hard gray rock	33	. 138
white lime	138	205
shale	205	. 220
Total Depth		220
Casing: 5° 200 PSI SDR 21 from 0' to 80'	i	
Grout: BENTONITE from 0 to 80. Water from limestone at 180' to 205'. Static level 100' below casing top which is 1' above Grouping level 160' when pumping at 5 gpm for 1 hour Additional location info: Address of well:	L	
Permit Date: March 19, 1996 Permit 0:		<u> </u>
PARM PARM PARM PARM PARM PARM PARM PARM	1 1 1 1 1 1	
DATE DRILL DESCRIPTION OF SEC.		
ELEVATION 0 COUNTY NO. 23548		[]
LOCATION SW NW NW	-:	
LATITUDE		

Pege 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Wator Woll		Тор	Bottom
clay	•	0	1
shale		15	10
limestone	1	105	29
Total Depth] ! 291
Casing: 5" BLACK from 0' to 105'			•
Grout: BENTONITE from 0 to 105.	İ		
Static level 12' below casing top which is 0' above GI Pumping level 260' when pumping at 0 gpm for 2 hours	·		
Permanent pump installed at 260' on December 91996.	with	a	!
capacity of 7 gpm	·		
Additional			<u> </u>
			ļ
Address of well:			
Location source: Location from permit]	•	į
parmit	İ		
•	i		
	j		
		j	
	}		
	į	,	
	Í		
Permit Date: June 25, 1996 Permit 9: 06	3-102	ı ,	
COMPANY	———— 1 T		
PARM		+ +	
DATE DRILLED September 10, 1996	{ · }	 	
ZLEVATION 0 COUNTY NO. 23550	<u> </u>	1	
ATITUDE LONGITUDE	<u> </u>	<u> </u>	
COUNTY Grund API 120632355000		- 33M	- AE

ILLINOIS STATE GEOLOGICAL SURVEY

Noncommunity - Public Water Well	Top	Bottom
sand & clay		5
limescone		5 55
green shale	: ; 55	5 130
gray lime	130) 160
- ·	16	1
shale seam dark gray	16	
gray lime		
Total Depth	· i	460
Casing: 6" STEEL A53 from 0' to 43' 4" A53 W/K PACKERS from 25' to	170'	.
Grout: NEAT CEMENT from 0 to 42. Water from limestone at 170' to 460'. Static level 250' below casing top which is Pumping level 300' when pumping at 20 gpm f		
Additional	·	
location info:		į
Address of well: same as above		
Location source: Location from permit	j .	}
•	·	
	i	
	.	
		İ
		3
		į
•	•	!
	ł	
Permit Date: November 12, 1996	Permit #: 063-170	
CONTROL OF THE CONTRO		<u></u>
COMPANY	i	
PARM Dresden Nuclear Plant		. <u> </u>
DATE DRILLED March 21, 1997 NO.	1 1	
KLEVATION V	,	
LOCATION NE NE NW LATITUDE 41.374053 LONGITUDE - 8	[

API 120632355600

2 - 33M - 8E

LATITUDE 41.374053

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well			17
	:	1 Calo	Pottos
topsoil		0 .	: 3
sand & gravel	i	3	10
shale		10	, 30
sand & gravel		30	40
gummy shale	•	40	48
blue shale		46	60
brown shale		60	70
gray limestone	:	70	, , 90
gummy shale	į	90	: 1 95
sandy gray lime 5 gpm		95	127
shale & pyrite	j	127	164
limestone	!	164	167
Total Depth			167
Casing: 5° SCH 40 ASA-53 from -2° to 72°		. :	
Size hole below casing: 4.87*	1		
water from sandy gray lime at 95' to 127'. Static level 30' below casing top which is 2' above GL	. - .	: ; 	
Additional .ocation info:		j	,
address of well:		ļ	
ocation source: Location from permit	<i>\</i> 	1	
ermit Date: May 10, 1996 Pormit 9: 06	3-073	!	•
COMPANY	<u> </u>		1
'ARM'			· · ·
NATE DRILLED August 9, 1996 MO. 1	 		
LEVATION 0 COUNTY NO. 23603			
OCATION SW NW NW			
ATITUDE LONGITUDE		LI	
OUNTY Grundy API 120632360300	13	- 33m	- 82

illinois state geological survey

•		,
Privato Water Well	Top	Bottom
fili	C	3
brown clay	. 3	
shale	, ,	23
sandrock	. 23	77
Total Depth		17
Casing: 6° SDR 17 from 0' to 40'		
Grout: BENSEAL from 0 to 40.		
Water from shale at 8' to 77'.	:	
Static level 8' below casing top which is 1' above GL		:
Pumping level 40' when pumping at 10 gpm for 4 hours	,	!
Additional Lot subdivision.		
location info:		
Togation into.		ł
Address of well:		
	•	
Location source: Location from permit	į	-
•	1	1
•	1	į
·	!	
	į	i i
•	i	*
· · · · · · · · · · · · · · · · · · ·		*
	ł	j
	j	i i
e e e e e e e e e e e e e e e e e e e		:
•		
	j .	
	}	: 1
	1	i
	1	
Permit Dete: March 12, 1998 Permit 9: 0	ical opp	!
Permit Dete: March 12, 1998 Permit 8: C	03-022	<u></u>
COMPANY	1111	T
PARN		
DATE DRILLED September 30, 1998 NO.		
00mmm no 23663		
	 	
LOCATION NW SW NW		
LONGITUDE		
COUNTY Grundy API 120632366300	12 - 3	318 - EEE

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Non Potable Water Well	Top	Bottoz
clay	0	. 19
shale .	15	7:
sandrock	71	7 <u>9</u>
Maquoketa shale ·	75	. 99
Trenton	99	45
St. Peter	451	700
Total Depth		. 700
Casing: 8° STEEL from 0° to 103°		
Grout: BENSEAL from 0 to 103. Water from St. Peter at 190' to 700'. Static level 190' below casing top which is 1' above GL. Pumping level 441' when pumping at 0 gpm for 0 hours		
Additional location info:		;
Address of well: Location source: Bocation from permit		
	1	
ermit Date: August 24, 1999 Permit 0:		
COMPANY PARM WATE DRILL D September 1, 1999		
LEVATION 0 COUNTY NO. 23768		
OCATION SW SW SE LONGITUDE COUNTY GRUNDY API 120632376800 1	1 - 33N	- 818

1 ILLINOIS STATE GEOLOGICAL SURVEY

Privato Wator Woll	Top	Botton
gray clay	, 0	30
clay, gummy shale	30	40
gray lime	40	61
shale, gummy shale, lime	61	87
shale, gummy shale, brown lime	87	180
gray lime	180	198
gray lime gummy shale	198	220
gray lime	; 220	270
sand .	i 270	273
gray lime	i 273	287
Total Depth	•	287
Casing: 6° STEEL ASA 53 from 1 to 50		İ
Grout: MOUNDED BENT. from 0 to 0. Size hole below casing: 5.87"		
Water from limestone at 273' to 287'. Static level 167' below casing top which is 1' above GI Pumping level 200' when pumping at 0 gpm for 2 hours	! '	
Permanent pump installed at 180° on September 23, 1999, capacity of 0 gpm	with a	
Additional location info:	:	
Address of well:	<u>.</u>	
Location source: Location from permit		
Permit Date: May 26, 1999 Permit 9:	<u></u>	
COMPANY Edward Hall - Web Well & Pump	,	
PARM TARM		
DATE DRILLED September 21, 1999 SO. 1	-	
ELEVATION 0 COUNTY NO. 23769		
LOCATION SW NW NW		
LATITUDE LONGITUDE	13 - 33	919 - 812
COUNTY Grundy API 120632376900	13 - 33	147 - 012

Poge 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Woll	Top	Bottom
fill	. 0	!
gray clay	. 5	! 18
shale	18	90
Trenton limestone	90	. 300
Total Depth		300
Casing: 6" SDR 21 from 0' to 44'] : i	1
Grout: BENSEAL from 0 Lo 44.		
Static level 154' below casing top which is 1' above GL Pumping level 200' when pumping at 15 gpm for 3 hours Additional Rocation info:		
Address of well: same as above		
Location source: Location from permit		<u> </u>
		!
	-	
•		·
		1
·]
98		
9°		ļ I
• •		
Permit Date: May 4, 2000 Pormit #:		
COMPANY		<u></u>
FARM		
DATE DRILLED May 1, 2000 NO.		
ELEVATION 0 COUNTY NO. 23861		
LOCATION NW SW SW		
COUNTY Grundy API 120532386100	1 - 338	

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

	1	,	
Private Water Well	1	Top	Botton
soil	•	0	i : 1
yellow clay		1	. 8
gray shale & clay		8	: 15
cap rock		15	16
sandrock		16	18
hard gray shale		18	30
shale	:	30	91
Trenton lime		91	280
Total Depth			i. I 280
Casing: 5" SDR 21 from 0' to 95'	:		i I
Grout: BENSEAL from 0 to 95. Water from limestone at 200° to 280°. Static level 160° below casing top which is 1° above of Pumping level 0° when pumping at 15 gpm for 2 hours Permanent pump installed at 260° on , with a capacity Additional location info: Address of well: Location source: Location from permit	!	grom	
Parmit Date: November 6, 2000 Permit 0:	<u> </u>	<u>.</u>	
COMPANY	[ΓΤ	- T
PARM .			
DATE DRILL	} 	- 	+
ELEVATION 0 COUNTY NO. 23974 LOCATION NW NW SW	 	-	+
LOCATION NW NW SW LATITUDE LONGITUDE	i	11.	
COUNTY GRUEDOV API 120632397400	12	- 33X	- 8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Wall	<u>:</u>	Top	Botton
topsoil		0	į
clay		2	[
sand gravel	,	34	
shale	•	_	. 6.
rock		62	14
		143	1 40
Total Depth	•		400
Casing: 6" BLACK STEEL from -1' to 62' 4.5" PVC from +1' to 160'	•		: !
Grout: BENTONTIE from 0 to 62.	:		j
water from rock at 160° to 400°.	i	٠	1
Static level 140' below casing top which is 1' above GL			}
Pumping level 260' when pumping at 12 gpm for 4 hours	:		1
ermanent pump installed at 260° on August 31, 2001, wit	h a		ĺ
capacity of 12 gpm			
dditional :			
ocation info:			
ddress of well:			
ocation source: Location from permit			
		!	
		ļ	
:		Ì	
!		ļ	
•		i	
÷		-	
		į	
Permit Date: March 22, 2001 Permit 6:			
CHPANY	==		
ARM			
AMP NATA			
	┯╂		+
LEVATION 0 COUNTY NO. 24054	·		

LONGITUDE

API 120632405600

LATITUDE

COUNTY

Permit Date: January 10, 2002

COMPANY PARM DATE DRIMAN APIEL 18, COUNTY NO. 24244 ELEVATION 0 SW NW NE LOCATION LONGITUDE LATITUDE . API 120632424400 13 - 33M - 8E COUNTY

PAGO 1 ILLINOIS STATE GEOLOGICAL SURVEY

,					
Private Water Well			Тор	Botton	
strip mine spoil			0	13	
gray clay & shale		•	13	70	
Silurian			70	96	
Maguoketa			96	168	
Trenton			168		
St. Peter		•	530	. 530	
Total Depth		:	330	600	
Casing: 5° STEEL from 0° to 173°					
Grout: BENSEAL from 0 to 170.		i		ļ	
Water from St. Peter at 0 to 0				!	
Static level 224' below casing top a	which is 2' above G				
Pumping level 260' when pumping at 2	25 gpm for 2 hours	-) : !	
•		1		i	
Additional		;		! . !	
location info:		İ			
Address of well:					
Location source: Location from permi	t ·	i i			
			i ,		
		; !	i		
		:	1		
		ļ.,	i ;		
•		į	 		
		i	į		
	•	!	1		
		·.			
ermit Date: June 16, 2003	Pormit 6:	L	į		
COMPANY COMPANY		;: - -	7 7	7	
ARM		<u> </u>			
DATE DRILLE THE PARTY OF THE PA	190.	<u>;</u> .		<u>i</u>	
LEVATION 0 COUR	FTY NO. 24338				
OCATION SE NE SE	-	- : -			
ATITUDE LONGITUD	R F	ii	نا الله		
COUNTY GRUNGS API	1206524 351000	40 - 42F - F1			

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well		Тор	Bottom
topsoil		0	1
clay	. '	1	6
shale		6	80
lime .		80	205
Total Depth			205
Casing: 5" PVC from -1' to 82'			
Grout: BENTONITE from 0 to 82. Water from limestone at 250' to 265'. Static level 156' below casing top which is 1' above Pumping level 160' when pumping at 12 gpm for 4 hour	s		
Permanent pump installed at 205' on September 11, 20	04,:	with a	j
_capacity of 12 gpm			
Additional location info:	į	·	
Address of well:			
Location source: Location from permit		į	
	į		
	ĺ		
·	.	į	
	ì	[
		i	
	i		
Permit Dato: June 4, 2004 Fermit #1		! :	
CONDANY	<u>. </u>		=
PARM			
DATE DRILLAND SEPTEMBER 5, 2004 MO. 1			
LLEVATION 0 COUNTY NO. 24381			
OCATION SW NW SW	Ì		
ATITUDE - LONGITUDE -	!	L L	1. : : : :
COUNTY Grundy API 120632438100		1 - 33N	- 8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well)	;
	Top	Botton
drift	į 0	25
shale	25	. 80
sandrock & shale streaks	80	: 104
rock	104	105
shale	105	107
limestone	107	280
Total Depth		280
Casing: 5° PVC SDR 21 from -1 to 111	:	į
Grout: GROUT from 0 to 105.	:	į
water from limestone at 180° to 280°.	•	
Static level 100' below casing top which is 1' above GI	4	i .
Pumping level 160' when pumping at 20 gpm for 2 hours		İ
	*	
Additional	İ	
location info:	1	
Address of well:		
	<u> </u>	
ocation source: Location from permit	; 	
•	! 	
	i :	
·	; 	
·	ļ	
ermit Date: March 31, 2005 Permit 8:	1	
CMPANY Area Well & Pump		
2005		
LEVATION 0 COUNTY NO. 24430		
OCATION NE NW NE		
ATITUDE LOWGITUDE		
OUNTY Grundy ART 12052244200		_

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
soil	0	2
yellow clay	2	11
gray clay	11	. 20
Slurian	20	46
sandy shale	46	. 50
Maquketa	50	j 92
Trenton	. 92	320
Total Depth		, 320
Casing: 6" PVC from 0' to 92'		
Water from lime at to 320'. Static level 197' below casing top which is 3' above GL Pumping level 260' when pumping at 10 gpm for 1 hour Permanent pump instable at 280' on September 2, 2005, to capacity of 10 gpm	vith a	
Additional Lot , subdivision.		:
Address of well:		
Location source: L ocation from permit		į
·		
·		
· ·		•
·		į
give so		
Permit Date: May 9, 2005; Permit #:	<u>:</u>	<u> </u>
COMPANY		
FARM .		
	-	
·		
ELEVATION 0 COUNTY NO. 24461		-+
G075554 444 04461		

OF ENVIRONMENTAL HEALTH, SIS WEST DO NOT DETACH GEOLOGICAL WATER

050	LOGICAL AND WATER	SURVEYS	WELL RE	CORD
O D	pleted 1-24-75	· A.	Plane Dy	4 of Conservation
v	ILY CANDED TARRETTE TITE TITE	צוכת ב	MI_12 M_ F	
Valen	ss _ZIO &ionroa >t	. Spring	ri biah	11raia
₩ ₩	4 PARTY THE TREET TO THE	1 1000	N- 1117	~2
l. Permi	t No. <u>35981</u>	Date _		
4. Water	from	13. Cou	Dly L.	<u>u</u>
of dep	1b ft.	Sec	. 📝 1	
4. Screen	: Diam. 10in.	Twe	15. J. J. J. J. J. J. J. J. J. J. J. J. J.	╼┾╼╁╼┼
Lengti	h:ft. Slot	Rose	16	
•			5171	
	g and Liner Pipe		[
Dive (in)	Kind and Pright	From (FL.)	To (FL.)	8909
_ 6	nlack casing	a		OCATION IN
	cemented in			00' SL.
	30,000		6	50' WL, of
6. Size H	ole below coming: A	ـــــا		ection
7. Statle	level 222 ft below and	1B.		
above	ground level. Pumping level	g top which	b is	ft.
gpan for	hours.	** R.	deemed ason	ng at
			•	•
) 5	·		_	
3. P	ORIGINAL PARED THROUG	Н	THESHED	
leak di	CERATIONS PARSED THROUG	H		DEPTH OF BOTTON
lack di	omations pamed througet and gravel	Н	Wineshes TOC	DEPTH OF BOTTOM
lack div	CERATIONS PARSED THROUG rt and grauel grayel	Н	Windshee O	DEPTH OF BOTTOM
lack divided and hale hale	CERATIONS PARSED THROUGET AND GRAVEL ET AVEL	Н	0	DEPTHOP
lack divided and hale hale hale	omations pamed througet and gravel gravel	Н	0 1 9	1 9 115
lack divided and hale hale	omations pamed througet and gravel gravel	Н	0 1 9	1 9 115 130
lack divided and hale hale hale	omations pamed througet and gravel gravel	Н	9 115 130	1 9 115 130 205
lack divided and hale hale counting	omations pamed throught and gravel gravel me		0 1 9 115 130 205	1 9 115 130 205
lack divided hale hale lima and	omations pamed throught and gravel gravel		0 1 9 115 130 205	1 9 115 130 205 275 556
lack divided hale hale lima and	omations pamed throught and gravel gravel me		9 115 130 205 275 556	9 115 130 205 275 556 770
lack did	ORNATIONS PARSED THROUGH	ECESSARY	0 1 9 115 130 205 275 556 770	1 9 115 130 205 275 566 770
lack did	omations pamed throught and gravel gravel	ECESSARY	0 1 9 115 130 205 275 556 770	1 9 115 130 205 275 566 770

Page 1

ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Woll	Top	Bottom
plack dirt	0	
plue clay	3	1
gray shale	15	! 8
prown limestone	. 85	38
Total Depth	•	389
Casing: 5" A-53 STEEL 15# from -1' to 90'		
Grout: BENTONITE from 0 to 90. Water from limestone at 85 to 385. Static level 120 below casing top which is 1 above GL. Pumping level 260 when pumping at 15 gpm for 1 hour additional ivision.		
ddress of well:		
ocation source: Location from permit		
		<u> </u>
		!
		 - -
		!
ermit Date: February 20, 1997 Permit 0: 061	-012	
	1 7 7 7 7	
COMPANY COMPANY COMPANY		
DATE DRILLED April 7, 1997 NO.		
COUNTY NO. 23526		
OCATION NW NW NW		
ATITUDE	<u> </u>	ئېنىلە د

bi (PPILIGIS AIRAPAGISTIC 30	RVEI, URBA	T9.A.	
	Thistonete	ŤΦ	Bather
rtial Sample Study by Anne M. Gr	aese		
January 8. 1981	Ì		
IATERNARY SYSTEM			
leistocene Series			
Sand, moderate yellowish brown	(10 TR 5/4) .	!
argillaceous, subrounded to	subandular	5	10
DOVICIAN SYSTEM	. 1		-
Maquoketa Group	į.		
Brainard shale	1		ł
Shale, greenish gray (5G 6/1)			ŀ
dark greenish gray (5 G 4/1)			
dolomitic, weak to moderatel		10	20
Shale, same; trace greenish gr	ay (5 GY 4/	η),	
dolomite, fine grained, silt			
slightly dařk gray (N3), spe		20	- 65
Same, mostly weak and not as s	ilty;		
dolomite, more calcareous]	65	7 Ú
Shale (95%) similar to above,	green sh yr	ay	
(5 GY 6/1); limestone (5%),	dark greens	\$h	
gray (5,68 4/1), very angill- silty very fine to fine grain	aceous, 510	^{ty} •70	7.5
Linestone (70%), olive gray (5		70 .	75
slightly dark gray (N3), spec	Ck) ad luger		
fine to coarse grained, anyi	llaconus to		
very angillaceous, crinoidal			
olive gray (5Y 4/1), slightly	y dark nead	P/	
(N3), speckled, argillaceous	caltarens	75	. 80
Same, as above but limestone is	s more	' ' '	00
fossiliferous (bryozoans, cri			
than above	, ,	80	90
	1 1		
,			
		į	•
	ı J		

Wehling Well Works Inc. 20130

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

County No. 24931

COUNTY NO. 24931

Des Plaines Dept of Conservation

County No. 24931

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Conservation

Des Plaines Dept of Con

2 4-33N-9E

	Thinkston	700	Person
Limestone (60%) same, as above; shall	a 141	N. 1	-
same, as above	0 (40	("' 90	35
Shale (80%), same; limestone (20%),			95
Fort Atkinson Limestone	2 01116	95.	ำ 10ช
Limestone, yellowish gray (5Y 8/1)	_		1
Diskish near 76 VB 0/11	0		
pinkish gray (5 YR 8/1), coarse gr	ained		ı
relatively pure, some dark gray (3),		1
speckled; some shale, similar to	bove		
(sample ground fine)		100	105
Limestone (60%) same, as above:	Į		
shale (40%), greenish gray (5 GY 6	/1)。		1
weak, Slity, Calcareous		105	110
Limestone, pinkish gray (5 YR 8/1)	n		1
yellowish gray (5Y 8/1), mottled	i i		
slightly with greenish gray (5 GY)	6/1)		ĺ
coarse grained, pure crinoidal	.]	110	115
Limestone, yellowish gray (5 YR 8/1)	same.		
as above, some light olive gray /6'	Y 6/1) <u>.</u>	<u> </u>
which is argillaceous	- 1	115	120
Scales shale	- 1		,
Limestone (70%), olive gray (5% 4/1)	vety	,	
fine to fine grained, very argillar	eous:		
Shale (30%), office gray $(59.4/1)$,	· '	
calcareous, moderately tough, some	ļ		
pyritic	Ì	120	130
Missing sample	1	130	135
Limestone same, as above	- 1	135	140
Shale (95%), olive gray (5 Y 4/1)	J	133	140
calcareous, moderately tough to tou	rib	1	
some weak	9,,,	140	34'44
Missing sample		140	160
Shale same, as above	- 1	160	165
Missiny samples		165	200
and the second s		200	210
		- 1	
	- 1	. 1	

Wehling Well Works Inc. Des Plains Dept of Cons.
WILL SSM 50921 4_33M_OF

The state of the s				
	· · · · · · · · · · · · · · · · · · ·	Transmen	. Top	(Salessa)
ialena Group Dolomite, pale yellowish by very slightly dark gray (fine to medium grained, o vesicular, some olive gra	(N3) speck calcareous	led,		
partings			210	220
·				
			,	
	-			,
	1			
•				
			-	-
			•	-
•			` `	
			•	

Wehling Well Works Inc. Des Plaines Dept.of Cons WILL SS# 59921 4-33M-9E

ILLINOIS GEOLOGICAL SURVEY, URBANA

Parmit #45234	The design	Tap	0
Orift, sand, gravel		0	10
iray shale and sand		10	15
Sand .]	15	25
Shale .	!	25	45
Shale and gray limestone		45	50
Shale		5 0	55
Shale and limestone		5 5	65
imestone		65	70
imestone and shale	ļ	70	75
hale	• }	75	80
ight gray limestone	1	8ó	110
ight gray limestone-Dolomite	1	110	115
ark limestone		115	120
ark limestone and shale		120	125
ark limestone	- 1	125	145
ark limestone and shale	- [145	160
ard shale	- 1	160	170
ard shale and little limestone		170	185
ard shale	1	185	190
ard shale and little limestone		190	200
otal Depth-Samples			260
eter from limentone 120 - 2001			
sing: 6" Black 19 # 0 - 90'	1		
se hole below caming: 6"			•
le caved in at 130'		- 1	
s. # 60364			
ENVELOPE (Continues on be			

ANY K & K Well Drilling
Ill. Dept. of Conservation se.

DENLES January 1976 COURSTY SE 25594

CONTY COMPANY

STON 520' ETM - DRK & JET

TOB Ap. 2400' N. line, 1900' E. line, ME

TY WILL

9-33N-9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well		Top	Botton
SS #9935 (0:-38:)		. 0	
clay		: o	4
gravel		: 4	12
shale		12	35
limestone & shale		35	. 60
limetone		60	105
limescon & shale		105	175
limestone		175	505
Total Depth		• :	505
Casing: 5" A-53 150/FT from	0. to 42.	!	
Size hole below casing: 5°	:	•	,
Water from limestone at 175 to Static level 260 below casing Pumping level 340 when pumping Permanent pump installed at 360 Driller's Log filed Additional location info:	top which is 1' above G at 12 gpm for 1 hour ' on , with a capacity	:	
Permit Date: July 14, 1977 COMPANY Fykes, Charles N. FARM DATE DRILLED July 19, 1977 ELEVATION 0 LOCATION SW NE SW	Pormit #: 6	3473	
DOM: TOTAL	API 121972790900	<u> </u>	N - 9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Water Well	Тор	Bottom
clay	0	
limestone	15	15
broken shale	60	60
hard shale	75	75
broken limestone	90	165
limestone	165	175
Total Depth		175
Water from limestone at 165° to 175°.		
Driller's Log filed		
		Ī
Permit Date: Permit #: 0		
COMPANY Fykes Charles & Pump FARM DATE DRILLAD October 1, 1975 NO. 1 ELEVATION 0 COUNTY NO. 27922 LOCATION NW NW NW LATITUDE LONGITUDE -		
COUNTY Will API 121972792200	15 - 331	J - 9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Water Well	Тор	Bottom
gravel	. () 3
limestone		1
shale	60	"
limestone	85	
Total Depth		105
Water from limestone at 85' to 105'.		
Driller's Log filed		
•		
•		
Permit Date: Permit #: 0	_	
COMPANY Fykes Charles & Pump		
PARM		
DATE DRILLIAD Soly 1, 1978 NO. 1		
ELEVATION 0 COUNTY NO. 27923 LOCATION SW SW NW		
LATITUDE LONGITUDE		

API 121972792300 15 - 33N - 9E

COUNTY Will

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

·						
Water Woll					Top	Sotton
clay			_		0	15
gravel				•	15	
clay					25	25
gravel	•			ā	.30	: 30
limescone					45	; 45
shale				-;	50	50
broken formation				į	90	90
limestone		·		;	95	95
Total Depth					33	420
			•			420
Water from limestone at 95° to	420'.			. !		!
						' . i
				!		
						Ì
Oriller's Log filed					•	; ·
				Ì		
•						
			•			
						•
•				ı	!	
				i !	; !	
		•			ļ	
				1	·	
		•		1	į	
					.	
orait Dato:		Porm	it 0: 0	į		
CMPANY Fykes Charles & Pump				1		
ARK CONTRACTOR					[
ATE DRILLED November 1, 1980		BPO. 1		1		
LEVATION 0	COURT	r NO. 28	1238	<u> </u>		
CATION SW SE	·			1		

COUNTY Will

Pago 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Woll	, i	Top	Potton
clay	 -		1
sand & gravel		0	10
clay	•	10	; 20
limestone		20	40
shale rock		40	100
limestone		100	. 160
Paral Pombh		. 160	380
Total Dapth			380
Casing: 5° BLACK STEEL from 0° to 42°	i		1
Grout: CUTTINGS from 0 to 42 Size hole below casing: 5°	1		!
Water from limestone at 0' to 0'.	.		i
Static level 240' below casing top which is 1'	above GL		;
Pumping level 340' when pumping at 10 gpm for 4	hours		}
Permanent pump installed at 340 on , with a cap	pacity of	10 gram	ĵ i
ocation source: Field verified			i İ
•) ;	-	
		<u> </u> :	
	, 1		
	!		
	!	;	
	i		
	. !		
	!		
	j	ļ	
prmit Date: March 22, 1985 Permit	11691	18	
CMPANY Rob, Ronald Gene			
ARM	j	+	
ATE DRILLIAN March 23, 1985 NO.	['		-
LEVATION 505GL COUNTY NO. 283	32		
ATITUDE 2400'N line 1150'E line of section			

PAGE 1 ILLINOIS STATE GEOLOGICAL SURVEY

•	1	:
Private Water Well	Top	Bottom
lay	. 0	30
hale	30	70
hale & limestone	. 70	110
imestone	110	150
shale	150	210
limestone	210	. 305
Potal Depth	:	305
Casing: 5" A-53 15 LBS. from 0' to 74'	!	1
Size hole below casing: 5"	•	
Water from limestone at 210' to 305'.	į	:
Static level 175' below casing top which is 1' above GI	.	
Pumping level 225' when pumping at 12 gpm for 1 hour Permanent pump installed at 200' on May 1, 1985, with a	:	Ì
12 gpm	į	i
Location source: Field verified		
	!	i.
	!	İ
	:	
•	ļ	
	;	1
	ļ.	
	!	
Permit Date: May 1, 1985 Permit 0: 11	7555	<u>i</u>
	<u></u>	:
COMPANY Fykes, Charles N.		
	<u></u>	
COMPANY Fykes, Charles N. FARM DATE DRILLED May 1, 1985 NO. 1		
COMPANY Fykes, Charles N.	<u></u>	

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Hell	Top	Bottom
top soil (sandy)	0	. 6
gravel	, 6	12
boulders	12	14
sand & gravel	14	35
clay (gray)	35	, , 40
stone (dark gray)	40	85
limestone	95	213
Total Depth	1] 213
Casing: 5° GALV, STEPL 15 LB/FT from 0' to 45'	İ	
Grout: PDLD CL & DRL from 0 to 45. Size hole below casing: 5"		
Vater from limestone at 0' to 213'. Static level 96' below casing top which is 1' above GL Tumping level 213' when pumping at 5 gpm for 1 hour	: 	
Permanent pump installed at 200° on May 28, 1985, with a of 10 gpm	capacity	,
additional ocation info:	:	

COMPANY Dreher, Theodore Albert

FARM

DATE DRILLED May 28, 1985

ELEVATION 520GL

LOCATION
LATITUDE

LONGITUDE

COUNTY Will

API 121972839600

22 - 33N - 9E

Location source: Field verified

Page 1 ILLIMOIS STATE GEOLOGICAL SURVEY

Private Water Well		Top	Betten
surface	:	0	
clay	•	2	11
sand & gravel	:	19	26
shale		20	9:
limestone	•	92	130
dark shale	;	130	569
Total Depth			565
Casing: 5° BLACK STEEL from 0° to 92°			
Grout: CUTTINGS from 0 to 92. Size hole below casing: 5"	! :		
water from dark shale at 0' to 0'. Static level 320' below casing top which is 1' ab Pumping level 360' when pumping at 10 gpm for 4 ho	ours		
Permanent pump installed at 360° on , with a capa-	city of	10 գարտ	
ocation source: Field verified		,	ļ
ŧ.			:
	l.		İ
			}
,	!		
	; ;		
	i		
ermit Date: May 13, 1986 Permit	 0 12372	0	
COMPANY Rob, Ronald Gene			~
ARM CONTROL OF THE CO	<u> </u> _		
DATE DRILLED May 13, 1986	;		
LEVATION 520GL COUNTY NO. 28844	. !		
OCATION			

22 - 33H - 9E

COUNTY WILL

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Privato Water Well	Top	Potton
clay	0	
poulders, sand & gvl	5	3(
shale	; 30	: 85
sand & limestone	85	· 176
shale	170	. 210
limestone	210	59
St. Peters sand	590	. 62
rotal Depth	•	! : 620
Casing: 5" A-53 15 LBS. from 0' to 63'	•	!
Size hole below casing: 5°	:	;
water from St. Peters sand at 590' to 620'. Static level 285' below casing top which is 1' abo Pumping level 320' when pumping at 12 gpm for 1 ho		
Permanent pump installed at 300 on August 22, 198 capacity of 12 gpm	5, with a	
Additional location info:		
Location source: Field verified		i
	. !	•
	118812	
COMPANY Fykes, Charles N.		
PARM		┝╌┼╌
DATE DRILLED August 10, 1985 MO. 1		 - ;
ELEVATION 525GL COUNTY NO. 28445		
LOCATION .		l. l.;
LATITUDE LONGITUDE		314 - 9H

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Privato Water Well	Top	Bottom
top soil	. 0	: 4
clay & gravel	. 4	ļ 9
sandy clay	: 9	. 13
nardpan	13	31
limestone (wh & gry)	31	52
shale	52	130
limestone tan & wh	130	180
Total Depth	!	! 180
Casing: 5° GALV. STEEL 15 LB/FT from 0' to 32'		:
Grout: PDLD CL & DRL from 0 to 32. Size hole below casing: 5°	ļ I	:
Static level 25 below casing top which is 1 above GI pumping level 45 when pumping at 12 gpm for 1 hour permanent pump installed at 100 on September 25, 1986 acity of 10 gpm	ļ.	
Location source: Field verified	į	}
	,	
·		} .
		į
•	i	
	1	!
	<u> </u>	
,		
,		į ·
Permit Date: September 12, 1986 Permit 8: 1	24798	<u> </u>
COMPANY Dreher, Theodore Albert		
FARM		
DATE DRILLED September 22, 1986		+ +
ELEVATION 532GL COUNTY NO. 29116		
ETEANTION 11500		

Pago 1 ILLINOIS STATE GEOLOGICAL SURVEY

		:	
Private Water Woll	<u>:</u>	Top	Bottom
top soil	;	0	. 3
gravel & sand	÷	3	: 19
limestone	,	19	. 70
shale		70	. 275.
limestone		275	600
St. Peter sand		600	645
Total Depth		;	645
Casing: 5° A-53 15# from 0° to 275°	1		
Size hole below casing: 5	i		
Water from St. Peter sandstone at 600' to 645'. Static level 220' below casing top which is 1' al Pumping level 320' when pumping at 20 gpm for 1 1			
Permanent pump installed at 336 on June 9, 1988 of 17 gpm	, with a ca	pacity	
Address of well:	; ; 		
Location source: Location from permit		i	

Permit Date: April 15, 1988

Pormit #1 001207

COMPANY Fykes, Charles N.

PARM

DATE DRILLED April 25, 1988 MO. 1

ELEVATION 0 COUNTY NO. 30362

LOCATION SW SW NW

LATITUDE LONGITUDE

COUNTY WIII API 121973036200 9 - 33M - 9E

Private Water Woll	Top	Botton
top soil	. 0	4
sand & gravel	. 4	53
limestone	53	118
shale	118	. 195
stone	195	340
Total Depth		340
Casing: 5 BLACK STEEL 15 LB/FT from 0 to 54	•	
Grout: C/S & DRILLINGS from 0 to 54. Size hole below casing: 5" Water from limestone at 310' to 340'. Static level 234' below casing top which is 1' above GL	:	! ! !
Pumping level 280° when pumping at 10 gpm for 1 hour Permanent pump installed at 300° on December 12, 1981, capacity of 1 gpm	with a	-
Location source: Field verified	:	
Permit Date: November 30, 1981 Permit #1 102	282	
COMPANY Dreher, Theodore Albert PARM DATE DRILLED December 10, 1981 MO. ELEVATION 530GL COUNTY NO. 31229 LOCATION 50'S line, 1000'E line of section		

age 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
top soil	. 0	
clay	. 2	1
clay & gravel	18	5
brown limestone	57	11
Total Depth	,	110
Casing: 5" A-53 15 LBS from 0' to 57'		
Size hole below casing: 5"		
Water from limestone at 57' to 110'. Static level 30' below casing top which is 1' above Pumping level 40' when pumping at 8 gpm for 1 house Permanent pump installed at 40' on June 24, 1981, of 10 gpm	r	<i>t</i> .
Address of well: Location source: Field verified		
Permit Date: June 15, 1981 Permit	#: 100124	
COMPANY Fykes, Charles N.		
DATE DRILLED June 22, 1981 NO. 1		
ELEVATION 525GL COUNTY NO. 31230	o	

15 - 33N - 9E

LOCATION 1300'S line, 1200'W line of section.

LATITUDE

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

limestone i 51 g hard shale 95 17 limestone & shale 170 30	Private Water Well	1	Тор	Botton
limestone hard shale limestone & shale 170 30 Total Depth Casing: 5" A-53 15# from 0 to 53' Grout: CEMENT from 0 to 53. Size hole below casing: 5' Water from limestone at 51' to 300'. Static level 205' below casing top which is 1' above GL Pumping level 280' when pumping at 0 gpm for 1 hour Permanent pump installed at 280' on September 19, 1992. with a capacity of 12 gpm Address of well: Location source: Location from permit COMPANY Fykes, Charles N. FARM DATE DRILLED September 17, 1992 ELEVATION 0 COUNTY NO. 34472	clay	•	0	· ·
hard shale 1imestone & shale 170 36 Total Depth Casing: 5" A-53 15% from 0 to 53. Size hole below casing: 5" Water from limestone at 51 to 300. Static level 205 below casing top which is 1 above GL Pumping level 280 when pumping at 0 gpm for 1 hour Permanent pump installed at 280 on September 19, 1992, with a capacity of 12 gpm Address of well: Location source: Location from permit CONTAINY Fykes, Charles N. PARM NATE DRILLED September 17, 1992 ELEVATION 0 COUNTY NO. 34472	shale	;	· 6	51
limestone & shale 170 30 Total Depth Casing: 5" A-53 15# from 0 to 53. Size hole below casing: 5' Nater from limestone at 51 to 100'. Static level 205' below casing top which is 1' above GL Dumping level 280' when pumping at 0 gpm for 1 hour Permanent pump installed at 280' on September 19, 1992, with a capacity of 12 gpm Address of well: Cocation source: Location from permit CMEPANY Fykes, Charles N. ARM ATE DRILLED September 17, 1992 LEVATION 0 COUNTY NO. 34472	limestone	į	51	9!
Total Depth Casing: 5" A-53 15# from 0 to 53. Grout: CEMENT from 0 to 53. Size hole below casing: 5" Water from limestone at 51 to 300". Static level 205 below casing top which is 1 above GL Pumping level 280 when pumping at 0 gpm for 1 hour Permanent pump installed at 280 on September 19, 1992, with a capacity of 12 gpm Address of well: Location source: Location from permit COMPANY Fykes, Charles N. PARM CATE DRILLED September 17, 1992 NO. 2 COUNTY NO. 34472	hard shale		95	. 170
Casing: 5" A-53 15% from 0 to 53' Grout: CEMENT from 0 to 53. Size hole below casing: 5' Water from limestone at 51' to 300'. Static level 205' below casing top which is 1' above GL Pumping level 280' when pumping at 0 gpm for 1 hour Permanent pump installed at 280' on September 19, 1992, with a capacity of 12 gpm Address of well: Location source: Location from permit COMPANY Fykes, Charles N. CARM NATE DRILLED September 17, 1992 MO. 2 COUNTY NO. 34472	limestone & shale	:	170	300
Casing: 5" A-53 15% from 0 to 53. Grout: CEMENT from 0 to 53. Size hole below casing: 5' Water from limestone at 51' to 300'. Static level 205' below casing top which is 1' above GLI Pumping level 280' when pumping at 0 gpm for 1 hour Permanent pump installed at 280' on September 19, 1992, with a capacity of 12 gpm Address of well: Location source: Location from permit COMPANY Fykes, Charles N. PARM CATE DRILLED September 17, 1992 MO. 2 COUNTY NO. 34472	Total Depth	•		300
Size hole below casing: 5' Water from limestone at 51' to 300'. Static level 205' below casing top which is 1' above GL Pumping level 280' when pumping at 0 gpm for 1 hour Permanent pump installed at 280' on September 19, 1992, with a capacity of 12 gpm Address of well: Location source: Location from permit COMPANY Fykes, Charles N. PARM CATE DRILLED September 17, 1992 ELEVATION 0 COUNTY NO. 34472	Casing: S" A-53 15# from 0' to 53'			
Static level 205' below casing top which is 1' above GL Pumping level 280' when pumping at 0 gpm for 1 hour Permanent pump installed at 280' on September 19, 1992. with a capacity of 12 gpm Address of well: Location source: Location from permit COMPANY Fykes, Charles N. PARM DATE DRILLED September 17, 1992 MO. 2 KLEVATION 0 COUNTY NO. 34472		,		,
Company Pykes, Charles N. Company Pykes, Charles N.	Static level 205' below casing top which is 1' above Pumping level 280' when pumping at 0 gpm for 1 hour			: :
Company Fykes, Charles N. CATE DRILLED September 17, 1992 COUNTY NO. 34472	Permanent pump installed at 280 on September 19, 199 capacity of 12 gpm	92, witl	n a	
COMPANY Fykes, Charles N. PARM DATE DRILLED September 17, 1992 NO. 2 ELEVATION 0 COUNTY NO. 34472	Location source: Location from permit			
COMPANY Fykes, Charles N. ARM ATE DRILLED September 17, 1992 NO. 2 LEVATION 0 COUNTY NO. 34472			: : : ! .	
COMPANY Fykes, Charles N. PARM DATE DRILLED September 17, 1992 NO. 2 CLEVATION 0 COURTY NO. 34472				
CARM DAILLED September 17, 1992 NO. 2 ELEVATION 0 COUNTY NO. 34472		<u> </u>		·
NATE DRILLED September 17, 1992 NO. 2 ELEVATION 0 COUNTY NO. 34472			1	
COUNTY NO. 34472			+	+
	*		+	++-

ILLINOIS STATE GEOLOGICAL SURVEY

Privato Water Well	 Top	Bottom
soil	0	. 3
clay	3	: 10
blue shale :	10	, 24
gray clay	24	53
solorium	. 53	74
Total Dopth	•	. 74
Carrier		:

Casing:

Page 1

5" PVC SDR 21 from 0' to 172'

Permanent pump installed at 320' on August 9, 1992, with a capacity of 10 gpm

Address of well:

Location source: Location from permit

Permit Date: June 26, 1992

Permit #:

COMPANY Wills, Elmer

FARM

DATE DRILLED MOGOS

RLEVATION 0 COUNTY NO. 34899

LOCATION SW

LATITUDE LONGITUDE

COUNTY WILL API 121973489900 6 - 33M - 9E

o i ILLINOIS STATE GEOLOGICAL SURVEY

delegation with shale streaks destone with shale streaks destone definestone definestone distance dist	709 0 20 30 45 160 250 520	20 30 45 160 250 520 545
mestone with shale streaks mestone Ind black shale Ind black shale Ind black shale Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indicatione Indication	20 30 45 160 250	30 45 160 250 520
mestone with shale streaks mestone Indicate the shale Indicate t	30 45 160 250	45 160 250 520
d black shale own limestone distone cal Dopth sing: 5° A-53 15* from 0° to 45' out: CEMENT from -5 to 45. ce hole below casing: 5° er from sandstone at 520° to 545' citic level 100° below casing top which is 1° above GL mping level 260° when pumping at 0 gpm for 1 hour manent pump installed at 320° on February 3, 1994, with capacity of 12 gpm dress of well:	45 160 250	160 250 520
own limestone distone cal Dopth Sing: 5° A-53 15* from 0' to 45' out: CEMENT from -5 to 45. the hole below casing: 5° there from sandstone at 520' to 545'. Stric level 100' below casing top which is 1' above GL uping level 260' when pumping at 0 gpm for 1 hour manent pump installed at 320' on February 3, 1994, with capacity of 12 gpm dress of well:	160 250	250 520 545
own limestone distone al Dopth sing: 5" A-53 15# from 0' to 45' out: CEMENT from -5 to 45." se hole below casing: 5" er from sandstone at 520' to 545'. stic level 100' below casing top which is 1' above GL manent pump installed at 320' on February 3, 1994, with capacity of 12 gpm dress of well:	250	520 545
distone sal Dopth sing: 5° A-53 15* from 0' to 45' out: CEMENT from -5 to 45. se hole below casing: 5° ser from sandstone at 520' to 545'. stic level 100' below casing top which is 1' above GL uping level 260' when pumping at 0 gpm for 1 hour manent pump installed at 320' on February 3, 1994, with capacity of 12 gpm dress of well:		545
sing: 5° A-53 15* from 0' to 45' out: CEMENT from -5 to 45.* ee hole below casing: 5° eer from sandstone at 520' to 545'. cic level 100' below casing top which is 1' above GL pring level 260' when pumping at 0 gpm for 1 hour manent pump installed at 320' on February 3, 1994, with capacity of 12 gpm dress of well:	520	:
sing: 5" A-53 15# from 0' to 45' out: CEMENT from -5 to 45." the hole below casing: 5" there from sandstone at 520' to 545'. It is level 100' below casing top which is 1' above GL uping level 260' when pumping at 0 gpm for 1 hour manent pump installed at 320' on February 3, 1994, with capacity of 12 gpm dress of well:		545
out: CEMENT from -5 to 45 the hole below casing: 5° therefore sandstone at 520° to 545°. thic level 100° below casing top which is 1° above GL uping level 260° when pumping at 0 gpm for 1 hour thannent pump installed at 320° on February 3, 1994, with capacity of 12 gpm livess of well:		
the hole below casing: 5° therefore sandstone at 520° to 545°. The sandstone at 520° to 545°. The sandstone at 520° to 545°. The sandstone at 520° to 545°. The sandstone at 520° to 545°. The sandstone at 520° to 545°. The sandstone at 320° on February 3, 1994, with capacity of 12 gpm. The sandstone at 520° to 545°. The sandstone at 520° to		•
tric level 100 below casing top which is 1 above GL uping level 260 when pumping at 0 gpm for 1 hour manent pump installed at 320 on February 3, 1994, with capacity of 12 gpm dress of well:		1
	ı a	
Section Source. Becarior From perman		}
		<u> </u>
mit Date: September 22, 1993 Permit 0:		<u> </u>
MPARY Fykes, Charles N.		
RM .		
TE DRILLED February 3, 1994 NO.		
EVATION 0 COUNTY NO. 35954		
CATION SW SE NE		
UNITY WIII API 121973595400 7	<u>: [: :]</u>	

ILLINOIS STATE GEOLOGICAL

brown clay shale brown & gray limestone hard black shale Total Depth Casing: 5° A53 15# from 0° to 40° Grout: CLAY SLRY/CTGS from 0 to 40. Size hole below casing: 5° Water from limestone at 40° to 100°. Static level 5° below casing top which is 1° above GL Pumping level 60° when pumping at 0 gpm for 1 hour Additional Lot #45, Phelan Acres subdivision. location info: Address of well: Location source: Location from permit	Top	Bottes
brown & gray limestone hard black shale Total Depth Casing: 5° A53 15% from 0' to 40' Grout: CLAY SLRY/CTGS from 0 to 40. Size hole below casing: 5° Water from limestone at 40' to 100'. Static level 5' below casing top which is 1' above GL Pumping level 60' when pumping at 0 gpm for 1 hour Additional Lot 045, Phelan Acres subdivision. location info: Address of well:		<u> </u>
brown & gray limestone hard black shale Total Depth Casing: 5° A53 15% from 0' to 40' Grout: CLAY SLRY/CTGS from 0 to 40. Size hole below casing: 5° Water from limestone at 40' to 100'. Static level 5' below casing top which is 1' above GL Pumping level 60' when pumping at 0 gpm for 1 hour Additional Lot @45. Phelan Acres subdivision. location info: Address of well:	· 0	. 20
Total Depth Casing: 5° A53 15% from 0' to 40' Grout: CLAY SLRY/CTGS from 0 to 40. Size hole below casing: 5° Water from limestone at 40' to 100'. Static level 5' below casing top which is 1' above GL Pumping level 60' when pumping at 0 gpm for 1 hour Additional Lot \$45. Phelan Acres subdivision. Address of well:	20	. 40
Casing: 5° A53 15# from 0' to 40' Grout: CLAY SLRY/CTGS from 0 to 40. Size hole below casing: 5° Water from limestone at 40' to 100'. Static level 5' below casing top which is 1' above GL Pumping level 60' when pumping at 0 gpm for 1 hour Additional Lot \$45, Phelan Acres subdivision. location info: Address of well:	40	. 80
Casing: 5° A53 15# from 0' to 40' Grout: CLAY SLRY/CTGS from 0 to 40. Size hole below casing: 5° Water from limestone at 40' to 100'. Static level 5' below casing top which is 1' above GL Pumping level 60' when pumping at 0 gpm for 1 hour Additional Lot #45. Phelan Acres subdivision. location info: Address of well:	80	100
Grout: CLAY SLRY/CTGS from 0 to 40. Size hole below casing: 5° Water from limestone at 40° to 100°. Static level 5° below casing top which is 1° above GL Pumping level 60° when pumping at 0 gpm for 1 hour Additional Lot \$45, Phelan Acres subdivision. location info: Address of well:		
Size hole below casing: 5° Water from limestone at 40° to 100°. Static level 5° below casing top which is 1° above GL Pumping level 60° when pumping at 0 gpm for 1 hour Additional Lot 045, Phelan Acres subdivision. location info: Address of well:		100
Static level 5' below casing top which is 1' above GL Pumping level 60' when pumping at 0 gpm for 1 hour Additional Lot #45, Phelan Acres subdivision. location info: Address of well:	i	:
	i	
	 - -	
Permit Date: November 16, 1994 Permit 0:	<u> </u>	
CCOMPANY Fykes, Charles N. PARM DATE DRILLED February 2, 1995 BO.		
LOCATION O COUNTY NO. 36613 LOCATION NW NE SW LATITUDE LONGITUDE - COUNTY WILL API 121973661300	5 - 33H	- 9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Wall	•	·	!	Тор	; Bottom
sand				0	20
soft gray shale				20	. 88
brown limestone				88	115
hard black shale .		•		- 115	195
brown limestone				195	445
Total Depth		•	٠		445
Casing: 5" A-53 15# fr	om 0' to 88'		,		
Grout: BENTONITE from 0 to Size hole below casing: 5"	80.		!		:
Water from limestone at 88' Static level 120' below cas Pumping level 360' when pum Permanent pump installed at	ing top which ping at 0 gpm	for 1 hour 1 24, 1995, wi		capaci	Y
Location source: Location f	rom permit				-
					·
Permit Date: April 11, 199	5 **** ******* ***** ***	Permit 0:			
COMPANY Matherly, Hubert FARE DATE DRILLED April 21, 199		190.			
ELEVATION 0 LOCATION SE SE NW		NO. 36689			

COUNTY WILL

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	·	:	1,010	Bottom
brown clay .			. 0	1
brown sandstone & shale		٠	10	6
brownish red sandstone	•		63	. 11
medium hard gray shale			110	16
Total Depth				16:
Casing: 5° A-53 15# fro	om 0' to 63'			ļ.
Grout: BENTONITE from 0 to Size hole below casing: 5*	·	i		
Water from shale at 63' to Static level 20' below cas Pumping level 80' when pum	ing top which is 1' above G		` .	
Additional location info:	t 100° on June 30, 1995, wi of 12 gpm	LIN GA	capacie	
Location source: Location	from permit			
Permit Date: June 28, 199	5 Permit fis			
COMPANY Fykes, Charles				<u>:</u>
PARM DATE DRILLED June 28; 199				
	P NO. COUNTY NO. 36795	r-		
ELEVATION 0				

API 121973679500

ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
soil	0	2
clay	2	6
red clay	. 6	7
gray clay	7	11
sand	11	16
gray clay	16	31
soft clay & shale	31	33
gray clay	33	40
shale	40	4.9
solorium	49	70
white limestone	70	96
Total Depth	. !	96
Casing: 6" SDR 21 from 0' to 49'		
Grout: BENTONITE CTGS from 0 to 49. Size hole below casing: 6°		
Static level 14' below casing top which is 1' above the Pumping level 68' when pumping at 0 gpm for 1 hour	;	
Permanent pump installed at 80° on July 20, 1995, wi	th capacity	'
Location source: Location from permit	j	
	:	
	,	
Permit Date: July 13, 1995 Permit 9:		·
COMPANY Wills, Elmer D.		
PARM		
DATE DRILLED JULY 15, 1995 NO.		
ELEVATION 0 COUNTY NO. 36875.		
LOCATION WE NE		

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private W	tor Well	Top	Bottom
sandy soil		0	. 5
sand		5	14
shale		. 16	43
shale & lin	ne .	43	61
sandy shale	9	61	75
lime & sha	le	75	114
white lime		114	132
lime & sha	le ·	132	146
gummy shal	e	146	156
Total Depti	<u> </u>	 	156
Casing:	6° STEEL SCH 40 ASA-53 from -2' to 48' 5° PLASTIC SCH 40 LINER from 38' to 116' ° SLOTTED from 116' to 156'		
	of 5° diameter slot below casing: 5.87°		
Static leve Pumping le	limestone at 61° to 143°. el 90° below casing top which is 2° above GL vel 130° when pumping at 0 gpm for 1 hour pump installed at 150° on June 8, 1996, with of 8 gpm	a capacity	
Address of	well:	! !	
Location s	ource: Location from permit		
Permit Dat	a: June 2, 1995 Permit #:	!	
COMPANY	Huskisson, Robert		
PARM			
DATE DRIL			
ELEVATION	·	 	
LOCATION	NE SE		
COUNTY	API 121973713200	21 - 33	M - 912

pago 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Weter Well		1
	Тор	Bottom
soil	0	, 4
yellow clay	. 4	6
sand & gravel .	6	. 7
gray clay	7	11
blue clay	11	, 18
blue shale .	18	58
Silurian	58	100
Cahokia	100	176
Trenton lime	176	420
Potal Depth	i -	420
Casing: 6° SDR 21 from 0' to 55°	· :	
Grout: BENSEAL from 0 to 55. Size hole below casing: 5-		
Static level 206' below casing top which is 1' above GL Pumping level 255' when pumping at 10 gpm for 1 hour Pormanent pump installed at 300' on May 24, 1996, with of 10 gpm	capacity	
ocation source: Location from permit	1	
	}	
	!	
ermit Date: August 31, 1995 Permit 9:		·
COMPANY Wills, Elmer		
ARM		
DATE DRILLED May 20, 1990 NO.		_
COUNTY NO. 37160 COUNTY NO. 37160		

Private Water Woll		· Botton
clay	. 0	. 13
gravel	. 13	14
dolomite	. 14	33
blue rock	33	41
shale	. 41	120
Silurian	120	172
Maquoketa shale	, 172	180
Total Dopth	!	180
Casing: 6° SDR 21 from 0° to 40° 5° LINER from 40° to 180°	÷	-
Grout: BENSEAL from 0 to 40.	:	:
Size hole below casing: 6*	i	i
Water from blue rock & Silurian at 40' to 180'. Static level 12' below casing top which is 1' above GL Pumping level 140' when pumping at 0 gpm for 4 hours Permanent pump installed at 140' on June 28, 1997, with of 10 gpm	a capaci	t y
Additional location info:		•
Address of well same as above		i
Location source: Location from permit		
Permit Date: June 16, 1997 Permit 9:	<u> </u>	<u> </u>
COMPANY Wills, Elmer		
FARM		
DATE DRILLED June 26, 1997 NO.		+++
ELEVATION 0 COUNTY NO. 37497		
LOCATION NW SE NE		
LATITODE		

COUNTY Will

Private Water Wall	Top	Botton
clay - rocks	0	
clay	5	15
sand .	15	25
clay	25	6(
shale - limestone streaks	60	70
limestone	70	100
shale	100	178
limestone	178	545
sandstone	545	580
Total Dopth .		580
Casing: 5° PVC SDR 21 #200 from 1' to 250' 5° PVC SDR 17 #250 from 250' to 545'		
Grout: BENTONITE from 0 to 545. Size hole below casing: 4.75°		
Water from sandstone at 545' to 580'. Static level 30' below casing top which is 1' above Germping level 340' when pumping at 0 gpm for 2 hours Permanent pump installed at 360' on September 13, 199 capacity of 10 gpm		
dditional Lot , subdivision. ocation info:		
ddress of well:		
ocation source: Location from permit	. .	
ermit Date: June 27, 1997 Permit #: 1	197-97-	
COMPANYStrange, Robert E.		
ARM		
DATE DRILLED September 8, 1997 NO.	· · · · · · · · · · · · · · · · ·	

17 - 33M - 9E

ago 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Top	Bottom
soil	: 0	
brown clay	i .	-1
·	3	3
green clay	}	10
blue clay	. 10	26
gray clay	26	60
Silurian	60	100
Maquoketa shale	100	. 180
Trenton .	180	340
Total Depth		340
Casing: 6° SDR 21 from 0' to 63'		•
Grout: BENSEAL from 0 to 63. Size hole below casing: 6	:	i :
	· ·	_
Pumping level 300' when pumping at 0 gpm for 1 hou Permanent pump installed at 300' on February 4, 19 capacity of 10 gpm	198. with a	
Permanent pump installed at 300 on February 4, 19 capacity of 10 gpm	198. with a	
Permanent pump installed at 300 on February 4, 19 capacity of 10 gpm Additional	198. with a	
Permanent pump installed at 300 on February 4, 19 capacity of 10 gpm Additional location info:	198. with a	
Permanent pump installed at 300 on February 4, 19 capacity of 10 gpm Additional location info: Address of well:	198. with a	
Permanent pump installed at 300 on February 4, 19 capacity of 10 gpm Additional location info: Address of well: Location source: Location from permit	98. with a	
Permanent pump installed at 300 on February 4, 19 capacity of 10 gpm Additional location info: Address of well: Location source: Location from permit Permit Date: July 14, 1997 Permit	98. with a	
Permanent pump installed at 300 on February 4, 19 capacity of 10 gpm Additional location info: Address of well: Location source: Location from permit Permit Date: July 14, 1997 Permit	98. with a	
Permanent pump installed at 300 on February 4, 19 capacity of 10 gpm Additional location info: Address of well: Location source: Location from permit Permit Date: July 14, 1997 Permit Date: July 14, 1997 CCMPANY Wills, William D.	98. with a	
Permanent pump installed at 300 on February 4, 19 capacity of 10 gpm Additional location info: Address of well: Location source: Location from permit Permit Date: July 14, 1997 Permit CCMPANY Wills, William D. FARM	98. with a	
Permanent pump installed at 300 on February 4, 19 capacity of 10 gpm Additional location info: Address of well: Location source: Location from permit Permit Date: July 14, 1997 Permit COMPANY Wills, William D. PARM DATE DRILLED February 3, 1998 NO. 1	98. with a	

Fogo 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private W	ater Well	Top	Botton
topsoil		0	
sand grave	1	2	18
clay	• •	18	46
shale	•	46	206
rock		206	580
sandstone		580	600
Total Depti	1		600
Casing:	6° BLACK STEBL from -1' to 84' 4.5° PVC LINER from 40' to 209'		
	ONITE from 0 to 84. elow casing: 4.75°		1
Static leve Pumping lev	sandstone at 580° to 600°. 1 200° below casing top which is 1° above GI el 399° when pumping at 0 gpm for 4 hours ump installed at 399° on December 1, 1998, w capacity of 12 gpm		
Additional ocation in	Lot , subdivision.		
Address of a	well: same as above arce: Location from permit		
ermit Date:	November 18, 1998 Permit 0: 197	-98-	
CMPAHY TARM	Walters, Larry		
ATE DRILL	KU NOVEMBET 25, 1998 20.		
LEVATION	· · ·		
ATITUDE	NE NW SW	1 1 1	i

21 - 33M - 9E

WIII

Private Water Well	Top	Bottom
black dirt	0	2
dirt with rocks	2	5
gravel	5	12
clay	12	25
sand ≨ gravel	25	40
clay	40	55
shale with limestone streaks	55	. 72
limestone	. 72	120
shale	120	196
limestone	196	565
sandstone	565	600
Total Depth		600
Casing: 5° PVC SDR 21 200 PSI from -1' to 159' 5° PVC SDR 17 250 PSI from 159' to 199'		
Grout: BENTONITE from 0 to 199. Water from sandstone at 565' to 600'. Static level 200' below casing top which is 1' above 0 Pumping level 300' when pumping at 25 gpm for 2 hours Additional Lot subdivision. location info: Address of well: same as above Location source: Location from permit	GL	
Permit Date: October 27, 1998 Permit #: 1	97-98-	
COMPANY Strange, Robert E.		
PARE		
DATE DRILLED November 7, 1998 BO.		
ELEVATION 0 COUNTY NO. 38149		
LOCATION SW NW SW		لتلبا
COUNTY WEIL API 121973814900	16 - 33	. 00

Pago 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Weter Well	Top	Potton
clay	. 0	. 8
shale	, 8	: 60
limestone	. 60	95
shale. limestone	95	175
limestone	175	218
broken rock cavern	218	220
limestone	220	300
Total Depth		•
Casing: 5" PVC SDR 21 200 PSI from -1' to 63'		300
Grout: BENTONITE from 0 to 63. Water from limestone at 63' to 300'. Static level 140' below casing top which is 1' above GL Pumping level 0' when pumping at 20 gpm for 2 hours Additional Lot 128, Phelan Acres subdivision. location info: Address of well: Location source: Location from permit		
Permit Date: August 31, 1998 Permit 5, 197		
COMPANY Strange, Robert E.	78-	
PARM Strange, Robert E.		<u> </u>
DATE DRILLED August 21, 1998		
COUNTY NO. 38213		
OCATION NE SE SW		
LONGITUDE LONGITUDE		1
COUNTY WILL API 121973821300	6 - 33N	- 9E

COUNTY WILL

Private Water Well	Top	Potton
sand	0	. 16
shale	16	33
soft limestone	33	110
Total Depth	:	; 110
Casing: 5° STEEL from 0° to 43°		
Grout: BENTONITE from 0 to 110. Water from limestone at 10' to 110'. Static level 10: below casing top which is 1' above GL	i	
Pumping level 80' when pumping at 0 gpm for 2 hours		:
Permanent pump installed at 80° on April 8, 1999, with	a capacity	'i
of 12 gpm	i	!
Additional		
location info:	,	!
Address of well:	·	
Location source: Location from permit	1	:
	1	:
::		
•	i	
	ł	
· · · · · · · · · · · · · · · · · · ·	i	1.
	!	
	i	1
		ļ
•		i
	i	
Permit Date: March 29, 1999 Permit #: 19	7-99-	
COMPANY Bisping, Calvin		
FARM		
DATE DRILLED April 7, 1999 NO.		
RLEVATION 0 COUNTY NO. 38376		
LOCATION NW SW NE		

Private Water Well	Top	Botton
	0	. 1
soil	1	12
sand	. 12	39
clay	39	41
shale	! ; 41	42
coal	42	45
fire clay	45	77
shale	79	132
sandrock	132	156
Maquoketa shale	156	207
shale & limestone	j. 207	574
Trenton	574	600
St. Peter	1 3,4	Ì
Total Depth		600
Casing: 5- SDR 21 from 0 to 209		j
Grout: BENSEAL from 0 to 209. Size hole below casing: 5		
Water from St. Peter at 210' to 600'. Static level 210' below casing top which is 1' above G Pumping level 340' when pumping at 0 gpm for 3 hours Permanent pump installed at 340' on November 1, 1999, capacity of 10 gpm	}	
Additional subdivision.		
Address of well:		
Permit Date: June 28, 1999 Permit 0:	<u> </u>	<u> </u>
COMPANY Wills, William D.		
YARM STATE OF THE		
DATE DRILLED November 1, 1999 NO. 6		
ELEVATION 0 COUNTY NO. 38443		╂┼┨┼┤
LOCATION SW SW SW		
COUNTY WIII LONGITUDE API 121973844500	21 - 3	3M - 9K

Location source: Location from permit

COUNTY Will

te.

API 121973844300 21 - 33N - 9R

ILLINOIS STATE GEOLOGICAL SURVEY

Privata Water Well	Top	Bottom
clay	0	60
sand & gravel	60	81
limestone	: 80	12
shale	120	17
limestone	175	520
Total Depth		520
Casing: 4° PLASTIC PVC SDR 40 from 70' to 220'	•	
Grout: BENTONITE from 0 to 80. Water from limestone at 500' to 520'. Static level 240' below casing top which is 2' above GL	· : :	
Pumping level 280' when pumping at 12 gpm for 2 hours Additional ubdivision.	ļ ·	
Address of well:		ì
Location source: Location from permit		
	:	
·	:	1
•		
Permit Date: October 22, 1999 Permit 0:		
COMPANY Edward Hall - Web Well & Pump	TTT	
PARM		
DATE DRILLED October 23, 1999 NO. 1		-
ELEVATION 0 COUNTY NO. 38718		
LOCATION NW SW SW	• 1	} ; . ;
LATITUDE LONGITUDE -	21 - 33	

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Wate	8011	Top	Bottom
sand	·	. 0	20
clay mixed w/	ravel	. 20	37
green shale		. 37	 77
prown limesto	e .	77	! 125
olack shale		, 125	205
orown limesto	e	-205	580
St. Peter		580	625
Notal Depth			625
	A53 STEEL from -1 to 80 0" CERTA LOK from 10 to 270		
ater from St. tatic level 1 umping level	PE from 5 to 80. Peter at 580° to 625°. 20° below casing top which is 1° above GL 180° when pumping at 25 gpm for 1 hour installed at 462° on May 22, 2000, with	·	
	of 12 gpm		,
dditional ocation info:			
ddress of wel			
ocation source	: Location from permit		

COMPANY Fykes, Charles N.

FARM.

DATE DRILLED February 2, 2000 NO.

ELEVATION 0 COUNTY NO. 38785

LOCATION NW NW SW

LATITUDE LONGITUDE

COUNTY WIII API 121973878500 21 - 33M - 9E

Private Water Well	Top	Botton
sand	0	. 6
shale	6	37
sandstone	3.7	47
shale	47	80
sandstone	80	125
olack shale	125	210
prown limestone	210	580
St. Peter sandstone	580	605
rotal Depth	İ	605
Casing: 6" A53 STEEL from -1' to 41' 4.50 CERTA LOK from 15' to 295'	·	;
Grout: BENTONITE from 5 to 41. Water from St. Peter sandstone at 580' to 605'. Static level 200' below casing top which is 1' above Givenping level 320' when pumping at 25 gpm for 1 hour Permanent pump installed at 462' on May 18, 2000, with of 8 gpm		· ·
additional Lot , subdivision. Location info:	,	
ocation source: Location from permit	<u> </u>	
	t !	
Permit Date: May 9, 2000 Permit #:	<u> </u>	<u>.</u>
COMPANY Fykes, Charles N.		
FARM		
- Marria 11 2000		
DATE DRILLED May 11, 2000 NO.		. 1
ELEVATION 0 COUNTY NO. 38910		-

ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Top	Bottom
opsoil	0	
and & gravel	1	1
lay	14	3
hale	30	6
imestone	63	12
hale	126	19
imestone	195	31
otal Depth	,	31
Casing: 4" PVC from 10' to 207'		
atter from limestone at 220' to 0'. Static level 180' below casing top which is 1' above GI Static level 220' when pumping at 12 gpm for 2 hours Termanent pump installed at 285' on August 29, 2000, which is 1' above GI Capacity of 12 gpm Additional Lot 12, subdivision. Total cocation info: Address of well: Cocation source: Location from Permit		
Permit Date: July 28, 2000 Permit 8;		
COMPANY Edward Hall - Web Well & Pump FARM DATE DRILLED AUGUST 28, 2000 MO. 1 COUNTY NO. 38915		
ELEVATION 0 COUNTY NO. 38915		

Private wat	er #ell			Тор	Bottom
sand				0	! 18
shale				18	; 53
gray sandsto	ne			53	65
shale				65	110
brown sandst	one			110	į 130
shale .				130	200
brown limest	one			200	575
St. Peter		•		575	605
Total Depth			*	ļ	605
	5° A53 STEBL fi 1.50° CERTALOK	com -1' to 55' from 10' to 250	,	} 	
Pumping level	1 400' when pur	sing top which inping at 25 gpm t 400 on June 3 of 20 gpm	for 1 hour		
Additional location info		subdivision.	ļ		
Address of we	all:	đ.			
Location sour	rce: Location f	rom permit	 		
	•	٠.	·		
	•			:	
Permit Date:	May 24, 2000		Pormit #:	: ::	
	atherly, Huber				
DATE DRILLE	May 31, 2000		o. '		
_				: . I. I	I
ELEVATION 0		COUNTY NO	. 38918		

22 - 33M - 9E

COUNTY

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Top	Bottom
sand/gravel	0	15
clay	15	50
shale/rock streaks	50	80
limestone	80	130
shale	130	. 207
limestone	207	575
sandstone	575	600
Total Depth		600
Casing: 5° PVC SDR 21 #200 from 1' to 150' 5° PVC SDR 17 #250 from 150' to 210'		
Grout: ENVIROPLUG from 0 to 210. Water from sandstone at 575' to 600'. Static level 200' below casing top which is 1' above GL Pumping level 200' when pumping at 25 gpm for 2 hours		
Additional Lot 5, subdivision.	1	:
location info:		
Address of well: same as above		
Location source: Location from permit		

COMPANY Sharpe, Franklin N.

PARM

DATE DRILLED MARCH 23, 2001 80.

ELEVATION 0 COUNTY NO. 39297

LOCATION SW. NW. SW.

COUNTY Will

API 121973929700

21 - 33M - 9E

	TATE GEOLOGICAL	SURVEY	
Private Water Woll		Top	Botton
topsoil - sand	· · · · · · · · · · · · · · · · · · ·	0	2
clay		· 2	50
limestone		50	200
Total Depth			200
Casing: 6° STEEL from 2' to	531		!
Grout: BENTONITE from 0 to 53. Water from dry hole at 0' to 0' Additional Lot 28, subd location info:			:
Address of well:			
Location source: Location from	permit		
Locación sobrec. Documento		i.	
		Ì	ı
			;
		i i	
		:	i
	,	!	į
	•		;
		,	
			i
			<u> </u>
Pormit Dete: June 15, 2001	Permit 0:		
COMPANY Edward Hall - Web W			
PARM	1		
DATE DRILLED	190.		
ELEVATION 0	COUNTY NO. 39433		
LOCATION NW NW NW		, i_; _;	
LATITUDE LO	ngitude	, ''	

COUNTY

33N - 9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
clay	. 0	36
gravel	36	39
shale	39	60
limestone	60	105
shale	105	155
limestone	155	320
Total Depth		320
Casing: 5" PVC from 1' to 74'		
Grout: BENTONITE from 5 to 70. Water from limestone at 155' to 320'. Static level 200' below casing top which is 1' above GI Pumping level 300' when pumping at 13 gpm for 2 hours Permanent pump installed at 300' on , with a capacity of additional Lot , subdivision. location info: Address of well. Location source: Location from permit		
Pormit Date: December 20, 2001 Fermit 9:		
COMPANY Strange, Robert E. FARM DATE DRILLED December 23, 2001 NO. 1 ELEVATION 0 COUNTY NO. 40232 LOCATION SW SW NW LATITUDE LOSSGITUDE COUNTY WILL API 121974023200	17 - 338	N - 9B

Raga 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Woll	Top	Botton
clay	0	1
soapstone	15	61
limestone	. 60	10
shale	105	17
limestone	170	, 21
shale	210	21
limestone	212	. 36
Total Depth		36
Casing: 5° PVC SDR 21 from -1' to 100' 4° PVC SDR 21 from 90' to 220'	•	:
Grout: GROUT from 0 to 100. Water from limestone at 300' to 362'. Static level 100' below casing top which is 1' above GL Pumping level 260' when pumping at 20 gpm for 2 hours Permanent pump installed at 260' on , with a capacity o		
Additional location info:		:
Address of well: same as above	! ·	•
Location source: Location from permit	 	
. •	 	
Permit Date: November 14, 2001 Permit #1	l :	!
	· · · · · ·	<u> </u>
COMPANY Strange Robert E.	1	
DATE DRILLED December 11, 2001 NO. 1		
ELEVATION 0 COUNTY NO. 40428		
LOCATION NW NW SW		
LATITUDE LONGITUDE -	·	L_i .L_i
COUNTY WIII API 121974042800	6 - 33	BI - 9 3

ILLINOIS STATE GEOLOGICAL SURVEY

Private Wator Hall	Top	Bottom
sand	0	18
clay & gravel	18"	37
shale	37] j 75
limestone	75	130
plack shale	130	205
limestone	205	580
St. Peter	580	645
Potal Depth		i i 645
Casing: 5° STEEL from -1' to 80' 4.50° CERTALOK from 15' to 275'	<u>.</u>	:
Frout: BENTONITE from 5 to 80. Water from St. Peter at 585' to 645'. Static level 220' below casing top which is 1' above GL Pumping level 290' when pumping at 20 gpm for 1 hour		
Permanent pump installed at 400° on June 14, 2002, with of 12 gpm	a capacity	y ·
udditional Lot , subdivision. ocation info:		,
uddress of well: same as above	· !	
ocation source: Location from permit	i .	ı
•	:	
ermit Date: June 7, 2002 Permit #:	<u> </u>	· ·
COMPANY Matherly, Hubert		. T
YARK TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOT		- -
DRILLED June 12, 2002 NO.		-
COUNTY NO. 40430		
OCATION NW NW SW		

yellow clay 1 sand 7 gray clay 11 gravel 21 blue clay 25 gray shale 82 Silurian 109 Maquoka shale 132 soft shale 188 Prenton lime 200 St. Peter 570 620	Private Water Well	Top	Botton
gray clay gravel plue clay gray shale Silurian Maquoka shale Soft shale Prenton lime Soft Peter Fotal Depth Casing: 5° PVC from 0° to 83° 4° PVC from 83° to 250° Srout: BENSEAL from 0 to 83. Atter from St. Peter at 570° to 620°. Static level 290° below casing top which is 2° above GL Pumping level 320° when pumping at 10° gpm for 2 hours Permanent pump installed at 360° on August 7, 2003, with a capacity of 7 gpm Additional Socation info: Address of well: same as above Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003	soil	. 0	: + 1
gray clay gravel blue clay gray shale Silurian Maquoka shale Soft shale Frenton lime St. Peter Fotal Depth Casing: S**PVC from 0** to 83** 4**PVC from 83** to 250** Srout: BENSEAL from 0 to 83. Water from St. Peter at 570* to 620**. Static level 290* below casing top which is 2** above GL. Static level 290* when pumping at 10 gpm for 2 hours Permanent pump installed at 360* on August 7, 2003, with a capacity of 7 gpm Additional COMPANY Wills, William D.	yellow clay	1	7
gravel blue clay gray shale Silurian Maquoka shale Soft shale Prenton lime Soft. Peter Potal Depth Casing: 5° PVC from 0° to 83° 4° PVC from 83° to 250° Srout: BENSEAL from 0 to 83. Water from St. Peter at 570° to 620°. Static level 290° below casing top which is 2° above GL. Static level 290° when pumping at 10° gpm for 2 hours Permanent pump installed at 360° on August 7, 2003, with a capacity of 7 gpm Additional Socation info: Middress of well: same as above Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003	sand	7	. 11
gray shale Silurian Aquoka shale Soft shale Tenton lime Soft Peter Soft Peter Soft Pov from 0' to 83' 4' PVC from 83' to 250' Stater from St. Peter at 570' to 620'. Static level 290' below casing top which is 2' above GL numping level 320' when pumping at 10' gpm for 2 hours ermanent pump installed at 360' on August 7, 2003, with a capacity of 7 gpm Additional ocation info: Address of well: same as above Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003	gray clay	11	; 21
gray shale Silurian 109 132 Maquoka shale 112 186 Soft shale Tenton lime 200 570 St. Peter 570 620 Cotal Depth Casing: 5° PVC from 0° to 83. 4° PVC from 83' to 250' Scout: BENSEAL from 0 to 83. Mater from St. Peter at 570' to 620'. Static level 290' below casing top which is 2' above GL Sumpling level 320' when pumping at 10 gpm for 2 hours Termanent pump installed at 360' on August 7, 2003, with a capacity of 7 gpm Additional Ocation info: Address of well: same as above Examit Date: July 2, 2003 Permit 8:	gravel	21	25
Silurian Aquoka shale 132 188 200 570 620 Fotal Depth Casing: 5° PVC from 0° to 83° 4° PVC from 83° to 250° Frout: BENSEAL from 0 to 83. At PVC from 83° to 250° Frout: BENSEAL from 0 to 83. Fater from St. Peter at 570° to 620°. Etatic level 290° below casing top which is 2° above GL. Frompler level 320° when pumping at 10° gpm for 2 hours Formanent pump installed at 360° on August 7, 2003, with a capacity of 7 gpm Additional ocation info: Address of well: same as above Examit Date: July 2, 2003 Permit 8:	olue clay	25	82
Maquoka shale soft shale Trenton lime 200 570 St. Peter St. Peter St. Peter St. Poter St. Poter 570 620 Casing: 5' PVC from 0' to 83' 4' PVC from 83' to 250' Strout: BENSEAL from 0 to 83. Mater from St. Peter at 570' to 620'. Static level 290' below casing top which is 2' above GL. Static level 290' when pumping at 10 gpm for 2 hours sermanent pump installed at 360' on August 7, 2003, with a capacity of 7 gpm dditional ocation info: ddress of well: same as above ermit Date: July 2, 2003 Permit 8:	gray shale	82	109
renton lime 200 570 St. Peter 570 620 Cotal Depth Casing: 5° PVC from 0° to 83° 4° PVC from 83° to 250° Grout: BENSEAL from 0 to 83. Later from St. Peter at 570° to 620°. Latic level 290° below casing top which is 2° above GL Lumping level 320° when pumping at 10 gpm for 2 hours ermanent pump installed at 360° on August 7, 2003, with a capacity of 7 gpm dditional ocation info: ddress of well: same as above ermit Date: July 2, 2003 Permit 8:	Bilurian	109	132
Trenton lime 200 570 21. Peter 570 620 Cotal Depth Casing: 5° PVC from 0° to 83° 4° PVC from 83° to 250° Grout: BENSEAL from 0 to 83. Atter from St. Peter at 570° to 620°. Itatic level 290° below casing top which is 2° above GL rumping level 320° when pumping at 10 gpm for 2 hours remanent pump installed at 360° on August 7, 2003, with a capacity of 7 gpm dditional ocation info: ddress of well: same as above ermit Date: July 2, 2003 Permit 5: COMPANY Wills, William D.	aquoka shale	132	188
Cotal Depth Casing: 5° PVC from 0° to 83° 4° PVC from 83° to 250° Grout: BENSEAL from 0 to 83. Valuer from St. Peter at 570° to 620°. Static level 290° below casing top which is 2° above GL numping level 320° when pumping at 10 gpm for 2 hours dermanent pump installed at 360° on August 7, 2003, with a capacity of 7 gpm dditional ocation info: ddress of well: same as above ermit Date: July 2, 2003 Permit 5:	oft shale	188	200
Casing: 5° PVC from 0° to 83° 4° PVC from 83° to 250° Frout: BENSEAL from 0 to 83. Vater from St. Peter at 570° to 620°. Itatic level 290° below casing top which is 2° above GL. Frumping level 320° when pumping at 10 gpm for 2 hours Fermanent pump installed at 360° on August 7, 2003, with a capacity of 7 gpm dditional ocation info: ddress of well: same as above ermit Date: July 2, 2003 Permit 5:	Tenton lime	200	570
Tasing: 5° PVC from 0° to 83' 4° PVC from 83' to 250' rout: BENSEAL from 0 to 83. ater from St. Peter at 570' to 620'. tatic level 290' below casing top which is 2' above GL tumping level 320' when pumping at 10 gpm for 2 hours ermanent pump installed at 360' on August 7, 2003, with a capacity of 7 gpm dditional ocation info: ddress of well: same as above ermit Date: July 2, 2003 Permit 5:	t. Peter ·	570	620
4" PVC from 83' to 250' rout: BENSEAL from 0 to 83. ater from St. Peter at \$70' to 620'. tatic level 290' below casing top which is 2' above GL umping level 320' when pumping at 10 gpm for 2 hours ermanent pump installed at 360' on August 7, 2003, with a capacity of 7 gpm dditional ocation info: ddress of well: same as above ermit Date: July 2, 2003 Permit 8:	otal Depth		: - 620
Water from St. Peter at \$70' to 620'. Static level 290' below casing top which is 2' above GL. Pumping level 320' when pumping at 10 gpm for 2 hours Permanent pump installed at 360' on August 7, 2003, with a capacity of 7 gpm Additional Address of well: same as above Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003 Permit Date: July 2, 2003	-	i :	· .
dditional ocation info: ddress of well: same as above ermit Date: July 2, 2003 Permit 5:	ater from St. Peter at \$70' to 620'. tatic level 290' below casing top which is 2' above		
dditional ocation info: ddress of well: same as above ermit Date: July 2, 2003 Permit 5:			tу
ocation info: ddress of well: same as above ermit Date: July 2, 2003 Permit 5:	of 7 gpm	;	•
ermit Date: July 2, 2003 Permit 8:		:	; ;
COMPANY Wills, William D.	ddress of well: same as above	;	
	ermit Date: July 2, 2003 Permit #:	:	! ! !
	COMPANY Wills. William D.		

COUNTY NO. 40914

22 - 33M - 9E

LONGITUDE

LOCATION 0

COUNTY WILL

Location source: Location from permit

API 121974091400

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Wall	Тор	Botton
sand	0	
black dirt	3	1(
sandy gray clay	10	3(
soft shale	30	. 44
white rock	40	19:
hard gray shale	193	: 275
limestone	275	520
Total Depth	i i	520
Casing: 5° PVC from 0' to 43° .		
Nater from rock at 440° to 520°. Static level 200° below casing top which is 1° above GL Pumping level 300° when pumping at 20 gpm for 1 hour Permanent pump installed at 360° on September 16, 2003, capacity of 12 gpm Additional Cocation info: Address of well: Cocation source: Location from permit	with a	
Permit Date: July 3, 2003 Permit 0:	·	
COMPANY Stinnett, David	· 7	T .
PARM		
DATE DRILLED September 12, 2003		*
COUNTY NO. 40917		
LOCATION SE SE NE	11.1	

COUNTY

API 121974091700 7 - 33M - 9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Wall	Тор	Bottom
soil	0	: 1
gravel	. 1	: 3
yellow clay	3	13
sand & gravel	13	18
red clay	. 18	. 26
gray clay	26	40
shale	40	81
Silurian	; 81	132
Maguoketa shale	132	205
Trenton	205	320
Total Depth		320
Casing: 4.5° PVC SDR 17.from 160' to 240'		
Static level 250 below casing top which is 2 above Pumping level 265 when pumping at 10 gpm for 2 hours Permanent pump installed at 280 on April 23, 2004, wo f 7 gpm Additional Lot , subdivision.	9	ty
Address of well: same as above	 	
Location source: Location from permit	•	
Permit Date: March 5, 2004 Permit 0:	į	
COMPANY wills, William D.		
FARM		+
DATE DRILLED March 17, 2004 NO.		
ELEVATION 0 COUNTY NO. 41189.	-	
LOCATION SE SW SW LATITUDE LONGITUDE		

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Neter Well	Top	Botton
sand	. 0	35
limestone	. 35	,80
shale	80	110
limestone	110	425
Total Depth		425
Casing: 6° STEEL from -1° to 40° 4.50° PVC from 20° to 160°	·	:
Grout: BENTONITE from 0 to 40. Water from limestone at 160' to 425'. Static level 100' below casing top which is 1' abov Pumping level 240' when pumping at 20 gpm for 1 hou	r	:
Permanent pump installed at 300 on September 30, 2 capacity of 12 gpm	004, [with a	
Additional . location info:	h. 	!
Address of well:		:
Location source: Location from permit	• !	į
	 	! .
	<u> </u>	!
	ļ Į	
•	Į Į	;
•		
	j	Ţ.
Permit Date: June 23, 2004 Permit #	1	<u>i</u>
COMPANY Matherly, Hubert		
PARM	i - 1 -	
DATE DRILLED OUT, EGG, 1004 MO. 1		
ELEVATION 0 COUNTY NO. 41398	<u>i </u>	1:1:
LOCATION SW SE NE		
LATITUDE LONGITUDE		3M - 9B

	ater well	Top	Bottom
clay		0	. 10
limestone		10	: 160
shale	·	160	240
limestone		240	. 550
sandstone		550	000
Total Dept	:h		600
Casing:	6° STEEL from -1' to 42' 4.50° PVC from 20' to 280'	i i	
Water from Static lev	NTONITE from 5 to 42. In sandstone at 550' to 600'. If also to be said to said to the sa	:	:
Permanent	pump installed at 400° on June 3, 2004, with	a capacity	7 i
	of 12 gpm		İ
Additional			i,
location i			
location i	well:	: :	· -
Address of	cource: Location from permit		
Address of			

COMPANY DATE DRILLED APRIL 20, 2004 COUNTY NO. 41399 ELEVATION 0 LOCATION NW NW SW LATITUDE LONGITUDE 9 - 33H - 9E

COUNTY

API 121974139900

Page i ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Top	Botton
topsoil		
clay & gravel, mixed	: 2	. 14
	14	45
limestone	: 45	125
hard shale	125	170
rock	170	
hard shale	:	1'80
Total Depth	ļ	180
Casing: 5" PVC SDR 21 from -1 to 126'	İ	
Grout: GROUT from 0 to 125.	ļ	•
Water from rock at 125' to 170'.	!	i
Static level 50 below casing top which is 1 above GL		į
Pumping level 100 when pumping at 12 gpm for 2 hours	į .	•
Permanent pump installed at 100 on November 15, 2004,	with a	!
capacity of 12 gpm		
Additional Lot subdivision.		!
location info:		,
Address of well:		:
Location source: Location from permit	;	:
		;
	·	
	!	f
		!
·		
	i	}
Permit Date: October 8, 2004 Permit 8:	:	:
COMPANY Area Well & Pump		
DATE DRILLED October 14, 2004 RO. 1		,
COTTATE NO 41459		•
ELEVATION 0		
LOCATION SE SW NE LONGITUDE		

COUNTY

Pago 1 ILLINOIS STATE GEOLOGICAL SURVEY

	:	, i.i.
Private Water Well	Top	Bottom
clay	0	. 5
gravel & clay	. 5	. 12
limestone	12	25
shale	25	83
limestone	83	. 86
shale	86	. 134
limestone	134	165
Total Depth	:	_
Casing: 4 from 75 to 135	:	165
5' from -1' to 83'		
Grout: NEAT CEMENT from 8 to 83.		
water from limestone at 150° to 165°.	; ! . :	
Static level 43° below casing top which is 1° above GL Pumping level 55° when pumping at 10 gpm for 4 hours		
Permanent pump installed at 80' on June 30, 2005, with	ļ 	
of 10 gpm	capacity.	
Additional		
ocation info:	, ; 	
uddress of well:	l i	
muress of well:	ļ	
ocation source: Location from permit	:	
	i	
	,	
	į.	•
		•
	1	
ermit Date: May 25, 2005 Permit #:	<u> </u>	
COMPANY Doyle, Gerald		
Garrone, Frank	- 	
ATE DRILLED June 27, 2005 MO. 1		1
LEVATION 0 COUNTY NO. 41578		
OCATION NE SW NE	· , 1.,	1 "
OUNTY WILL API 121974157800		——————————————————————————————————————

Location source: Location from permit

Wills, William D. Cartwright, Bob

COUNTY Will API 121974091400 22 - 33N - 9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
sand	0	3
black dirt	3	10
sandy gray clay	10	30
soft shale	30	40
white rock	40	193
hard gray shale	193	275
limestone	275	520
Total Depth		520
Casing: 5" PVC from 0' to 43'		
Grout: ENVIROPLUG from 0 to 43. Water from rock at 440' to 520'. Static level 200' below casing top which is 1' above of the pumping level 300' when pumping at 20 gpm for 1 hour permanent pump installed at 360' on September 16, 2005 capacity of 12 gpm Additional Lot 7, Bardwell Place subdivision. location info: Address of well: 25716 Cottage Rd. Wilmington, IL Location source: Location from permit		
	i	
Permit Date: July 3, 2003 Permit #:	:	
_ ·		
COMPANY Stinnett, David FARM Ferguson, William		
COMPANY Stinnett, David FARM Ferguson, William DATE DRILLED September 12, 2003 NO.		
COMPANY Stinnett, David FARM Ferguson, William DATE DRILLED September 12, 2003 NO. ELEVATION 0 COUNTY NO. 40917		
COMPANY Stinnett, David FARM Ferguson, William DATE DRILLED September 12, 2003 NO.		

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
soil	0	1
gravel	1	3
yellow clay	3	13
sand & gravel	13	18
red clay	18	26
gray clay	26	40
shale	40	81
Silurian	81	132
Maquoketa shale	132	205
Trenton	205	320
Total Depth		320
Casing: 4.5" PVC SDR 17 from 160' to 240'	!	
Static level 250' below casing top which is 2' above G Pumping level 265' when pumping at 10 gpm for 2 hours Permanent pump installed at 280' on April 23, 2004, wi of 7 gpm Additional Lot , subdivision. location info: Address of well: same as above Location source: Location from permit		ty
Permit Date: March 5, 2004 Permit #:		
COMPANY Wills, William D.		
FARM Vedder, Charles		
DATE DRILLED March 17, 2004 NO.		
ELEVATION 0 COUNTY NO. 41189		
LOCATION SE SW SW LATITUDE 41.348026 LONGITUDE - 88.225701		
COUNTY Will API 121974118900	8 - 33N	- 9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Wat	er Well			Тор	Bottom
sand				0	35
limestone				35	80
shale				80	110
limestone				110	425
Total Depth				4	425
	6" STEEL from -1' 4.50" PVC from 20'	to 40' to 160'		1	
Water from Static leve Pumping lev	ONITE from 0 to 40 limestone at 160' t 1 100' below casing el 240' when pumpin ump installed at 30	to 425'. g top whi ng at 20]0' on Se	gpm for 1 hour	İ	
Additional location in		ens River	rview subdivisio	n.	!
Address of	well: 25806 Cottag Wilmington,				
Location so	ource: Location fro	m permit			į
				1	į
Permit Dat	e: June 23, 2004		Permit #:		
COMPANY	Matherly, Hubert				
FARM	Ramuta, Matthew			- - - - - - - - - - 	
-	LED July 28, 2004		NO. 1		
ELEVATION		cou	NTY NO. 41398		
	SW SE NE				
	41.355342		DE - 88.233313		
COUNTY	Will	API	121974139800	7 - 33	3N - 9E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
	0	10
clay	10	; 160
Limestone	160	240
shale limestone	240	550
	550	600
sandstone		600
Total Depth		
Casing: 6" STEEL from -1' to 42' 4.50" PVC from 20' to 280'		:
Grout: BENTONITE from 5 to 42. Water from sandstone at 550' to 600'. Static level 120' below casing top which is 1' above Pumping level 300' when pumping at 20 gpm for 1 hour Permanent pump installed at 400' on June 3, 2004, wit of 12 gpm		Y
Additional Lot 1, subdivision. location info:		
Address of well: 24760 Cottage Rd. Wilmington, IL		
Location source: Location from permit		
Permit Date: September 24, 2003 Permit #:		
COMPANY Matherly, Hubert		
FARM Sorg, Ron		
DATE DRILLED April 20, 2004 NO. 1		1
ELEVATION 0 COUNTY NO. 41399		+
LOCATION NW NW SW		
LATITUDE 41.353757 LONGITUDE - 88.209704	0 _ 21	3N - 9E
COUNTY Will API 121974139900	y - 3:	,., · JE

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

Private Water Well	Тор	Bottom
	0	2
opsoil	2	14
	14	45
imestone	45	125
ard shale	125	170
ock	170	180
aard shale		180
otal Depth		:
Casing: 5" PVC SDR 21 from -1' to 126'		i
Grout: GROUT from 0 to 125. Water from rock at 125' to 170'. Static level 50' below casing top which is 1' above Pumping level 100' when pumping at 12 gpm for 2 hour Permanent pump installed at 100' on November 15, 200 capacity of 12 gpm	s	
Additional Lot , subdivision. location info:		
Address of well: 25132 Cottage Rd. Wilmington, IL		
Location source: Location from permit		
Permit Date: October 8, 2004 Permit #:	!	
		I I
COMPANY Area Well & Pump FARM Johnson, Bob		++-
DATE DRILLED October 14, 2004 NO. 1		
COLDERY NO. 41459		
ELEVATION 0 LOCATION SE SW NE		
LATITUDE 41.355306 LONGITUDE - 88.216973	<u> </u>	
COUNTY Will API 121974145900	8 - 33	3 n - 9E

COUNTY Will

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY

		'r " - 14 -
Private Water Well	Тор	Bottom
clay	0	5
gravel & clay	5	12
limestone	12	25
shale	25	83
limestone	83	86
shale	86	134
limestone	134	165
Total Depth	1	165
Casing: 4" from 75' to 135' 5" from -1' to 83'	† !	
Grout: NEAT CEMENT from 8 to 83. Water from limestone at 150' to 165'. Static level 43' below casing top which is 1' above Pumping level 55' when pumping at 10 gpm for 4 hours Permanent pump installed at 80' on June 30, 2005, wi of 10 gpm	ı İ	
Additional Lot 18, subdivision.	2	
Address of well: 25148 Cottage Rd. Wilmington, IL	i	
Location source: Location from permit		
Permit Date: May 25, 2005 Permit #:		
COMPANY Doyle, Gerald		
FARM Garrone, Frank		
DATE DRILLED June 27, 2005 NO. 1		
ELEVATION 0 COUNTY NO. 41578		
LOCATION NE SW NE		
LATITUDE 41.357116 LONGITUDE - 88.217068		

COUNTY Will API 121974157800 8 - 33N - 9E

APPENDIX C

QUALITY ASSURANCE PROGRAM - TELEDYNE BROWN ENGINEERING,INC.

Quality Assurance Manual

For

Teledyne Brown Engineering

Environmental Services

2508 Quality Lane

Knoxville, Tennessee 37931-3133

865-690-6819

Generated by: Symul Verry
Lynne Perry, QA Marrager

Approved by: Keith Jeter, Operations Manager

Сору Мо..

Issued To: 6

Date:

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	<u>Page</u>
1.0	KNOXVILLE QAM SECTION INTRODUCTION	7
2.0	QUALITY SYSTEM	10
2.1	Policy	10
2.2	Quality System Structure	10
2.3	Quality System Objectives	10
2.4	Personnel Orientation, Training, and Qualification	11
3.0	ORGANIZATION, AUTHORITY, AND RESPONSIBILITY	12
4.0	PERSONNEL ORIENTATION, DATA INTEGRITY, TRAINING, AND QUALIFICATION	13
4.1	Orientation	13
4.2	Data Integrity	13
4.3	Training	13
4.4	Qualification	13
4.5	Records	13
5.0	CUSTOMER INTERFACES	14
5.1	Interface Personnel	14
5.2	Bid Requests and Tenders	14
5.3	Contracts	14
5.4	TBE's Expectation of Customers	14
5.5	Customer Satisfaction	15
	5.5.1 Customer Complaints	15
	5.5.2 Customer Confidentiality	15
6.0	DOCUMENTATION GENERATION AND CONTROL	16
6.1	General	16
6.2	New Documentation	
6.3	Documentation Changes	16

TABLE OF CONTENTS - Continued

6.4	Docum	nentation Lists and Distributions	16
6.5	Other	Documentation	16
6.6	Docum	nentation Reviews	16
7.0	DESIG	N OF LABORATORY CONTROLS	17
7.1	Genera	al	17
7.2	Facility	<i>(</i>	17
7.3	Techni	ical Processes and Methods	17
	7.3.1	Operational Flow	17
	7.3.2	Methods	18
	7.3.3	Data Reduction and Analysis	18
7.4	Verifica	ation of Technical Processes, Methods, and Software	18
	7.4.1	Operational Flow Verification	18
	7.4.2	Method Verifications	18
	7.4.3	Data Reduction and Analysis Verification	18
7.5	Design of Quality Controls		18
	7.5.1	General	19
	7.5.2	Demonstration of Capability (D of C)	19
	7.5.3	Process Control Checks	19
7.6	Counti	ng Instrument Controls	20
8.0	PURC	HASING AND SUBCONTRACT CONTROLS	21
8.1	Genera	al	21
8.2	Source	Selection	21
8.3	Procurement of Supplies and Support Services		21
	8.3.1	Catalog Supplies	21
	8.3.2	Support Services	21
	8.3.3	Equipment and Software	22
8.4	Subco	ntracting of Analytical Services	22
8.5	Accept	tance of Items or Services	22

Page 3 of 32

TABLE OF CONTENTS - Continued

9.0	TEST SAMPLE IDENTIFICATION AND CONTROL	23
9.1	Sample Identification	23
9.2	LIMS	23
9.3	Sample Control	23
10.0	SPECIAL PROCESSES, INSPECTION, AND TEST	24
10.1	Special Processes	24
10.2	Inspections and Tests	24
	10.2.1 Intra Laboratory Checks (QC Checks)	24
	10.2.2 Inter Laboratory Checks	24
	10.2.3 Data Reviews	24
10.3	Control of Sampling of Samples	24
10.4	Reference Standards / Material	24
	10.4.1 Weights and Temperatures	25
	10.4.2 Radioactive Materials	25
11.0	EQUIPMENT MAINTENANCE AND CALIBRATION	26
11.1	General	26
11.2	Support Equipment	26
11.3	Instruments	26
11.4	Nonconformances and Corrective Actions	26
11.5	Records	27
12.0	NONCONFORMANCE CONTROLS	28
12.1	General	
12.2	Responsibility and Authority	
12.3	10CFR21 Reporting	28

Page 4 of 32

TABLE OF CONTENTS - Continued

13.0	CORRECTIVE AND PREVENTIVE ACTIONS	29
13.1	General	29
13.2	Corrective Actions	29
13.3	Preventive Actions	29
14.0	RESULTS ANALYSIS AND REPORTING	30
14.1	General	30
14.2	Results Review	30
14.3	Reports	30
15.0	RECORDS	31
15.1	General	31
15.2	Type of Records	31
15.3	Storage and Retention	31
15.4	Destruction or Disposal	31
16.0	ASSESSMENTS	32
16.1	General	32
16.2	Audits	32
16.3	Management Reviews	32

Page 5 of 32

REVISION HISTORY

Revision 7 Complete re-write January 1, 2005 Bill Meyer

Revision 8 Updated organization chart, minor change to 1.0, 4.4, 7.5.3.2, 10.2.3, and 12.3

Page 6 of 32

1.0 Knoxville QAM Section Introduction

This Quality Assurance Manual (QAM) and related Procedures describes the Knoxville Environmental Services Laboratory's QA system. This system is designed to meet multiple quality standards imposed by Customers and regulatory agencies including:

NRC's 10 CFR 50 Appendix B NRC's Regulatory Guide 4.15 DOE's Order 414.1 DOE's QSAS ANSI N 42.23 ANSI N 13.30 NELAC Standard, Chapter 5

The Environmental Services (ES) Laboratory does low level radioactivity analyses for Power Plants and other customers. It primarily analyzes environmental samples (natural products from around plants such as milk), in-plant samples (air filters, waters), bioassay samples from customer's employees, and waste disposal samples (liquids and solids).

Potable and non-potable water samples are tested using methods based on EPA standards as cited in State licenses (see Procedure 4010). The listing [current as of initial printing of this Manual – see current index for revision status and additions / deletions] of implementing Procedures (SOPs) covering Administration, Methods, Counting Instruments, Technical, Miscellaneous, and LIMS is shown in Table 1-1. Reference to these Procedures by number is made throughout this QAM.

Table 1-1

Number	Title
Part 1	Administrative Procedures
1001	Validation and Verification of Computer Programs for Radiochemistry Data Reduction
1002	Organization and Responsibility
1003	Control, Retention, and Disposal of Quality Assurance Records
1004	Definitions
1005	Data Integrity
1006	Job Descriptions
1007	Training and Certifications
1008	Procedure and Document Control
1009	Calibration System
1010	Nonconformance Controls
1011	10CFR21 Reporting
1012	Corrective Action and Preventive Action

Number	Title
1013	Internal Audits and Management Reviews
1014	RFP, Contract Review, and Order Entry (formerly 4001)
1015	Procurement Controls
Part 2	Method Procedures
2001	Alpha Isotopic and Plutonium-241
2002	Carbon-14 Activity in Various Matrices
2003	Carbon-14 and Tritium in Soils, Solids, and Biological Samples; Harvey Oxidizer Method
2004	Cerium-141 and Cerium-144 by Radiochemical Separation
2005	Cesium-137 by Radiochemical Separation
2006	Iron-55 Activity in Various Matrices
2007	Gamma Emitting Radioisotope Analysis
2008	Gross Alpha and/or Gross Beta Activity in Various Matrices
2009	Gross Beta Minus Potassium-40 Activity in Urine and Fecal Samples
2010	Tritium and Carbon-14 Analysis by Liquid Scintillation
2011	Tritium Analysis in Drinking Water by Liquid Scintillation
2012	Radioiodine in Various Matrices
2013	Radionickel Activity in Various Matrices
2014	Phosphorus-32 Activity in Various Matrices
2015	Lead-210 Activity in Various Matrices
2016	Radium-226 Analysis in Various Matrices
2017	Total Radium in Water Samples
2018	Radiostrontium Analysis by Chemical Separation
2019	Radiostrontium Analysis by Ion Exchange
2020	Sulfur-35 Analysis
2021	Technetium-99 Analysis by Eichrom Resin Separation
2022	Total Uranium Analysis by KPA
2023	Compositing of Samples
2024	Dry Ashing of Environmental Samples
2025	Preparation and Standardization of Carrier Solutions
2026	Radioactive Reference Standard Solutions and Records
2027	Glassware Washing and Storage
2028	Moisture Content of Various Matrices
2029	Polonium-210 Activity in Various Matrices
2030	Promethium-147 Analysis

Number	Title						
Part 3	Instrument Procedures						
3001	Calibration and Control of Gamma-Ray Spectrometers						
3002	Calibration of Alpha Spectrometers						
3003	Calibration and Control of Alpha and Beta Counting Instruments						
3004	Calibration and Control of Liquid Scintillation Counters						
3005	Calibration and Operation of pH Meters						
3006	Balance Calibration and Check						
3008	Negative Results Evaluation Policy						
3009	Use and Maintenance of Mechanical Pipettors						
3010	Microwave Digestion System Use and Maintenance						
Part 4	Technical Procedures						
4001	Not Used						
4002	QC Checks on Data						
4003	Sample Regent and Control						
4004	Data Package Preparation and Reporting						
4005	Blank, Spike, and Duplicate Controls						
4006	Inter-Laboratory Comparison Study Process						
4007	Method Basis and Initial Validation Process						
4008	Not Used						
4009	MDL Controls						
4010	State Certification Process						
4011	Accuracy, Precision, Efficiency, and Bias Controls and Data Quality Objectives						
4012	Not Used						
4013	Not Used						
4014	Facility Operation and Control						
4015	Documentation of Analytical Laboratory Logbooks (formerly 1002)						
4016	Total Propagated Uncertainty (formerly 1004)						
4017	LIMS Operation						
4018	Instrument Calibration System						
4019	Radioactive Reference Material Standards						
Part 5	Miscellaneous Procedures						
5001	Laboratory Hood Operations						
5002	Operation and Maintenance of Deionized Water System						
5003	Waste Management						
5004	Acid Neutralization and Purification System Operation Procedure						

Part 6	LIMS						
6001	LIMS Raw Data Processing and Reporting						
6002	Software Development and/or Pilots of COTS Packages						
6003	Software Change and Version Control						
6004	Backup of Data and System Files						
6005	Disaster Recovery Plan						
6006	LIMS Hardware						
6007	LIMS User Access						
6008	LIMS Training						
6009	LIMS Security						

2.0 QUALITY SYSTEM

The TBE-ES QA system is designed to comply with multiple customer- and regulatory agency-imposed specifications related to quality. This quality system applies to all activities of TBE-ES that affect the quality of analyses performed by the laboratory.

2.1 Policy

The TBE quality policy, given in Company Policy P-501, is "TBE will continually improve our processes and effectiveness in providing products and services that exceed our customer's expectations."

This policy is amplified by this Laboratory's commitment, as attested to by the title page signatures, to perform all work to good professional practices and to deliver high quality services to our customers with full data integrity. (See Section 4.0 and Procedure 1005).

2.2 **Quality System Structure**

The Quality System is operated by the organizations described in Section 3.0 of this Manual. The Quality System is described in this Manual and in the Procedures Manual, both of which are maintained by the QA Manager. Procedures are divided into 6 sections – Administrative, Methods, Equipments, Technical, Miscellaneous, and LIMS. This Manual is structured as shown in the Table of Contents and refers to Procedures when applicable. Cross references to the various imposed quality specifications are contained in Appendices to this Manual.

2.3 Quality System Objectives

The Quality System is established to meet the objective of assuring all operations are planned and executed in accordance with system requirements. The Quality System also assures that performance evaluations are performed (see Procedure 4006), and that appropriate verifications are performed (see Procedures in the 1000 and 4000 series) to further assure compliance. Verification includes

examination of final reports (prior to submittal to customers) to determine their quality (see Procedure 4004).

To further these objectives, various in-process assessments of data, as well as assessments of the system, via internal audits and management reviews, are performed. Both internal experts and customer / regulatory agencies perform further assessments of the system and compliance to requirements.

2.4 <u>Personnel Orientation, Training, and Qualification</u>

TBE provides indoctrination and training to employees and performs proficiency evaluation of technical personnel. This effort is described in Section 4.0.

3.0 ORGANIZATION, AUTHORITY, AND RESPONSIBILITY

TBE has established an effective organization for conducting laboratory analyses at the Knoxville Environmental Services Laboratory. The basic organization is shown in Figure 3-1. Detail organization charts with names, authorities, and responsibilities are given in Procedure 1002. Job descriptions are given in Procedure 1006.

This organization provides clearly established Quality Assurance authorities, duties, and functions. QA has the organizational freedom needed to:

- (1) Identify problems
- (2) Stop nonconforming work
- (3) Initiate investigations
- (4) Recommend corrective and preventive actions
- (5) Provide solutions or recommend solutions
- (6) Verify implementation of actions

All Laboratory personnel have the authority and resources to do their assigned duties and have the freedom to act on problems. The QA personnel have direct, independent access to Company management as shown in Figure 3-1.

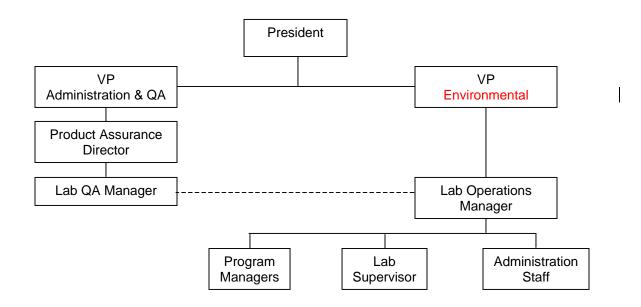


Figure 3.1. Laboratory Organization

Page 12 of 32

4.0 PERSONNEL ORIENTATION, DATA INTEGRITY, TRAINING, AND QUALIFICATION

4.1 **Orientation**

All laboratory personnel must receive orientation to the quality program if their work can affect quality. Orientation includes a brief review of customer- and regulatory agency-imposed quality requirements, the structure of the QAM, and the implementing procedures. The goal of orientation is to cover the nature and goals of the QA program.

4.2 **Data Integrity**

The primary output of the Laboratory is data. Special emphasis and training in data integrity is given to all personnel whose work provides or supports data delivery. The Laboratory Data Integrity Procedure (Procedure 1005) describes training, personnel attestations, and monitoring operations. Annual reviews are required.

4.3 Training

The Quality Assurance Manager (QAM) maintains a training matrix indicating which laboratory personnel need training in which specific Procedures. This matrix is updated when personnel change or change assignments. All personnel are trained per these requirements and procedures. This training program is described in Procedure 1007. The assigned responsibilities for employees are described in Procedure 1002 (See Section 3.0) on Organization and in Procedure 1006, Job Descriptions. Refresher training or re-training is given annually as appropriate.

4.4 Qualification

Personnel are qualified as required by their job description. Management and non-analysts are evaluated based on past experience, education, and management's assessment of their capabilities. Formal qualification is required of analysts and related technical personnel who perform laboratory functions. Each applicable person is given training and then formally evaluated by the Operations Manager (or his designees) and by QA. Each analyst must initially demonstrate capability to perform each assigned analytical effort. Each year, thereafter, he or she must perform similar analyses on Interlab Comparison Samples (see Procedure 4006) or on equivalent blanks and spikes samples. Acceptable results extend qualifications (certification). Unacceptable results require retraining in the subject method / Procedures. (See Procedure 1007 for added information, records, forms, etc. used.)

4.5 Records

Records of training subjects, contents, attendees, instructors, and certifications are maintained by QA.

Page 13 of 32

5.0 CUSTOMER INTERFACES

5.1 Interface Personnel

The Laboratory has designated Program Managers as the primary interface with all customers. Other interfaces may be the QA Manager or the Lab Operations Manager.

5.2 **Bid Requests and Tenders**

The Program Managers respond to customer requests for bids and proposals per Procedure 1014 for bids, proposals, and contract reviews. They clarify customer requests so both the customer and the lab staff understand requests. As responses are developed, internal reviews are conducted to ensure that requirements are adequately defined and documented and to verify that the Laboratory has adequate resources in physical capabilities, personal skills, and technical information to perform the work. Accreditation needs are reviewed. If subcontracts are required to perform any analysis, the subcontractor is similarly evaluated and the client notified in writing of the effort. Most qualifications are routine with standard pricing and the review of these quotes is performed by the Program Manager. Larger or more complex quotes are reviewed by the Operations Manager and the QA Manager (or designees). Evidence of review is by initialing and dating applicable papers, signatures on quotations, or by memo.

5.3 Contracts

The Program Manager's receive contract awards (oral or written) and generate the work planning for initiation preparation (charge numbers, data structure or contents in LIMS, etc.). They review contracts for possible differences from quotations and, if acceptable, contracts are processed. Documentation of the review is by initials and date as a minimum. Contract changes receive similar reviews and planning.

5.4 TBE's Expectation of Customers

TBE expects customers to provide samples suitable for lab analysis. These expectations include:

- Accurate and unambiguous identification of samples
- Proper collection and preservation of samples
- Use of appropriate containers free from external and internal contamination
- Integrity preservation during shipment and timely delivery of samples that are age sensitive
- Adequate sized samples that allow for retest, if needed
- Specification of unique MOA/MDC requirements
- Alerting the lab about abnormal samples (high activity, different chemical contents, etc.)
- Chain of custody initiation, when required.

5.5 Customer Satisfaction

TBE's quality policy centers on customer satisfaction (See 2.0). TBE will work to satisfy customers through full compliance with contract requirements, providing accurate data and properly responding to any questions or complaints. Customers are provided full cooperation in their monitoring of Laboratory performance. Customers are notified if any applicable State Accreditation is withdrawn, revoked, or suspended.

5.5.1 Customer Complaints

Any customer complaints are documented and tracked to closure. Most complaints concern analysis data and are received by Program Managers. They log each such complaint, order retests for verification, and provide documented results to customers. Complaints may also be received by QA or Operations.

If complaints are other than re-test type, the nonconformance and corrective action systems (Sections 12 and 13) are used to resolve them and record all actions taken.

5.5.2 Customer Confidentiality

All laboratory personnel maintain confidentiality of customer-unique information.

6.0 DOCUMENTATION GENERATION & CONTROL

6.1 General

The documentation generation and control system is detailed in Procedure 1008. An overview is given below. The basic quality system documents are described in Section 2.0.

6.2 New Documentation

Each Procedure and this QAM is written by appropriate personnel, validated if applicable (see Section 7.0), reviewed for adequacy, completeness, and correctness, and, if acceptable, accepted by the authorized approver [QA Manager, Operations Manager (or their designee)]. Both approvals are required if a Procedure affects both QA and Operations. (See Responsibilities in Section 3.0). These procedures control the quality measurements and their accuracy.

Each document carries a unique identification number, a revision level, dates, page numbers and total page count, and approver identification and sign off. If TBE writes code for software, the software is version identified and issued after Verification and Validation per Section 7.0.

6.3 <u>Documentation Changes</u>

Each change is reviewed in the same manner and by the same people as new documentation. Revision identifications are updated and changes indicated by side bars, italicized words, or by revision description when practical. Obsolete revisions are maintained by QA after being identified as obsolete.

6.4 Documentation Lists and Distributions

Computer indexes of documents are maintained by Quality showing the current authorized revision level of each document. These revisions are placed on the Laboratory server and obsolete ones are removed so that all personnel have only the current documents. If hard copies are produced and distributed, separate distribution lists are maintained indicating who has them and their revision level(s). Copies downloaded off the server are uncontrolled unless verified by the user (on the computer) to be the latest revision.

6.5 Other Documentation

In addition to TBE-generated documentation, QA maintains copies of applicable specifications, regulations, and standard methods.

6.6 <u>Documentation Reviews</u>

Each issued document is reviewed at least every third year by the approving personnel. This review determines continued suitability for use and compliance with requirements.

7.0 DESIGN OF LABORATORY CONTROLS

7.1 General

The Laboratory and its operating procedures are designed specifically for low level (environmental and in-plant) radioactive sample analysis. The various aspects of the laboratory design include the following which are discussed in subsequent paragraphs of this Section:

- (a) Facility
- (b) Technical Processes and Methods
- (c) Verification of Design of Processes, Methods, and Software.
- (d) Design of Quality Controls
- (e) Counting Instrument Controls

7.2 Facility

The facility was designed and built in 2000 to facilitate correct performance of operations in accordance with good laboratory practices and regulatory requirements. It provides security for operations and samples. It separates sample storage areas based on activity levels, separates wet chemistry from counting instrumentation for contamination control, and provides space and electronic systems for documentation, analysis, and record storage. Procedure 4014 describes the facility, room uses, layouts, etc.

7.3 Technical Processes and Methods

7.3.1 Operational Flow

The laboratory design provides for sample receipt and storage (including special environmental provisions for perishable items) where samples are received from clients and other labs (see Section 9.0). The samples are logged into the computer based Laboratory Information Management System (LIMS) and receive unique identification numbers and bar code labels. (See Procedure 4017 for LIMS description and user procedures). The Program Managers then plan the work and assure LIMS contains any special instructions to analysts. Samples then go to sample preparation, wet chemistry (for chemical separation), and counting based on the radionuclides. See Procedures in the 2000 and 3000 series. Analysts perform the required tasks with data being entered into logbooks, LIMS, and counting equipment data systems as appropriate. Results are collected and reviewed by the Operations Manager and Program Managers and reports to clients are generated (See Section 14.0). All records (electronic or hard copy) are maintained in files or in back-up electronic copies (see Section 15.0). After the required hold periods and client notification and approval, samples are disposed of in compliance with regulatory requirements (see Procedures 5003 and 5004).

7.3.2 Methods

The laboratory methods documented in the 2000 and 3000 series of Procedures were primarily developed by senior TBE laboratory personnel based on years of experience at our prior facility in New Jersey. They have been improved, supplemented and implemented here. Where EPA or other accepted national methods exist (primarily for water analyses under State certification programs - see Procedure 4010), the TBE methods conform to the imposed requirements or State accepted alternate requirements. Any method modifications are documented and described in the Procedure. There are no nationally recognized methods for most other analysis methods but references to other method documents are noted where applicable.

7.3.3 <u>Data Reduction and Analysis</u>

Whenever possible automatic data capture and computerized data reduction programs are used. Calculations are either performed using commercial software (counting system operating systems) or TBE developed and validated software is used (see 7.4 below). Analysis of reduced data is performed as described in Section 14.0 and Procedure 4004.

7.4 <u>Verification of Technical Processes, Methods, and Software</u>

7.4.1 Operational Flow Verification

The entire QA Manual and related procedures describe the verification of elements of the technical process flow and the establishment of quality check points, reviews, and controls.

7.4.2 Method Verifications

Methods are verified and validated per Procedure 4007 prior to use unless otherwise agreed to by the client. For most TBE methods initial validation occurred well in the past. New or significantly revised Methods receive initial validation by demonstration of their performance using known analytes (NIST traceable) in appropriate matrices. Sufficient samples are run to obtain statistical data that provides evidence of process capability and control, establishes detection levels (see procedure 4009), bias and precision data (see Procedure 4011). All method procedures and validation data are available to respective clients. Also see Section 7.5 below for the Demonstration of Capability program.

7.4.3 <u>Data Reduction and Analysis Verification</u>

Data reduction and analysis verification is performed by personnel who did not generate the data. (See Section 14.0).

7.5 Design of Quality Controls

7.5.1 General

There are multiple quality controls designed into the laboratory operations. Many of these are described elsewhere in this manual and include personnel qualification (Section 4.0), Document control (6.0), Sample identification and control (9.0), Use of reference standards (10.0), intra- and inter- laboratory tests (10.0), etc. This Section describes the basic quality control systems used to verify Method capability and performance.

7.5.2 <u>Demonstration of Capability (D of C)</u>

The demonstration of capability system verifies and documents that the method, analyst, and the equipment can perform within acceptable limits. The D of C is certified for each combination of analyte, method, and instrument type. D of C's are certified based on objective evidence at least annually. This program is combined with the analyst D of C program (See Section 4.0). Initial D of C's use the method validation effort as covered above. Subsequent D of C's use Inter-Laboratory samples (Procedure 4006) or, if necessary, laboratory generated samples using NIST traceable standards. If results are outside of control limits, redemonstration is required after investigation and corrective action is accomplished (See Sections 12.0 and 13.0)

7.5.3 Process Control Checks

Process control checks are designed to include Inter-Lab samples, Intra-lab QC check samples, and customer provided check samples. 10% of laboratory analysis samples are for process control purposes.

7.5.3.1 Inter- Lab Samples. Inter-lab samples are procured or obtained from sources providing analytes of interest in matrices similar to normal client samples. These samples may be used for Demonstration of Capability of analyst's, equipment and methods. They also provide for independent insight into the lab's process capabilities. Any value reported as being in the warning zone (over 2 sigma) is reviewed and improvements taken. Any value failing (over 3 sigma) is documented on an NCR and formal investigation per Section 12.0 and 13.0 is performed. If root causes are not clearly understood and fixed, re-tests are required using lab prepared samples (See Procedure 4006).

7.5.3.2 QC Samples. QC samples, along with Inter-lab samples and customer check samples, are 10% of the annual lab workload for the applicable analyte and method. If batch processing is used, some specifications require specific checks with each batch or each day rather than as continuous process controls. (See Procedure 4005)

QC samples consist of multiple types of samples including:

- (a) Method blanks
- (b) Blank spikes
- (c) Matrix spikes

- (d) Duplicates
- (e) Tracers and carriers

Acceptance limits for these samples are given in Procedures or in lab standards. The number, frequency, and use of these sample types varies with the method, matrix, and supplemental requirements. The patterns of use versus method and the use of the resulting test data is described in Procedure 4005.

7.5.3.3 Customer Provided Check Samples. Customers may provide blind check samples and duplicates to aid in their evaluation of the Laboratory. When the lab is notified that samples are check samples their results are included in the QC sample percentage counts. Any reported problems are treated as formal complaints and investigated per Section 5.

7.6 Counting Instrument Controls

The calibration of instruments is their primary control and is described in Section 11.0. In addition, counting procedures (3000 series) also specify use of background checks (method blank data is not used for this) to evaluate possible counting equipment contamination. Instrument calibration checks using a lab standard from a different source than the one used for calibration are also used. Background data can be used to adjust client and test data. Checks with lab standards indicate potential calibration changes.

8.0 PURCHASING AND SUBCONTRACT CONTROLS

8.1 General

Procurement and Subcontracts efforts use the Huntsville-based Cost Point computer system to process orders. The Laboratory-generated Purchase Requisitions are electronically copied into Purchase Orders in Huntsville. The Laboratory also specifies sources to be used. Procured items and services are received at the Laboratory where receiving checks and inspections are made. Laboratory Procedure 1015 provides details on the procurement control system at the Laboratory and references the Huntsville procedures as applicable.

8.2 <u>Source Selection</u>

Sources for procurements of items and services are evaluated and approved by QA as described in Procedure 1015. Nationally recognized catalog item sources are approved by the QA Manager based on reputation. Maintenance services by an approved distributor or the equipment manufacturing company are pre-approved. Sources for other services are evaluated by QA, based on service criticality to the quality system, by phone, mail out, or site visit.

Subcontract sources for laboratory analysis services are only placed with accredited laboratories (by NELAP, NUPIC, State, Client, etc.) as applicable for the type of analysis to be performed. QA maintains lists of approved vendors and records of evaluations performed.

8.3 Procurement of Supplies and Support Services

8.3.1 Catalog Supplies

The Laboratory procures reagents, processing chemicals, laboratory "glassware," consumables, and other catalog items from nationally known vendors and to applicable laboratory grades, purities, concentrations, accuracy levels, etc. Purchase Requisitions for these items specify catalog numbers or similar call-outs for these off-the-shelf items. Requisitions are generated by the personnel in the lab needing the item and are approved by the Operations or Production Manager. Reagents are analytical reagent grade only.

8.3.2 **Support Services**

Purchase Requisitions for support services (such as balance calibration, equipment maintenance, etc.) are processed as in 8.3.1 but technical requirements are specified and reviewed before approvals are given.

8.3.3 Equipment and Software

Purchase Requisitions for new equipment, software programs, and major facility modifications affecting the quality system are reviewed and approved by the Operations Manager and the QA Manager.

8.4 **Subcontracting of Analytical Services**

When necessary, the Laboratory may subcontract analytical services required by a client. This may be because of special needs, infrequency of analysis, etc. Applicable quality and regulatory requirements are imposed in the Purchase Requisition and undergo a technical review by QA. TBE reserves the right of access by TBE and our client for verification purposes.

8.5 Acceptance of Items or Services

Items and services affecting the quality system are verified at receipt based on objective evidence supplied by the vendor. Supply items are reviewed by the requisitioner and, if acceptable, are accepted via annotation on the vendor packing list or similar document. Similarly, equipment services are accepted by the requisitioning lab person. Calibration services are accepted by QA based on certification reviews. (See Section 11.0.)

Data reports from analytical subcontractors are evaluated by Program Managers and subsequently by the Operations Manager (or designee) as part of client report reviews.

Items are not used until accepted and if items or services are rejected, QA is notified and nonconformance controls per Section 12.0 are followed. Vendors may be removed from the approved vendor's list if their performance is unacceptable.

9.0 TEST SAMPLE IDENTIFICATION AND CONTROL

9.1 Sample Identification

Incoming samples are inspected for customer identification, container condition, chain of custody forms, and radioactivity levels. If acceptable, the sample information is entered into LIMS which generates bar coded labels for attachment to the sample(s). The labels are attached and samples stored in the assigned location. If environmental controls are needed (refrigeration, freezing, etc.), the samples are placed in these storage locations. If not acceptable, the Program Manager is notified, the customer contacted, and the problem resolved (return of sample, added data receipts, etc.). See Procedure 4003 for more information on sample receipt.

9.2 <u>LIMS</u>

The LIMS is used to schedule work, provide special information to analysts, and record all actions taken on samples. See Procedure 4017 and the 6000 series of procedures for more information on LIMS operations.

9.3 Sample Control

The sample, with its bar coded label, is logged out to the applicable lab operation where the sample is processed per the applicable methods (Procedures 2000 and 3000). The LIMS-assigned numbers are used for identification through all operations to record data. Data is entered into LIMS, log books (kept by the analysts) or equipment data systems to record data. The combination of LIMS, logbooks, and equipment data systems provide the Chain of Custody data and document all actions taken on samples. Unused sample portions are returned to its storage area for possible verification use. Samples are discarded after required time limits are passed and after client notification and approval, if required.

10.0 SPECIAL PROCESSES, INSPECTION, AND TEST

10.1 **Special Processes**

The Laboratory's special processes are the methods used to analyze a sample and control equipment. These methods are defined in Procedures in the 2000 and 3000 series. These processes are performed to the qualified methods (see Section 7.0) by qualified people (see 4.0).

10.2 Inspections and Tests

The quality of the process is monitored by indirect means. This program involves calibration checks on counting equipments (see Section 11.0), intralaboratory checks, and inter-laboratory checks. In addition, some customers submit quality control check samples (blinds, duplicates, external reference standards). All generated data gets independent reviews.

10.2.1 Intra Laboratory Checks (QC Checks)

The quantity and types of checks varies with the method, but basic checks which may include blanks, spiked blanks, matrix spikes, matrix spike duplicates, and duplicates are used as appropriate for customer samples. This process is described in Procedure 4005 and in Section 7.0.

10.2.2 <u>Inter Laboratory Checks</u>

TBE participates in Inter-lab performance evaluation (check) programs with multiple higher level labs. These programs provide blind matrices for the types of matrix/analyte combinations routinely processed by the Lab, if available. This program is described in Procedure 4006.

10.2.3 Data Reviews

Raw data and reports are reviewed by the Operations Manager, or designees. This review checks for data logic, expected results, procedure compliance, etc. (See Section 14.0).

10.3 Control of Sampling of Samples

Samples for analysis are supplied by customers preferably in quantities sufficient to allow re-verification analyses if needed. The samples are prepared for analysis by analysts and then an aliquot (partial sample extraction) is taken from the homogeneous customer sample for the initial analysis. Methods specify standard volumes of sample material required. Sampling data is recorded in LIMS and/or logbooks.

10.4 Reference Standards / Material

10.4.1 Weights and Temperatures

Reference standards are used by the Laboratory's calibration vendor to calibrate the Labs working instruments measuring weights and thermometers.

10.4.2 Radioactive Materials

Reference radioactive standards, traceable to NIST, are procured from higher level laboratories. These reference materials are maintained in the standards area and are diluted down for use by laboratory analysts. All original and diluted volumes are fully traceable to source, procedure, analyst, dilution, and acquisition dates. See Section 11.0 and Procedure 1009.

11.0 EQUIPMENT MAINTENANCE AND CALIBRATION

11.1 General

There are two types of equipment used by the Laboratory: support equipment (scales, glassware, weights, thermometers, etc.) and instruments for counting. Standards traceable to NIST are used for calibration and are of the needed accuracy for laboratory operations. Procedures 1009, 4018, and 4019 describe the calibration and maintenance programs.

11.2 Support Equipment

Analytical support equipment is purchased with the necessary accuracies and appropriate calibration data. If needed, initial calibration by the Laboratory or its calibration vendor is performed. Recalibration schedules are established and equipment recalibrated by the scheduled date by a calibration vendor or by Laboratory personnel. Maintenance is performed, as needed, per manufacturer's manuals or lab procedures.

In addition to calibrations and recalibrations, checks are made on the continued accuracy of items as described in Procedure 1009. Records are maintained of calibration and specified checks.

11.3 <u>Instruments</u>

Instruments receive initial calibration using radioactive sources traceable to NIST. The initial calibration establishes statistical limits of variation that are used to set control limits for future checks and recalibration. This process is described in Procedure 4018. Instruments are maintained per Instrument Manual requirements. Recalibrations are performed per the Procedure.

Between calibrations, check sources are used to assure no significant changes have occurred in the calibration of items. Background checks are performed to check for possible radioactive contamination. Background values are used to adjust sample results. Hardware and software are safeguarded from adjustments that could invalidate calibrations or results.

11.4 Nonconformances and Corrective Actions

If calibrations or checks indicate a problem, the nonconformance system (Section 12.0) and corrective action system (Section 13.0) are initiated to document the problem and its resolution. Equipment is promptly removed from service if questionable.

11.5 Records

Records of calibrations are maintained. Calibration certificates from calibration vendors are maintained by QA. Other calibration data and check data is maintained in log books, LIMS, or instrument software as appropriate and as described in Procedures 1009, 4018, and 4019.

12.0 NONCONFORMANCE CONTROLS

12.1 General

The nonconformance control system is implemented whenever a nonconforming condition on any aspect of Laboratory analysis, testing, or results exist. The system takes graded actions based on the nature and severity of the nonconformance. Nonconforming items or processes are controlled to prevent inadvertent use. Nonconformances are documented and dispositioned. Notification is made to affected organizations, including clients. Procedure 1010 describes the procedures followed. Sample results are only reported after resolution.

12.2 Responsibility and Authority

Each Laboratory employee has the responsibility to report nonconformances and the authority to stop performing nonconforming work or using nonconforming equipment. Laboratory supervision can disposition and take corrective actions on minor problems. Any significant problem is documented by QA using the Laboratory's NCR system per Procedure 1010. QA conducts or assures the conduct of cause analyses, disposition of items or data, and initiation of corrective action if the nonconformance could recur.

12.3 <u>10CFR21 Reporting</u>

The QA Manager reviews NCRs for possible need of customer and/or NRC notification per the requirements of 10CFR21. Procedure 1011 is followed in this review and for any required reporting.

13.0 CORRECTIVE AND PREVENTIVE ACTIONS

13.1 General

The Laboratory takes corrective actions on significant nonconformances (see Section 12.0). It also initiates preventive and improvement actions per the Company Quality Policy (see Section 2.0). The procedures for Corrective Action/Preventive Action systems are contained in Procedure 1012.

13.2 Corrective Actions

Corrective actions are taken by Operations and Quality to promptly correct significant conditions adverse to quality. The condition is identified and cause analysis is performed to identify root causes. Solutions are evaluated and the optimum one selected that will prevent recurrence, can be implemented by the Laboratory, allows the Laboratory to meet its other goals, and is commensurate with the significance of the problem. All steps are documented, action plans developed for major efforts, and reports made to Management. QA verifies the implementation effectiveness. Procedure 1012 provides instructions and designates authorities and responsibilities.

13.3 Preventive Actions

Preventive actions are improvements intended to reduce the potential for nonconformances. Possible preventive actions are developed from suggestions from employees and from analysis of Laboratory technical and quality systems by management. If preventive actions or improvements are selected for investigation, the issues, investigation, recommendations, and implementation actions are documented. Follow up verifies effectiveness.

Page 29 of 32

14.0 RESULTS ANALYSIS AND REPORTING

14.1 General

The Laboratory's role is to provide measurement-based information to clients that is technically valid, legally defensible, and of known quality.

14.2 Results Review

The results obtained from analytical efforts are collected and reviewed by the Operations Manager and the Program Manager. This review verifies the reasonableness and consistency of the results. It includes review of sample and the related QC activity data. Procedure 4002 describes the process. Any deficiencies are corrected by re-analyses, recalculations, or corrective actions per Sections 12.0 and 13.0. Use of the LIMS with its automatic data loading features (see Procedure 4017) minimizes the possibility of transcription or calculation errors.

14.3 Reports

Reports range from simple results reporting to elaborate analytical reports based on the client requirements and imposed specifications and standards. (See Procedure 4004.) Reports present results accurately, clearly, unambiguously, objectively, and as required by the applicable Method(s). Reports include reproduction restrictions, information on any deviations from methods, and any needed data qualifiers based on QC data. If any data is supplied by analytical subcontractors (see Section 8.0), it is clearly identified and attributed to that Laboratory by either name or accreditation number.

If results are faxed or transmitted electronically, confidentiality statements are included in case of receipt by other than the intended client.

Reports are approved by the Program Manager and Operations Manager and record copies kept in file (See Section 15.0).

15.0 RECORDS

15.1 General

The Laboratory collects generated data and information related to quality or technical data and maintains them as records. Records are identified, prepared, reviewed, placed in storage, and maintained as set forth in Procedure 1003.

15.2 Type of Records

All original observations, calculations, derived data, calibration data, and test reports are included. In addition QA data such as audits, management reviews, corrective and preventive actions, manuals, and procedures are included.

15.3 Storage and Retention

Records are stored in files after completion in the lab. Files are in specified locations and under the control of custodians. Filing systems provide for retrieval. Electronic files are kept on Company servers (with regular back up) or on media stored in fireproof file cabinets. Records are kept in Laboratory files for at least 2 years after the last entry and then in Company files for another year as a minimum. Some customers specify larger periods – up to 7 years – which is also met. Generic records supporting multiple customers are kept for the longest applicable period.

15.4 <u>Destruction or Disposal</u>

Records may be destroyed after the retention period and after client notification and acceptance, if required. If the Laboratory closes, records will go in to company storage in Huntsville unless otherwise directed by customers. If the Laboratory is sold, either the new owner will accept record ownership or the records will go into Company storage as stated above.

16.0 ASSESSMENTS

16.1 General

Assessments consist of internal audits and management reviews as set forth in Procedure 1013.

16.2 **<u>Audits</u>**

Internal audits are planned, performed at least annually on all areas of the quality system, and are performed by qualified people who are as independent as possible from the activity audited. (The Laboratory's small size inhibits full independence in some technical areas.) Audits are coordinated by the Quality Manager who assures audit plans and checklists are generated and the results documented. Reports include descriptions of any findings and provide the auditor's assessment of the effectiveness of the audited activity. Report data includes personnel contacted.

Audit findings are reviewed with management and corrective actions agreed to and scheduled. Follow up is performed by QA to verify accomplishment and effectiveness of the corrective action.

16.3 Management Reviews

The Annual Quality Assurance Report, prepared for some clients, is the Management Review vehicle. These reports cover audit results, corrective and preventive actions, external assessments, and QC and inter-laboratory performance checks. The report is reviewed with Management by the QA Manager for the continued suitability of the Quality Program and its effectiveness. Any needed improvements are defined, documented, and implemented. Follow ups are made to verify implementation and effectiveness.

APPENDIX D

LABORATORY ANALYTICAL REPORTS

2508 Quality Lane Knoxville, TN 37931

865-690-6819 (Phone)

Work Order #: L28777
Exelon - Dresden
June 6, 2006

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

Case Narrative - L28777 EX001-3ESPDRES-06

06/06/2006 16:44

Sample Receipt

The following samples were received on May 30, 2006 in good condition, unless otherwise noted.

Cross Reference Table

	Cross Rejerence 10	aoic .
Client ID	Laboratory ID	Station ID(if applicable)
WG-DN-DSP-DN-105-052306-JL-051	L28777-1	
WG-DN-DSP-DN-106-052306-JL-052	L28777-2	
WG-DN-DSP-DN107-052306-JL-053	L28777-3	
WG-DN-DSP-152-052306-JH-001	L28777-4	
WG-DN-DSP-157M-052306-JH-002	L28777-5	
WG-DN-DSP-157S-052306-JH-003	L28777-6	
WG-DN-DSP-DN-150-052406-JL-054	L28777-7	
WG-DN-DSP-DN-151-052406-JL-055	L28777-8	
WG-DN-DSP-DN-108-052406-JL-056	L28777-9	
WG-DN-DSP-126-052406-JH-004	L28777-10	
WG-DN-DSP-153-052406-JH-005	L28777-11	
WG-DN-DSP-154-052506-JH-006	L28777-12	
WG-DN-DSP-158M-052506-JH-007	L28777-13	
WG-DN-DSP-158S-052506-JH-008	L28777-14	
WG-DN-DSP-159M-052506-JH-009	L28777-15	

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3	TBE-2010	EPA 906.0
TOTAL SR	TBE-2018	EPA 905.0

2508 Quality Lane Knoxville, TN 37931-3133

Case Narrative - L28777 EX001-3ESPDRES-06

06/06/2006 16:44

Gamma Spectroscopy

Quality Control

Quality control samples were analyzed as WG4063.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

Laboratory ID

QC Sample #

WG-DN-DSP-DN-105-

L28777-1

WG4063-1

052306-JL-051

H-3

Quality Control

Quality control samples were analyzed as WG4066.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

Laboratory ID

QC Sample #

WG-DN-DSP-DN-105-

L28777-1

WG4066-3

052306-JL-051

Case Narrative - L28777 EX001-3ESPDRES-06

06/06/2006 16:44

TOTAL SR

Quality Control

Quality control samples were analyzed as WG4092.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

 Client ID
 Laboratory ID
 QC Sample #

 WG-DN-DSP-DN-105-052306-JL-051
 L28777-1
 WG4092-3

Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter
Operations Manager

Sample Receipt Summary

05/30/06 13:11

Teledyne Brown Engineering Sample Receipt Verification/Variance Report

SR #: SR08626

Client: Exelon

Project #: EX001-3ESPDRES-06 LIMS #:L28777

	ted By: BWILKERSON t Date: 05/30/06 Receive Date: 05/30/0	06	
	Notification	on of Vai	riance
No Noti	Notified: tify Date: fy Method: y Comment:	Contacte	ed By:
	Client Respo	onse	
Resp	n Responding: esponse Date: ponse Method: onse Comment		
Cr	iteria	Yes No NA	Comment
1	Shipping container custody seals present and intact.	NA	
2	Sample container custody seals present and intact.	NA	¥
3	Sample containers received in good condition	Y	nis.
4	Chain of custody received with samples	Y	
5	All samples listed on chain of custody received	Y	
6	Sample container labels present and legible.	N	
	WG-DN-DSP-159M-052506-JH-009		Label on tritium bottle damaged, hard to read
7	Information on container labels correspond with chain of custody	Y	
8	Sample(s) properly preserved and in appropriate container(s)	Y	Ph at or below 2
9	Other (Describe)	NA	

	615 W. I Chicago, 773)380- 773)380-	OVERS & ASSOCIATES Bryn Mawr Avenue Illinois 60631 9933 phone 6421 fax -CUSTODY RECORD	(Labo	PED TO ratory Name	BER:		PRO	JEC	T NA	ME:	^		err	Au	795	sita	LION	
SAMPLER'S SIGNATURE	P. M. a		Julie	LUZIDI		X m No. OF CONTAINERS	PAR	AME	TER								ARKS	
SEQ. DATE		SAMPLE IDENTIFIC		-1	SAMPL MATRI			//5		TO,				/				\dashv
5/23/0	1236	WG-DN-DSP-DN-105- WG-DN-DSP-DN-106- WG-DN-DSP-DN-107-	05230	6-21-02	W W W	2		X	X X X									
		TOTAL NUMBER OF CONT	AINERS													DATE	= 5/23/	2/
RELINQUISH RELINQUISH RELINQUISH 3	family HED BY:	Mure		DATE: 5/2 TIME: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6/6	RECEIVE RECEIVE RECEIVE RECEIVE 4	ED BY:	Kni za	.cr. (BRA	IGAD	v)				TIME DATI TIME DATI TIME	: /5/5 :: :: E:	76
METHOD	OF SHIP	PMENT:				AIR	BILL	No.										
White Yellow Pink	-Fully -Rece -Ship	Executed Copy eiving Laboratory Copy per Copy poler Copy	1	L UZWICK Xe	-nd-11 R	aniz	CRA -	RECI	27/1	D FO		ىك	ATOI		Y: —	13	753	

CON	861 Chi	5 W. B cago,	OVERS & ASSOCIATES Bryn Mawr Avenue Illinois 60631	SHIPPED TO (Laboratory Name): To	= e	d	l W		Br	0	W	V						- R
	(77	3)380-	9933 phone 6421 fax	REFERENCE NUM	IBER:		PRO	DJE	CT N	AME	: ₩,	J &	<u>(</u>	(E	L c	· N -	- DI	RES	DEN
	CHA	N-OF-	CUSTODY, RECORD			က္ဆ		RAN	NETE	ROP	65	7 /	//	7		7/			
SAM	LER'S STURE:	John	PRINTED NAME:	ohn hoffman		No. OF CONTAINERS		×	75. d	ONE PER S	1/	//	//				F	REMAR	KS
SEQ. No.	DATE	TIME	SAMPLE IDENTIFIC		SAMPLE MATRIX		X	S/i.	 \$\(\cdot\)					//					
	5/22/10	1114	WG-DN-DSP-152	-02306-	MATER	2	X	X	X	_	+	_		+-	-				
-	1 agus			J (+-001		>	1	~	X	_	_	-	+-	+-					
2	11	1336	WG-DN-DSP-157.	M-02326-	10	2	X	X	<u> </u>	-			+	_	\vdash				
				JH-WZ	· · · ·	Z	X	V	X		\dashv	_		+					
3	lt	155C	WG-DN-DSP-157	-5-05-2306-	1	Kusum	1//		13										an a su su
				JH-003			1												
														_					
													_		_				
_												_			-	-			
	·							-			_		_	_					
		 				ļ		 				_		_	-				
		 																	
	.1	1	TOTAL NUMBER OF CONT.	AINERS /														DATE:	5=23=06
PEI	NQUISHE	BY:	1/1/1/1/20	DATE: 5/S		ECEIV	ED BY	: _/	Kra:	ya cho	. /	A	BR	AGA	Do.)	-	TIME:	1800
1			om you	TIME: //8			ED BY	./	$\overline{}$	}=					7			DATE:	
	NQUISHE	BY:	J Rud	DATE: 5/2		ECEIV 3)	ED R.	•		<i>'</i>								TIME:	
2		c	y James	DATE:	<u> </u>	ECEIV	ED BY											DATE:	
	INQUISHE		•	TIME:	1	4)												TIME:	
3			BAE AIT.		,		BIL	L No).										
ME	THOD O	r SHIP	JAICIA I :		~.		- 1		CEN	/ED I	===	IAF	3OR	ATO	RY B	Y:			
W	ite	-Fully	Executed Copy	SAMPLE TEAM:	<u>C</u>					الما		T	بال	le			1	275	5.8
Υe	llow		eiving Laboratory Copy		mann				TE:			т	IME:					ziwe r 🛰	r e
Pi	ik Idenrod		per Copy pler Copy	marcia	SEVI			υA	1 =			1							

NESTOGA-ROVERS & ASSOCIATED	SHIPPED TO (Laboratory Name):	Edlyne Brown
Chicago, Illinois 60631	REFERENCE NUMBER:	Dresden Generating Plant
(773)380-6421 fax CHAIN-OF-CUSTODY RECORD	45136-23	2 PARAMETERS
MPLER'S NAME:	alie Warick	PARAMETERS OF CONTAINERS REMARKS
DATE TIME SAMPLE IDENTIFIC	WINDSTI- NEW W	D XXX G
5/24/46 1285 WG-DN-DSP-DN-150-050-050-050-050-050-050-050-050-050	53406-JL-055 W 053406-JL-056 W	1 V V V
Wor Biv		
		DATE: 5-24-0
TOTAL NUMBER OF CO	NTAINERS	TIME: 1756
RELINQUISHED BY:	TIME: 17:40	2 DATE:
RELINQUISHED BY MUNICE	DATE: 5/25/06 TIME: //:53	RECEIVED BY: DATE: TIME:
RELINQUISHED BY:	DATE: TIME:	4
(3)		RECEIVED FOR LABORATORY BY: 12784
METHOD OF SHIPMENT: White -Fully Executed Copy A protection Copy	SAMPLE TEAM: Julie L.	TIME:
White -Fully Executed Copy -Receiving Laboratory Copy -Receiving Copy	Fendall P.	DATE:

CON	861 Chi (77	5 W. E icago, 3)380-	OVERS & ASSOCIATES Bryn Mawr Avenue Illinois 60631 9933 phone 6421 fax	REFERENCE NUM	IBER	:	ele							-			esden			
	•		CUSTODY,RECORD	45136	-5	-3						XG	.0	V) ·	Camer (
SAM SIGN	PLER'S *ATURE:	Doh	PRINTED NAME: j	ohn hoffmann	т		No. OF CONTAINERS	PARAMETERS (2)						REMARKS						
SEQ. No.	DATE	TIME	SAMPLE IDENTIFIC		MAT	IPLE TRIX		X		\$\\(\cdot\)	ONTY /			//	4					
1	5/24/06	1137	WG-DN-DSP-126-0		WA	TER	2		X	1		-		_	+-					
				JH-004	<u> </u>			\mathbb{H}	+	+	-	_		-	+	+				
2	A	1320	WG-DN-DSP-153-	052406-	\vdash	1		W	\bigvee	VI						 				
				JH-005		$\underline{\mathbb{V}}$	A	4	W	A				_	+	+				
				400 400 400						_		_	-		+				***	
								1 -	_			_	-	_	+					
					_		<u> </u>			-		_			+					
							<u> </u>	1					-	_						
				u un non man				-				_	-		+-	-				
												_	-	_	_	_				
							ļ	-				_	-	+-	_					
							<u> </u>	-						\dashv	_					
				Aller Aller									_	_		+-	 			
								-				_	+			-				
	1	1	TOTAL NUMBER OF CONTA	AINERS														DATE:	N-71/4	_n/
PEI	INQUISHED	BY:	1 1/11	DATE: 5/2	4/0	RE	CEIVE	D BY	(1)	Carp	, h	1	,					_ TIME:	1832	
1			5m 7077/10-	الحا با						1 am	60 [L . LA						DATE:	107 =	
	INQUISHED	BY;	Aure	DATE: 5/2		RE	ECEIVE	D BY:										TIME:		
2		W	Music	TIME: //;	53													DATE:		
	INQUISHED	BY:		DATE:			ECEIVE	ED BY:										_ TIME:		
3				TIME:		10	<u> </u>													
ME	THOD O	SHIP	MENT:				AIR	BILL												
Ye Pir	nite Ilow nk oldenrod	-Rece	Executed Copy siving Laboratory Copy per Copy pler Copy	sample TEAM: john hoff tim Leo	MC	NN		`	REC DAT	<u>_</u>	'ED F	OR	<u>L</u>	ME:	سا	RY B	Y: 	137	47	

CON	86 ² Ch (77	15 W. E icago, '3)380-	OVERS & ASSOCIATES Bryn Mawr Avenue Illinois 60631 9933 phone 6421 fax	SHIPPED TO (Laboratory Name) REFERENCE NUM #5 (36	BEF	 R:	Tela	edyne Brown PROJECT NAME: Exelon - Dres den
	CHA	IN-OF	CUSTODY RECORD					
SAM			PRINTED NAME:	John hoffme	<u>ann</u>		No. OF CONTAINERS	PARAMETERS
SEQ. No.	DATE	TIME	SAMPLE IDENTIFIC		MA	VIPLE TRIX		
1	5/25/4	0640	WG-DN-DSP-154-05	52506-	WA	一下	2	XXX
1	1		Je	1-006	<u> </u>	1	<u> </u>	
2		0940	WG-DN-DSP-158M	-052506-		ullet		
			フゖ	4-007		_		
3		1109	WG-DN-DSP-158.	8-052506-	<u> </u>			
			1 Jt	+-008			<u> </u>	
4	IV	1445	WG-DN-DSP-159	M - 052506-	<u>'</u>	1/	+W-	
			Th:	1-009		<u> </u>	V_	
				And the same of th			<u> </u>	
				All				
				are the same of th				
							ļ	
	-l	-l	TOTAL NUMBER OF CONT.				8	DATE: ambox - /
PEI	NQUISHED) BY: 🗸	1/1/1	DATE: NY	为(d	g RI		/ED BY: Fast DATE: 5/25/6 TIME: 1805
(1)			loo W	TIME:				DATE
	INQUISHED	BY:~	11 0	DATE: 5/2	1/6			/ED BY:
(2)		W	Mure	TIME: //;'	55			DATE
\vdash	INQUISHED			DATE:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			/ED BY:
3				TIME:			4)	
	THOD O	F SHIP	MENT:				AIR	R BILL No.
Wh	nite Ilow	-Fully	Executed Copy siving Laboratory Copy	SAMPLE TEAM:	-\m	ann		RECEIVED FOR LABORATORY BY:
Pir		-Shipp	per Copy pler Copy	tim leo				DATE:TIME:

5/31/06

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

ACKNOWLEDGEMENT This is not an invoice

May 30, 2006

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville, CT 06062

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on May 30, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by June 06, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID:

EX001-3ESPDRES-06

P.O. #:

00411203

Release #:

Contract#:

00411203

Kathy Shaw, FAX#:860-747-1900, larry.walton@exeloncorp.com

Kathy Shaw, FAX#:860-7	4/-1900, larry.wareoned	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Client ID/	Laboratory ID	Vol/Units Start Collect End Collect
Station	Analysis	Price Date/Time Date/Time

		05/23/06:1130
WG-DN-DSP-DN-105-05230	6-JL-0 L28777-1	03/23/00:1130
MG	GELI	108.00
WG WG	H-3	108.00
WG WG	SR-90 (FAST)	140.00
		pro-
WG-DN-DSP-DN-106-05230	6-JL-0 L28777-2	05/23/06:1230
		108.00
WG	GELI	108.00
WG	H-3	140.00
WG	SR-90 (FAST)	140.00
WG-DN-DSP-DN107-052306	5TT05 L28777-3	05/23/06:1350
MG-DW-DBL-DWIO, COESS		
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
		05/23/06:1114
WG-DN-DSP-152-052306-6	JH-001 L28777-4	05/23/06:1114
***	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG	510 90 (11161)	
WG-DN-DSP-157M-052306	-јн-002 128777-5	05/23/06:1336
	Page 1	

Client ID/ Station	Laboratory ID Analysis	Vol/Units Start Collect End Collect Price Date/Time Date/Time
TIO.	GELI	108.00
WG WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-DN-DSP-157S-0523	06-ЈН-003 L28777-6	05/23/06:1550
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-DN-DSP-DN-150-05	2406-JL-0 L28777-7	05/24/06:1225
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-DN-DSP-DN-151-05	2406-JL-0 L28777-8	05/24/06:1415
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-DN-DSP-DN-108-05	52406-JL-0 L28777-9	05/24/06:1705
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00 05/24/06:1137
WG-DN-DSP-126-05240	06-JH-004 L28777-10	
WG	GELI	108.00
WG	H-3 SR-90 (FAST)	108.00 140.00
WG		
WG-DN-DSP-153-05240	06-JH-005 L28777-11	05/24/06:1320
WG	GELI	108.00
WG	H-3 SR-90 (FAST)	108.00 140.00
WG	No.	
WG-DN-DSP-154-05250	06-JH-006 L28777-12	05/25/06:0640
WG	GELI	108.00
WG	H-3 SR-90 (FAST)	108.00 140.00
WG	SR-90 (FAST)	
WG-DN-DSP-158M-052	506-ЈН-007 128777-13	05/25/06:0940
WG	GELI	108.00
WG	H-3 SR-90 (FAST)	108.00 140.00
WG		05/25/06:1109
WG-DN-DSP-158S-052	506-ЈН-008 L28777-14	
WG	GELI	108.00
WG	H-3 SR-90 (FAST)	108.00 140.00
WG	(16A1) UE-NG	110.00

Client ID/ Station	Laboratory ID Analysis		End Collect Date/Time
SCACTOH			
WG-DN-DSP-159M-0	52506-ЈН-009 L28777-15	05/25/06:1445	
		***************************************	22.5000.0000000000000000000000000000000
	GELI	108.00	
WG WG		108.00 108.00	

End of document

Charles, Rebecca

From: Charles, Rebecca

Sent: Monday, June 05, 2006 6:07 PM

To: 'Larry.Walton@exeloncorp.com'; 'Zigmund.Karpa@exeloncorp.com'; 'Joyce.Tomlinson@exeloncorp.com'

Subject: High results for Dresden tritiums

High notification. These samples are scheduled to be reported tomorrow. I will give you further status in the morning.

L28777-2,WG-DN-DSP-DN-106-052306-JL-052 exceeded flag values for WG,H-3, 2370 pCi/l **HIGH L28777-3,WG-DN-DSP-DN107-052306-JL-053 exceeded flag values for WG,H-3, 9820 pCi/l **HIGH

Rebecca Charles Teledyne Brown Engineering Project Manager (865) 934-0379 (865) 934-0396 (fax)

This email and any of its attachments may contain Teledyne Brown Engineering proprietary information, which is privileged, confidential, or subject to copyright belong to Teledyne Brown Engineering. This e-mail is intended solely for the use of the individual or entity to which it is addressed. If you are not the intended recipient of this e-mail, you are hereby notified that any dissemination, distribution, copying, or action taken in relation to the contents and attachments to this e-mail is strictly prohibited and may be unlawful. If you have received this e-mail in error, please notify the sender immediately and permanently delete the original and any copy and printout of this e-mail. Thank You

Internal Chain of Custody

Teledyne Brown Engineering
Internal Chain of Custody

************************* Containernum 1 Sample # L28777-1 Analyst Prod DW GELI DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 ************************ Containernum 2 Sample # L28777-1 Analyst Prod DW GELI DWH-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 05/30/2006 00:00 Donna Webb Sample Custodian 030854 099999 05/30/2006 16:42 Lauren Larsen Donna Webb 029728 030854 05/30/2006 16:43 Donna Webb 030854 Lauren Larsen 06/02/2006 08:59 029728 Sample Custodian 099999 Donna Webb 06/02/2006 09:00 030854 ************************ Containernum 1 Sample # L28777-2 Analyst Prod DWGELI DW H-3 CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 ******************** Containernum 2 Sample # L28777-2 Analyst Prod GELI DW DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 Donna Webb 030854 Sample Custodian 099999 05/30/2006 16:42 Lauren Larsen Donna Webb 029728 05/30/2006 16:43 030854 Donna Webb 030854 Lauren Larsen 029728 06/02/2006 08:59 Sample Custodian 099999 Donna Webb 030854 06/02/2006 09:00 ******************* Containernum Sample # L28777-3 Analyst Prod DW **GELI** DW H-3

Relinquish Date Relinquish By

SR-90 (FAST)

CJF

Received By

Prod

GELI

Teledyne Brown Engineering
Internal Chain of Custody

Internal Chain of Custody *********************** Containernum Sample # L28777-3 Received By Relinquish Date Sample Custodian 099999 05/30/2006 00:00 *********************** Containernum 2 Sample # L28777-3 Analyst Prod DW GELI DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 05/30/2006 00:00 Donna Webb 030854 Sample Custodian 099999 05/30/2006 16:42 029728 Lauren Larsen Donna Webb 030854 05/30/2006 16:43 Donna Webb 030854 Lauren Larsen 029728 06/02/2006 08:59 Sample Custodian 099999 Donna Webb 030854 06/02/2006 09:00 *********************** Containernum 1 Sample # L28777-4 Analyst Prod DWGELI DWH-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 *********************** Containernum 2 Sample # L28777-4 Analyst Prod DW GELI DW H-3 CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 Donna Webb 030854 Sample Custodian 099999 05/30/2006 16:42 Lauren Larsen Donna Webb 029728 030854 05/30/2006 16:43 Donna Webb 030854 Lauren Larsen 029728 06/02/2006 08:59 099999 Sample Custodian Donna Webb 06/02/2006 09:00 030854 *********************** Containernum 1 Sample # L28777-5 Analyst Prod DW GELI DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 05/30/2006 00:00 ************************ Containernum 2 Sample # L28777-5

Analyst

DW

Relinquish Date Relinquish By

05/30/2006 00:00

Teledyne Brown Engineering Internal Chain of Custody

*********************** Containernum 2 Sample # L28777-5 DWH-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 Donna Webb 030854 Sample Custodian 05/30/2006 16:42 099999 Lauren Larsen Donna Webb 029728 05/30/2006 16:43 030854 Donna Webb 030854 Lauren Larsen 06/02/2006 08:59 029728 Sample Custodian 099999 Donna Webb 06/02/2006 09:00 030854 *********************** Containernum 1 Sample # L28777-6 Analyst Prod DW **GELI** DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 *********************** Containernum 2 Sample # L28777-6 Analyst Prod DW GELI DW H-3SR-90 (FAST) CJF Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 Donna Webb 030854 Sample Custodian 099999 05/30/2006 16:42 Lauren Larsen 029728 Donna Webb 05/30/2006 16:43 030854 Donna Webb 030854 Lauren Larsen 029728 06/02/2006 08:59 Sample Custodian 099999 Donna Webb 030854 06/02/2006 09:00 *********************** Containernum 1 Sample # L28777-7 Analyst Prod DW **GELI** DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 *********************** Containernum 2 Sample # L28777-7 Analyst Prod DW **GELI** DWH-3CJF SR-90 (FAST)

Received By

099999

Sample Custodian

L28777 20 of 127 Page: 4 of 7

06/06/06 16:45

Teledyne Brown Engineering
Internal Chain of Custody

		rternar charn or custous		
**************************************		**************************************		****
Relinquish Date			Received By	m rrabb
05/30/2006 16:42	099999	Sample Custodian	030854	Donna Webb
05/30/2006 16:43	030854	Donna Webb	029728	Lauren Larsen
06/02/2006 08:59	029728	Lauren Larsen	030854	Donna Webb
06/02/2006 09:00	030854	Donna Webb	099999	Sample Custodian
**************************************		**************************************	*****	*****
Prod	Analys	st		
GELI	DW			
н-3	DW			
SR-90 (FAST)	CJF			
Relinquish Date Rel	inquish By		Received By	Sample Custodian
05/30/2006 00:00			099999	_
**************************************		**************************************	*****	****
Prod	Analy	st		
GELI	₽W			
H-3	DM			
SR-90 (FAST)	CJF			
Relinquish Date Rel	inquish By		Received By 099999	Sample Custodian
05/30/2006 00:00				-
05/30/2006 16:42	099999	Sample Custodian	030854	Donna Webb
05/30/2006 16:43	030854	Donna Webb	029728	Lauren Larsen
06/02/2006 08:59	029728	Lauren Larsen	030854	Donna Webb
06/02/2006 09:00	030854	Donna Webb	099999	Sample Custodian
**************************************		**************************************	*******	****
Prod	Analy	rst		
GELI	D W			
H-3	DW			
SR-90 (FAST)	CJF			
Relinquish Date Re	linquish By		Received By	
05/30/2006 00:00			099999	Sample Custodian
**************************************		**************************************	******	****
Prod GELI	Analy DW	yst		
н-3	DW			
SR-90 (FAST)	CJF			
Relinquish Date Re	linguish Bv		Received By	7
05/30/2006 00:00			099999	Sample Custodian
05/30/2006 16:42	099999	Sample Custodian	030854	Donna Webb
•	030854	Donna Webb	029728	Lauren Larsen
05/30/2006 16:43		Lauren Larsen	030854	Donna Webb
06/02/2006 08:59	029728	Donna Webb	099999	Sample Custodian
06/02/2006 09:00	030854	DOUMA MEDD	0,000	

Relinquish Date Relinquish By

Teledyne Brown Engineering
Internal Chain of Custody

************************ Containernum Sample # L28777-10 Analyst Prod DW GELI DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 ************************ Containernum 2 Sample # L28777-10 Analyst Prod DW GELI H-3DW CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 Donna Webb 030854 Sample Custodian 099999 05/30/2006 16:42 029728 Lauren Larsen Donna Webb 030854 05/30/2006 16:43 030854 Donna Webb Lauren Larsen 029728 06/02/2006 08:59 Sample Custodian 099999 Donna Webb 06/02/2006 09:00 030854 *********************** Containernum 1 Sample # L28777-11 Analyst Prod DWGELI DWH-3SR-90 (FAST) CJF Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 ************************ Containernum 2 Sample # L28777-11 Analyst Prod DW **GELI** DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 Donna Webb Sample Custodian 030854 05/30/2006 16:42 099999 029728 Lauren Larsen Donna Webb 030854 05/30/2006 16:43 030854 Donna Webb Lauren Larsen 06/02/2006 08:59 029728 Sample Custodian 099999 Donna Webb 030854 06/02/2006 09:00 ************************ Containernum Sample # L28777-12 Analyst Prod DW GELI DW H-3CJF SR-90 (FAST)

Received By

Prod GELI Teledyne Brown Engineering
Internal Chain of Custody

Internal Chain of Custody *********************** Containernum Sample # L28777-12 Received By Relinquish Date Sample Custodian 099999 05/30/2006 00:00 ******************* Containernum 2 Sample # L28777-12 Analyst Prod DW GELI DW H-3SR-90 (FAST) CJF Received By Relinquish Date Relinquish By 099999 Sample Custodian 05/30/2006 00:00 Donna Webb 030854 Sample Custodian 05/30/2006 16:42 099999 Lauren Larsen 029728 Donna Webb 05/30/2006 16:43 030854 Donna Webb 030854 Lauren Larsen 06/02/2006 08:59 029728 099999 Sample Custodian Donna Webb 06/02/2006 09:00 030854 ************************ Sample # L28777-13 Containernum 1 Analyst Prod DW GELI H-3 DW CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 ********************** Containernum 2 Sample # L28777-13 Analyst Prod GELI DW DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 Donna Webb 030854 Sample Custodian 099999 05/30/2006 16:42 Lauren Larsen Donna Webb 029728 030854 05/30/2006 16:43 030854 Donna Webb Lauren Larsen 06/02/2006 08:59 029728 099999 Sample Custodian Donna Webb 06/02/2006 09:00 030854 ******************* Containernum 1 Sample # L28777-14 Analyst Prod DWGELI DWH-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 *********************** Containernum 2 Sample # L28777-14

Analyst

DW

Lauren Larsen

Sample Custodian

Donna Webb

029728

030854

099999

Teledyne Brown Engineering

Internal Chain of Custody

************************ Containernum 2 Sample # L28777-14 DW H-3 SR-90 (FAST) CJF Received By Relinquish Date Relinquish By 099999 Sample Custodian 05/30/2006 00:00 Donna Webb 030854 Sample Custodian 05/30/2006 16:42 099999 Lauren Larsen 029728 Donna Webb 05/30/2006 16:43 030854 Donna Webb 030854 Lauren Larsen 06/02/2006 08:59 029728 099999 Sample Custodian Donna Webb 06/02/2006 09:00 030854 *********************** Sample # L28777-15 Containernum 1 Analyst Prod DWGELI DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 ************************ Containernum 2 Sample # L28777-15 Analyst Prod DW GELI DW H-3CJF SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 05/30/2006 00:00 Donna Webb 030854 Sample Custodian 099999 05/30/2006 16:42

Donna Webb

Donna Webb

Lauren Larsen

030854

029728

030854

05/30/2006 16:43

06/02/2006 08:59

06/02/2006 09:00

06/06/06

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

*****	*****	*****	******	*******
L28777-1	WG	WG-DN-DSP-DN-105-052	306-JL-051	
Process step	Prod		Analyst	Date
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	H-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		ILL	06/01/06
Count Room	н-3		KOJ	06/02/06
Count Room		(FAST)	KOJ	06/06/06
*****	****			******
L28777-2	WG	WG-DN-DSP-DN-106-052	306-JL-052	
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	H-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		ILL	06/01/06
Count Room	H-3		KOJ	06/02/06
Count Room	SR-90	(FAST)	KOJ	06/06/06
*****	*****	*******	*****	********
L28777-3	WG	WG-DN-DSP-DN107-0523	306-Л-053	
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	H-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		ILL	06/01/06
Count Room	н-3		KOJ	06/02/06
Count Room	SR-90	(FAST)	KOJ	06/06/06
*****	*****			*******
L28777-4	WG	WG-DN-DSP-152-05230		
Process step	Prod		Analyst	Date
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	H-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		ILL	06/01/06
Count Room	H-3		KOJ	06/02/06
Count Room		(FAST)	KOJ	06/06/06
*******	*****			*******
L28777-5	WG	WG-DN-DSP-157M-0523		
Process step	Prod		Analyst	Date
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	H-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		ILL	06/01/06

Page 2 of 4

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L28777-5	WG	WG-DN-DSP-157M-05230	6-ЈН-002	
Count Room	н-3		KOJ	06/02/06
Count Room	SR-90	(FAST)	КОЈ	06/06/06
****	****	******	*****	*******
L28777-6	WG	WG-DN-DSP-157S-05230		
Process step	Prod		Analyst	Date
Login	N-100-		BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	н-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI	•	ILL	06/01/06
Count Room	H-3		KOJ	06/02/06
Count Room	SR-90	(FAST)	KOJ	06/06/06
****	*****	*****	*****	*******
L28777-7	WG	WG-DN-DSP-DN-150-05	2406-JL-054	
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	H-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		ILL	06/01/06
Count Room	н-3		KOJ	06/02/06
Count Room	SR-90	(FAST)	KOJ	06/06/06
*****	*****	*******	****	******
L28777-8	WG	WG-DN-DSP-DN-151-05	2406-JL-055	
Process step	Prod		Analyst	<u>Date</u>
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	H-3		D₩	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		KPW	06/01/06
Count Room	H-3		КОЈ	06/02/06
Count Room	SR-90	(FAST)	KOJ	06/06/06
*****	*****			************
L28777-9	WG	WG-DN-DSP-DN-108-05	52406-JL-056	
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	н-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		KPW	06/01/06
Count Room	Н-З		KOJ	06/02/06
Count Room	SR-90	(FAST)	KOJ	06/06/06
*****	*****			********
L28777-10	WG	WG-DN-DSP-126-0524		
Process step	Prod		Analyst	Date
Login			BWILKERSON	05/30/06

06/06/06

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L28777-10	WG	WG-DN-DSP-126-052406	5-јн-004	
Aliquot	GELI		DW	05/30/06
Aliquot	н-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI	,	KPW	06/01/06
Count Room	H-3		KOJ	06/02/06
Count Room	SR-90	(FAST)	KOJ	06/06/06
*****	*****	******	*****	*******
L28777-11	WG	WG-DN-DSP-153-05240	6-ЈН-005	
Process step	Prod		Analyst	<u>Date</u>
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	H-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		KPW	06/01/06
Count Room	H-3		KOJ	06/02/06
Count Room	SR-90	(FAST)	KOJ	06/06/06
******	*****	*******	******	******
L28777-12	WG	WG-DN-DSP-154-05250	6-ЈН-006	
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	H-3		D₩	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		KPW	06/01/06
Count Room	н-3		KOJ	06/03/06
Count Room		(FAST)	KOJ	06/06/06
******	****			*******
L28777-13	WG	WG-DN-DSP-158M-0525		Data
Process step	Prod		Analyst	<u>Date</u>
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	н-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
Count Room	GELI		KPW	06/01/06
Count Room	H-3		KOJ	06/03/06
Count Room	SR-90	(FAST)	КОЈ	06/06/06
*****	*****			********
L28777-14	WG	WG-DN-DSP-158S-0525		Dato
Process step	Prod		Analyst	<u>Date</u> 05/30/06
Login			BWILKERSON	05/30/06
Aliquot	GELI		DM	05/31/06
Aliquot	H-3		DM	
Aliquot	SR-90) (FAST)	CJF	06/05/06
Count Room	GELI		KPW	06/01/06
Count Room	H-3		KOJ	06/03/06
Count Room	SR-90) (FAST)	КОЈ	06/06/06

Page 4 of 4

06/06/06

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

*****	*****	****	*****	*******
L28777-15	WG	WG-DN-DSP-159M-05250	06-ЈН-009	
Process step	Prod	•	<u>Analyst</u>	<u>Date</u>
Login			BWILKERSON	05/30/06
Aliquot	GELI		DW	05/30/06
Aliquot	н-3		DW	05/31/06
Aliquot	SR-90	(FAST)	CJF	06/05/06
4	GELI	(11.01)	ILL	06/02/06
Count Room	H-3		KOJ	06/03/06
Count Room		(T. O.M.)	KOJ	06/06/06
Count Room	SR-90	(FAST)	NOO	00,00,00

Analytical Results Summary

L28777

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: WG-DN-DSP-DN-105-052306-JL-051

Collect Start: 05/23/2006 11:30

Matrix: Ground Water

(WG)

Station:

Volume:

Description:

Collect Stop:

Receive Date: 05/30/2006

% Moisture:

LIMS Number: L28	8777-1					D	Alianot	Aliquot	Reference	Count	Count	Count		
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Units	Date	Date	Time	Units	F	lag Values
11.2	2010	3.19E+02	1.17E+02	1.58E+02	pCi/L		10	ml		06/02/06	60	M	+	
H-3 TOTAL SR	2018	5.25E-01	6.56E-01	1.22E+00	pCi/L	Ì	450	ml	05/23/06 11:30	06/06/06	150	M	U	
MN-54	2013	6.59E-01	3.19E+00	5.38E+00	pCi/L		3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No
	2007	9.87E-01	3.36E+00	5.71E+00	pCi/L		3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No
CO-58 FE-59	2007	6.76E-01	7.17E+00	1.20E+01	pCi/L		3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No
CO-60	2007	-3.50E-01	3.76E+00	6.41E+00	pCi/L		3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No
ZN-65	2007	5.24E+00	7.34E+00	1.29E+01	pCi/L		3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No
	2007	2.38E+00	3.24E+00	5.61E+00	pCi/L		3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No
NB-95	2007	-6.41E+00		8.78E+00	pCi/L	İ	3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No
ZR-95	2007	1.56E+00	4.97E+00	5.70E+00	pCi/L		3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No
CS-134	2007	6.72E-01	3.49E+00	5.81E+00	pCi/L	İ	3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No
CS-137		-5.11E+00		2.79E+01	pCi/L	Ì	3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No
BA-140 LA-140	2007	1.73E+00		1.09E+01	pCi/L		3556.18	ml	05/23/06 11:30	06/01/06	9001	Sec	U	No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Spec

Low recovery High recovery Page 1 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28777

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-DN-106-052306-JL-052

Collect Start: 05/23/2006 12:30

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Receive Date: 05/30/2006

% Moisture:

Description:

LIMS Number: L2	28777-2		1 7 7			Run	Aliquot	Aliquot	Reference	Count	Count	Count	
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values
11.2	2010	2.37E+03	2.89E+02	2.34E+02	pCi/L		10	ml		06/02/06	30.23	M	+ High
H-3 TOTAL SR	2018	7.75E-01	7.22E-01	1.31E+00	pCi/L		450	ml	05/23/06 12:30	06/06/06	150	M	U
MN-54	2007	1.19E+00	3.42E+00	5.83E+00	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No
CO-58	2007	-2.51E+00	3.75E+00	5.74E+00	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No
FE-59	2007	3.20E-01	7.23E+00	1.20E+01	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No
CO-60	2007	1.42E+00	3.39E+00	5.86E+00	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No
ZN-65	2007	8.53E+00		1.36E+01	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No
NB-95	2007	4.23E+00	3.53E+00	6.32E+00	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No
ZR-95	2007	-6.73E+00	6.17E+00	9.11E+00	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No
CS-134	2007	5.33E+00		6.48E+00	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No
CS-134 CS-137	2007	4.55E+00		6.30E+00	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No
BA-140	2007	-1.48E+00		2.82E+01	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No
LA-140	2007	2.48E+00		1.12E+01	pCi/L		3601.55	ml	05/23/06 12:30	06/01/06	6901	Sec	U No

Flag Values

Compound/Analyte not detected or less than 3 sigma U

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

Spec Low recovery

High recovery

Page 2 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

Report of Analysis 06/06/06 16:38

L28777

BROWN ENGINEERING, INC.

A Teledyne Technologies Company

Conestoga-Rovers & Associates EX001-3ESPDRES-06

Kathy Shaw

WG-DN-DSP-DN107-052306-JL-053

Collect Start: 05/23/2006 13:50

Matrix: Ground Water

(WG)

Sample ID: Station:

Collect Stop:

Volume:

Description:

Receive Date: 05/30/2006

% Moisture:

1 29777 3

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	F	Flag Values
	2010	9.82E+03	1.03E+03	4.39E+02	pCi/L	1	10	ml		06/02/06	8.2	M	+	High
H-3		2.73E-01	6.10E-01	1.17E+00	pCi/L		450	ml	05/23/06 13:50	06/06/06	150	M	U	
TOTAL SR	2018		3.08E+00	4.92E+00	pCi/L		3621.76	ml	05/23/06 13:50	06/01/06	9602	Sec	U	No
MN-54	2007	-8.79E-01		5.07E+00	pCi/L	1	3621.76	ml	05/23/06 13:50	06/01/06	9602	Sec	U	No
CO-58	2007	-1.31E+00	6.44E+00	1.06E+01	pCi/L		3621.76	ml	05/23/06 13:50	06/01/06	9602	Sec	U	No
FE-59	2007	-5.67E-01		4.42E+00	pCi/L	1	3621.76	ml	05/23/06 13:50	06/01/06	9602	Sec	U	No
CO-60	2007	-3.19E+00			pCi/L		3621.76	ml	05/23/06 13:50	06/01/06	9602	Sec	U	No
ZN-65	2007	7.09E-01	8.31E+00	1.17E+01	pCi/L		3621.76	ml	05/23/06 13:50	06/01/06	9602	Sec	U	No
NB-95	2007	1.34E+00	3.00E+00	5.10E+00	, A		3621.76	ml	05/23/06 13:50	06/01/06	9602	Sec	U	No
ZR-95	2007	1.64E+00		9.21E+00	pCi/L	-	3621.76	ml	05/23/06 13:50	06/01/06	9602	Sec	U	No
CS-134	2007	5.30E+00		5.81E+00	pCi/L		3621.76	ml	05/23/06 13:50	06/01/06	9602	Sec	U	No
CS-137	2007	-9.18E-01	3.34E+00	5.43E+00	pCi/L		3621.76		05/23/06 13:50	06/01/06	9602	Sec	Ū	No
BA-140	2007	4.37E+00		2.82E+01	pCi/L			ml	05/23/06 13:50	06/01/06	9602	Sec	U	No
LA-140	2007	-2.61E+00	5.13E+00	7.96E+00	pCi/L		3621.76	ml	103/23/00 13.30	00/01/00	7002			

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

Spec Low recovery

High recovery

Page 3 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28777

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-152-052306-JH-001

Collect Start: 05/23/2006 11:14

Matrix: Ground Water

(WG)

Station:

Volume:

Description:

Collect Stop:

Receive Date: 05/30/2006

% Moisture:

LIMS Number: L28777-4

LIMS Number: L2	8777-4	Activity	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	Flag Values
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	
H-3	2010	-1.73E+01	9.93E+01	1.66E+02	pCi/L		10	ml		06/02/06	60	M	U
TOTAL SR	2018	1.09E-01	7.17E-01	1.41E+00	pCi/L		450	ml	05/23/06 11:14	06/06/06	150	M	U
MN-54	2007	8.34E-01	2.86E+00	4.84E+00	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	U No
CO-58	2007	-4.10E+00	3.09E+00	4.47E+00	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	U No
FE-59	2007	9.91E-01	5.97E+00	1.00E+01	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	U No
CO-60	2007	3.47E-01	2.85E+00	4.78E+00	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	U No
ZN-65	2007	9.08E+00	6.44E+00	1.18E+01	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	U No
NB-95	2007	1.42E+00	3.16E+00	5.32E+00	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	U No
ZR-95	2007	1.41E+00	5.64E+00	9.39E+00	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	U No
CS-134	2007	2.09E+00		5.32E+00	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	U No
CS-134 CS-137	2007	-7.27E-01	3.00E+00	4.89E+00	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	U No
BA-140	2007	-4.95E+00		2.53E+01	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	U No
LA-140	2007	4.14E-01	5.55E+00	9.25E+00	pCi/L		3625.33	ml	05/23/06 11:14	06/01/06	9000	Sec	UNO

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

Spec Low recovery

High recovery

Page 4 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28777

(WG)

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

WG-DN-DSP-157M-052306-JH-002

Collect Start: 05/23/2006 13:36

Matrix: Ground Water

Volume:

Sample ID: Station:

Collect Stop: Receive Date: 05/30/2006

% Moisture:

Description:

1 00000 C

LIMS Number: L28	8777-5			,	<u>,</u>	15	A 15	Alianot	Reference	Count	Count	Count		
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Date	Date	Time	Units	Flag V	alues
11.2	2010	-3.42E+01	9.72E+01	1.64E+02	pCi/L		10	ml		06/02/06	60	M	U	
H-3	2018	-3.94E-03	8.63E-01	1.72E+00	pCi/L		450	ml	05/23/06 13:36	06/06/06	150	M	U	
TOTAL SR	2017	2.81E+00	2.70E+00	5.00E+00	pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U	No
MN-54	2007	-3.83E-01	2.93E+00	5.03E+00	pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U	No
CO-58	2007	3.30E+00		1.04E+01	pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U	No
FE-59	2007	7.69E-01	2.71E+00	4.92E+00	pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U	No
CO-60		1.53E+01	7.03E+00	1.26E+01	pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U*	No
ZN-65	2007	3.67E+00		5.51E+00	pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U	No
NB-95	2007	1.19E+00		8.99E+00	pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U	No
ZR-95	2007			5.98E+00	pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U	No
CS-134	2007	3.03E+00		4.99E+00	pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U	No
CS-137	2007	-1.11E+00		2.51E+01	pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U	No
BA-140	2007	-3.17E+00			pCi/L		3585.24	ml	05/23/06 13:36	06/01/06	12000	Sec	U	No
LA-140	2007	-1.99E+00	4.85E+00	8.39E+00	pc//L		3303.24	1 1111	1 00.20.30	,				

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Spec

Low recovery High recovery Page 5 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28777

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-157S-052306-JH-003

Collect Start: 05/23/2006 15:50

Matrix: Ground Water

(WG)

Station:

Volume:

Collect Stop: Receive Date: 05/30/2006

% Moisture:

Description:

LIMS Number: L2 Radionuclide	8777-6 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
	2010	-2.12E+00	9.88E+01	1.63E+02	pCi/L		10	ml		06/02/06	60	M	U
H-3	2010			1.10E+00	pCi/L		450	ml	05/23/06 15:50	06/06/06	150	M	U
TOTAL SR	2018	6.77E-01	6.07E-01	5.19E+00	pCi/L	1	3535.09	ml	05/23/06 15:50	06/01/06	11016	Sec	U No
MN-54	2007	1.97E+00	2.99E+00		pCi/L		3535.09	ml	05/23/06 15:50	06/01/06	11016	Sec	U No
CO-58	2007	-2.08E-01	2.99E+00	4.94E+00	pCi/L	1	3535.09	ml	05/23/06 15:50	06/01/06	11016	Sec	U No
FE-59	2007	5.08E+00	6.61E+00	1.16E+01		 	3535.09	ml	05/23/06 15:50	06/01/06	11016	Sec	U No
CO-60	2007	3.00E+00		6.33E+00	pCi/L		3535.09	ml	05/23/06 15:50	06/01/06	11016	Sec	U No
ZN-65	2007	4.22E+00	7.03E+00	1.22E+01	pCi/L		3535.09	ml	05/23/06 15:50	06/01/06	11016	Sec	U No
NB-95	2007	3.19E+00		5.57E+00	pCi/L	-	3535.09	ml	05/23/06 15:50	06/01/06	11016	Sec	U No
ZR-95	2007	-5.49E+00	5.54E+00	8.26E+00	pCi/L			-	05/23/06 15:50	06/01/06	11016	Sec	U No
CS-134	2007	6.54E+00		5.25E+00	pCi/L		3535.09	ml ml	05/23/06 15:50	06/01/06	11016	Sec	U Yes
CS-137	2007	4.20E+00	3.99E+00	5.06E+00	pCi/L		3535.09	ml	05/23/06 15:50	06/01/06	11016	Sec	U No
BA-140	2007	2.64E+00	1.57E+01	2.58E+01	pCi/L	-	3535.09	ml		06/01/06	11016	Sec	U No
LA-140	2007	1.81E+00	6.28E+00	1.06E+01	pCi/L		3535.09	ml	05/23/06 15:50	1 00/01/00	11010	. 500	

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

Spec Low recovery

High recovery

Page 6 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28777

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Collect Start: 05/24/2006 12:25

Collect Stop: Receive Date: 05/30/2006 Matrix: Ground Water

(WG)

Volume:

% Moisture:

1 28777-7

Station:

Description:

Sample ID: WG-DN-DSP-DN-150-052406-JL-054

MN-54	Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag V	alues
TOTAL SR 2018 -1.82E-01 4.16E-01 8.55E-01 pCi/L 450 ml 05/24/06 12:25 06/06/06 150 M U TOTAL SR 2017 -1.82E-01 3.25E+00 5.39E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CO-58 2007 -1.45E+00 3.19E+00 5.04E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U FE-59 2007 1.23E+00 6.58E+00 1.10E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U FE-59 2007 -2.51E-02 3.11E+00 5.07E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CO-60 2007 -2.51E-02 3.11E+00 5.07E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NB-95 2007 1.15E+00 3.28E+00 5.52E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NB-95 2007 1.15E+00 3.28E+00 5.52E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-134 2007 2.72E+00 3.75E+00 5.60E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NB-94 NB-95 2007 1.46E+00 3.75E+00 5.60E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NB-94 NB-95 2007 -2.40E+00 3.75E+00 5.60E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NB-94 NB-95 2007 1.46E+00 3.75E+00 5.41E+00 PCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NB-94 NB-95 2007 1.46E+00 3.75E+00 5.41E+00 PCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NB-94 NB-95 05/24/06 12:25 06/01/06 9709 Sec U NB-95 05/24/06 12:25 06/01/06 9709 Sec U NB-95 05/24/06 12:25 06/01/06 9709 Sec U NB-95 05/24/06 12:25 06/01/06 9709 Sec U NB-95 05/24/06 12:25 06/01/06 9709 Sec U NB-95 05/24/06 12:25 06/01/06 9709 Sec U NB-95 05/24/06 12:25 06/01/06 9709 Sec U NB-95 05/24/06 12:25 06/01/06 9709 Sec U NB-95 NB-95 05/24/06 12:25 06/01/06 9709 Sec U NB-95 NB-96 NB-	T 2	2010	7.35E±01	1.03E+02	1.61E+02	pCi/L		10	ml		06/02/06	60	M		
MN-54 2007 7.53E-01 3.25E+00 5.39E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U				,				450	ml	05/24/06 12:25	06/06/06	150		U	
CO-58 2007 -1.45E+00 3.19E+00 5.04E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U FE-59 2007 1.23E+00 6.58E+00 1.10E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CO-60 2007 -2.51E-02 3.11E+00 5.07E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U ZN-65 2007 8.36E+00 7.26E+00 1.16E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NB-95 2007 1.15E+00 3.28E+00 5.52E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U ZR-95 2007 -2.40E+00 6.20E+00 9.93E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-134 2007 2.72E+00 3.75E+00 5.60E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-137 2007 1.46E+00 3.17E+00 5.41E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-140 2007 2.98E+00 1.64E+01 2.64E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U				1				3590.9	ml	05/24/06 12:25	06/01/06	9709		U	No
FE-59 2007 1.23E+00 6.58E+00 1.10E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U						· · · · · · · · · · · · · · · · · · ·		3590.9	ml	05/24/06 12:25	06/01/06	9709	Sec	U	No
CO-60 2007 -2.51E-02 3.11E+00 5.07E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U ZN-65 2007 8.36E+00 7.26E+00 1.16E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NB-95 2007 1.15E+00 3.28E+00 5.52E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U ZR-95 2007 -2.40E+00 6.20E+00 9.93E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-134 2007 2.72E+00 3.75E+00 5.60E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-137 2007 1.46E+00 3.17E+00 5.41E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-137 2007 1.46E+00 3.17E+00 5.41E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NH 140 2007 -2.98E+00 1.64E+01 2.64E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U		1						3590.9	ml	05/24/06 12:25	06/01/06	9709	Sec	U	No
ZN-65 2007 8.36E+00 7.26E+00 1.16E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U NB-95 2007 1.15E+00 3.28E+00 5.52E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U ZR-95 2007 -2.40E+00 6.20E+00 9.93E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U ZR-95 2007 2.72E+00 3.75E+00 5.60E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-134 2007 2.72E+00 3.17E+00 5.41E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-137 2007 1.46E+00 3.17E+00 5.41E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U DA 140 2007 -2.98E+00 1.64E+01 2.64E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U DA 140 2007 -2.98E+00 1.64E+01 2.64E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U								3590.9	ml	05/24/06 12:25	06/01/06	9709	Sec	U	No
NB-95 2007 1.15E+00 3.28E+00 5.52E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U ZR-95 2007 -2.40E+00 6.20E+00 9.93E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-134 2007 2.72E+00 3.75E+00 5.60E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-137 2007 1.46E+00 3.17E+00 5.41E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U CS-137 2007 1.46E+00 3.17E+00 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U DA 140 2007 -2.98E+00 1.64E+01 2.64E+01 pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U								3590.9	ml	05/24/06 12:25	06/01/06	9709	Sec	U	No
NB-95					,			3590.9	ml	05/24/06 12:25	06/01/06	9709	Sec	U	No
ZR-95									ml	05/24/06 12:25	06/01/06	9709	Sec	U	No
CS-134									ml	05/24/06 12:25	06/01/06	9709	Sec	U	No
CS-137 2007 1.40E+00 3.17E+00 3.41E+01 pc:// 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U						<u> </u>	- 		-	05/24/06 12:25	06/01/06	9709	Sec	U	No
								1	ml	05/24/06 12:25	06/01/06	9709	Sec	U	No
BA-140 2007 -2.36E to 1.04E to 2.05E to pCi/L 3590.9 ml 05/24/06 12:25 06/01/06 9709 Sec U	3A-140	2007				<u> </u>	1	-	· · · · · · · · · · · · · · · · · · ·	05/24/06 12:25	06/01/06	9709	Sec	U	No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma U*

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

Spec Low recovery

High recovery

Page 7 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

BROWN ENGINEERING, INC. A Teledyne Technologies Company

(WG)

L28777

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-DN-151-052406-JL-055

Collect Start: 05/24/2006 14:15

Matrix: Ground Water

Collect Stop:

Volume:

Description:

Station:

Receive Date: 05/30/2006

% Moisture:

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
		2747.01	1.0551.00	1.62E+02	pCi/L		10	ml		06/02/06	60	M	U
H-3	2010	9.71E+01	1.05E+02			1	450	ml	05/24/06 14:15	06/06/06	150	M	U
TOTAL SR	2018	-1.54E-01	8.70E-01	1.75E+00	pCi/L	1	3550.1	ml	05/24/06 14:15	06/01/06	10628	Sec	U No
MN-54	2007	1.18E+00	3.09E+00	5.48E+00	pCi/L	1		-	05/24/06 14:15	06/01/06	10628	Sec	U No
CO-58	2007	-1.31E+00	3.20E+00	5.40E+00	pCi/L		3550.1	ml	05/24/06 14:15	06/01/06	10628	Sec	U No
FE-59	2007	2.01E+00	5.85E+00	1.07E+01	pCi/L	-	3550.1	ml	1 +	06/01/06	10628	Sec	U No
CO-60	2007	-1.29E+00	2.72E+00	4.63E+00	pCi/L		3550.1	ml	05/24/06 14:15		10628	Sec	U No
ZN-65	2007	1.55E+00	6.26E+00	1.13E+01	pCi/L		3550.1	ml	05/24/06 14:15	06/01/06		Sec	U No
NB-95	2007	2.37E+00	3.29E+00	5.96E+00	pCi/L		3550.1	ml	05/24/06 14:15	06/01/06	10628	1	
	2007	-2.49E+00		9.33E+00	pCi/L		3550.1	ml	05/24/06 14:15	06/01/06	10628	Sec	
ZR-95	2007	8.08E+00		6.08E+00	pCi/L		3550.1	ml	05/24/06 14:15	06/01/06	10628	Sec	U No
CS-134		1.60E-01	3.11E+00	5.45E+00	pCi/L		3550.1	ml	05/24/06 14:15	06/01/06	10628	Sec	U No
CS-137	2007			3.06E+01	pCi/L		3550.1	ml	05/24/06 14:15	06/01/06	10628	Sec	U No
BA-140	2007	1.80E+01	1.71E+01			-	3550.1	ml	05/24/06 14:15	06/01/06	10628	Sec	U No
LA-140	2007	1.15E+00	5.24E+00	9.62E+00	pCi/L	1	3330.1	1 1111	, 02,				

Flag Values

Compound/Analyte not detected or less than 3 sigma U

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery

High recovery

Page 8 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

(WG)

L28777

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-DN-108-052406-JL-056

Collect Start: 05/24/2006 17:05

Matrix: Ground Water

Station:

Collect Stop:

Volume:

Description:

Receive Date: 05/30/2006

% Moisture:

1 20777 0

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
	2010	1.93E+03	2.44E+02	2.11E+02	pCi/L		10	ml		06/02/06	34.48	M	+
H-3	2010	9.85E-01	6.40E-01	1.12E+00	pCi/L		450	ml	05/24/06 17:05	06/06/06	150	M	U
TOTAL SR	2018	2.21E+00	3.00E+00	5.25E+00	pCi/L		3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No
MN-54	2007	5.01E-01	3.31E+00	5.55E+00	pCi/L		3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No
CO-58	2007	1.85E+00	6.53E+00	1.11E+01	pCi/L		3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No
FE-59	2007	-9.56E-02	3.57E+00	6.10E+00	pCi/L		3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No
CO-60	2007	7.94E-02	7.17E+00	1.19E+01	pCi/L	<u> </u>	3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No
ZN-65	2007	9.95E-01	3.18E+00	5.29E+00	pCi/L		3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No
NB-95	2007	-1.58E+00	5.63E+00	8.93E+00	pCi/L		3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No
ZR-95	2007			5.62E+00	pCi/L		3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No
CS-134	2007	3.68E+00	3.82E+00 3.34E+00	5.02E+00	pCi/L		3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No
CS-137	2007	-4.11E-01		2.53E+01	pCi/L		3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No
BA-140 LA-140	2007	5.41E+00 2.79E+00		9.64E+00	pCi/L		3503.09	ml	05/24/06 17:05	06/01/06	10331	Sec	U No

Flag Values

Compound/Analyte not detected or less than 3 sigma U

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery High recovery

Page 9 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28777

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-126-052406-JH-004

Collect Start: 05/24/2006 11:37

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Receive Date: 05/30/2006

% Moisture:

Description:

LIMS Number: L28	8777-10	Activity	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	Flag Value	
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units		
H-3	2010	-4.23E+00	9.83E+01	1.63E+02	pCi/L		10	ml		06/02/06	60	M	U	
TOTAL SR	2018	-4.93E-01	7.40E-01	1.55E+00	pCi/L		450	ml	05/24/06 11:37	06/06/06	150	M	U	r
	2013	6.44E+01	4.23E+01	4.01E+01	pCi/L		3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec		es
K-40	2007	-7.31E-01	2.90E+00	4.66E+00	pCi/L		3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec		No
MN-54	2007	9.21E-02	3.12E+00	5.12E+00	pCi/L		3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec		No
CO-58		3.06E+00		1.03E+01	pCi/L		3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec		No
FE-59	2007	-7.76E-01	2.86E+00	4.54E+00	pCi/L		3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec		No
CO-60	2007	5.83E+00	7.34E+00	1.11E+01	pCi/L	i	3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec		No
ZN-65	2007	3.64E+00		5.62E+00	pCi/L		3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec		No
NB-95	2007			8.95E+00	pCi/L		3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec	, - ,	No
ZR-95	2007	-5.30E+00	.,	5.55E+00	pCi/L		3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec	U 1	No
CS-134	2007	5.24E+00			pCi/L		3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec	U	No
CS-137	2007	5.29E+00		5.57E+00		1	3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec	U 1	No
BA-140	2007	-4.55E+00		2.51E+01	pCi/L	-	3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec	U 1	No
LA-140	2007	6.74E+00		8.59E+00	pCi/L		3423.02	ml	05/24/06 11:37	06/01/06	12419	Sec	+ }	Yes
AC-228	2007	6.13E+01	1.21E+01	1.60E+01	pCi/L		3423.02	1111	1 03/2 1/00 11:37	, 55.5 %, 65,				

Flag Values

Compound/Analyte not detected or less than 3 sigma U

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

Spec Low recovery

Page 10 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

(WG)

L28777

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-153-052406-JH-005

Collect Start: 05/24/2006 13:20

Receive Date: 05/30/2006

Matrix: Ground Water

Station:

Volume:

Collect Stop:

% Moisture:

Description:

1 20777.11

LIMS Number: L2 Radionuclide	8777-11 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	Values
	2010	2.005+01	0.200.01	1.58E+02	pCi/L		10	ml		06/02/06	60	M	U	
H-3	2010	-3.09E+01	9.38E+01		pCi/L	1	450	ml	05/24/06 13:20	06/06/06	150	M	U	
TOTAL SR	2018	-4.53E-01	8.12E-01	1.69E+00		1	3482.9	ml	05/24/06 13:20	06/01/06	10371	Sec	U	No
MN-54	2007	-2.51E+00		4.46E+00	pCi/L	-	3482.9	ml	05/24/06 13:20	06/01/06	10371	Sec	U	No
CO-58	2007	-5.11E-01	3.27E+00	5.35E+00	pCi/L		3482.9		05/24/06 13:20	06/01/06	10371	Sec	U	No
FE-59	2007	2.66E+00	6.13E+00	1.06E+01	pCi/L			ml —1	05/24/06 13:20	06/01/06	10371	Sec	U	No
CO-60	2007	2.69E+00	3.77E+00	6.84E+00	pCi/L		3482.9	ml	,	06/01/06	10371	Sec	U	No
ZN-65	2007	7.67E+00	6.67E+00	1.21E+01	pCi/L		3482.9	ml	05/24/06 13:20	06/01/06	10371	Sec	U	No
NB-95	2007	1.90E+00	3.20E+00	5.44E+00	pCi/L		3482.9	ml	05/24/06 13:20			Sec	U	No
ZR-95	2007	3.21E+00	5.69E+00	9.67E+00	pCi/L		3482.9	ml	05/24/06 13:20	06/01/06	10371		-	No
CS-134	2007	1.22E+00		5.55E+00	pCi/L		3482.9	ml	05/24/06 13:20	06/01/06	10371	Sec	U	
	2007	1.92E+00		5.67E+00	pCi/L		3482.9	ml	05/24/06 13:20	06/01/06	10371	Sec	U	No
CS-137		2.37E+00		2.74E+01	pCi/L		3482.9	ml	05/24/06 13:20	06/01/06	10371	Sec	U	No
BA-140 LA-140	2007	-2.13E+00		8.08E+00	pCi/L		3482.9	ml	05/24/06 13:20	06/01/06	10371	Sec	U	No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

Spec Low recovery

Page 11 of 15 High recovery

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

BROWN ENGINEERING, INC. A Teledyne Technologies Company

(WG)

L28777

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-154-052506-JH-006

Collect Start: 05/25/2006 06:40

Matrix: Ground Water

Station:

Collect Stop:

Volume:

Description:

Receive Date: 05/30/2006

% Moisture:

T 20777 12

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Va	alues
H-3	2010	-8.42E+00	9.75E+01	1.62E+02	pCi/L		10	ml		06/03/06	60	M	U	1
TOTAL SR	2018	-2.43E-01	8.15E-01	1.66E+00	pCi/L		450	ml	05/25/06 06:40	06/06/06	150	M	U	
MN-54	2007	1.60E-01	3.25E+00	5.62E+00	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U	No
CO-58	2007	-3.57E-01	3.29E+00	5.66E+00	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U	No
FE-59	2007	7.48E-01	6.42E+00	1.14E+01	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U	No
CO-60	2007	-1.01E+00		5.30E+00	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U	No
	2007	6.46E+00	7.38E+00	1.20E+01	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U	No
ZN-65 NB-95	2007	7.28E-01	3.31E+00	5.80E+00	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U	No
	2007	-1.47E+00		9.87E+00	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U	No
ZR-95	2007	1.00E+01	5.68E+00	6.93E+00	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U*	No
CS-134	2007	-2.14E+00		5.69E+00	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U	No
CS-137	2007	3.95E+00		2.90E+01	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U	No
BA-140 LA-140	2007	4.72E+00		1.00E+01	pCi/L		3466.66	ml	05/25/06 06:40	06/01/06	11232	Sec	U	No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

Spec Low recovery

High recovery

Page 12 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28777

(WG)

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-158M-052506-JH-007

Collect Start: 05/25/2006 09:40

Matrix: Ground Water

Station:

Collect Stop:

Volume:

Description:

Receive Date: 05/30/2006

% Moisture:

1 00777 12

LIMS Number: L2	28777-13	Activity	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	F	ag Values
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units		ag values
H-3	2010	-5.30E+01	9.50E+01	1.63E+02	pCi/L		10	ml		06/03/06	60	M	U	
	2018	-6.30E-01	9.13E-01	1.92E+00	pCi/L		450	ml	05/25/06 09:40	06/06/06	150	M	U	
TOTAL SR	2007	1.65E+02	2.61E+01	3.01E+01	pCi/L	Ì	3662.21	ml	05/25/06 09:40	06/01/06	36000	Sec	+	Yes
K-40		1.13E+00	1.87E+00	3.16E+00	pCi/L		3662.21	ml	05/25/06 09:40	06/01/06	36000	Sec	U	No
MN-54	2007	-7.09E-01	1.95E+00	3.18E+00	pCi/L	1	3662.21	ml	05/25/06 09:40	06/01/06	36000	Sec	U	No
CO-58	2007		4.00E+00	6.85E+00	pCi/L		3662.21	ml	05/25/06 09:40	06/01/06	36000	Sec	U	No
FE-59	2007	3.37E+00		3.21E+00	pCi/L		3662.21	ml	05/25/06 09:40	06/01/06	36000	Sec	U	No
CO-60	2007	1.08E-01	1.96E+00		pCi/L		3662.21	ml	05/25/06 09:40	06/01/06	36000	Sec	U	No
ZN-65	2007	5.73E+00		7.23E+00			3662.21	ml	05/25/06 09:40	06/01/06	36000	Sec	U	No
NB-95	2007	1.91E+00	1.97E+00	3.38E+00	pCi/L		3662.21	ml	05/25/06 09:40	06/01/06	36000	Sec	U	No
ZR-95	2007	1.21E-01	3.51E+00	5.83E+00	pCi/L	1			05/25/06 09:40	06/01/06	36000	Sec	U*	No
CS-134	2007	1.01E+01	3.89E+00	3.66E+00	pCi/L		3662.21	ml	05/25/06 09:40	06/01/06	36000	Sec	U	No
CS-137	2007	-6.34E-01	2.01E+00	3.25E+00	pCi/L	_	3662.21	ml		06/01/06	36000	Sec	111	No
BA-140	2007	8.99E+00	9.40E+00	1.60E+01	pCi/L		3662.21	ml	05/25/06 09:40	06/01/06	36000	Sec	U	No
LA-140	2007	2.09E+00	3.07E+00	5.26E+00	pCi/L	1	3662.21	ml	05/25/06 09:40	00/01/00	30000	300	1 0 1	1 110 1

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery High recovery Page 13 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28777

(WG)

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Collect Start: 05/25/2006 11:09

Collect Stop:

Receive Date: 05/30/2006

Matrix: Ground Water

Volume:

% Moisture:

LIMS Number: L28777-14

Station:

Description:

Sample ID: WG-DN-DSP-158S-052506-JH-008

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	Values
Autonaciae		000			a. I.	<u> </u>	10	1		06/03/06	60	M	U	
H-3	2010	6.63E+01	1.01E+02	1.59E+02	pCi/L		10	ml ,	05/05/06 11:00	06/06/06	150	M	U	
TOTAL SR	2018	-5.31E-01	7.45E-01	1.57E+00	pCi/L		450	ml	05/25/06 11:09				U	No
MN-54	2007	-5.98E-01	2.00E+00	3.22E+00	pCi/L		3593.64	ml	05/25/06 11:09	06/01/06	36000	Sec	U	No
CO-58	2007	2.59E+00	2.03E+00	3.49E+00	pCi/L		3593.64	ml	05/25/06 11:09	06/01/06	36000	Sec	U	
	2007	-1.57E+00	3.95E+00	6.38E+00	pCi/L		3593.64	ml	05/25/06 11:09	06/01/06	36000	Sec	U	No
FE-59	2007	-6.55E-01		3.06E+00	pCi/L	1	3593.64	ml	05/25/06 11:09	06/01/06	36000	Sec	U	No
CO-60				7.85E+00	pCi/L	<u> </u>	3593.64	ml	05/25/06 11:09	06/01/06	36000	Sec	U	No
ZN-65	2007	6.95E+00				 	3593.64	ml	05/25/06 11:09	06/01/06	36000	Sec	U	No
NB-95	2007	-2.43E-01	2.03E+00	3.30E+00	pCi/L	-	3593.64	ml	05/25/06 11:09	06/01/06	36000	Sec	U	No
ZR-95	2007	2.24E+00		6.04E+00	pCi/L	1			05/25/06 11:09	06/01/06	36000	Sec	U*	No
CS-134	2007	1.04E+01	4.49E+00	3.95E+00	pCi/L		3593.64	ml		06/01/06	36000	Sec	U	No
CS-137	2007	-1.13E+00	2.09E+00	3.37E+00	pCi/L		3593.64	ml	05/25/06 11:09				11	No
BA-140	2007	8.93E+00	1.01E+01	1.73E+01	pCi/L		3593.64	ml	05/25/06 11:09	06/01/06	36000	Sec	U	
LA-140	2007	1.38E+00	3.25E+00	5.50E+00	pCi/L		3593.64	ml	05/25/06 11:09	06/01/06	36000	Sec	U	No
TH-232	2007	1.58E+01		1.20E+01	pCi/L		3593.64	ml	05/25/06 11:09	06/01/06	36000	Sec	+	Yes

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

Spec Low recovery

High recovery

Page 14 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

BROWN ENGINEERING, INC. A Teledyne Technologies Company

(WG)

L28777

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-159M-052506-JH-009

Collect Start: 05/25/2006 14:45

Matrix: Ground Water

Station:

Collect Stop:

Volume:

Description:

Receive Date: 05/30/2006

% Moisture:

1 28777-15

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	
II 2	2010	5.31E+02	1.31E+02	1.62E+02	pCi/L		10	ml		06/03/06	60	M	+	
H-3	2018	-1.30E-01	7.00E-01	1.41E+00	pCi/L		450	ml	05/25/06 14:45	06/06/06	150	M	U	
TOTAL SR	2007	-1.30E-01		5.08E+00	pCi/L	i –	3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
MN-54	2007	-4.04E+00	4.13E+00	6.13E+00	pCi/L		3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
CO-58	2007	6.79E+00	,	1.43E+01	pCi/L		3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
FE-59		3.85E+00	4.50E+00	8.40E+00	pCi/L		3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
CO-60	2007	1.06E+01	1.07E+01	1.67E+01	pCi/L		3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
ZN-65	2007			7.11E+00	pCi/L		3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
NB-95	2007	4.24E+00		9.89E+00	pCi/L		3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
ZR-95	2007	-8.40E+00	-	9.89E+00 8.58E+00	pCi/L	-	3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
CS-134	2007	9.46E+00		,	pCi/L	1	3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
CS-137	2007	1.80E+00		6.70E+00		1	3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
BA-140	2007	1.61E+01	2.03E+01	3.52E+01	pCi/L		3589.89	ml	05/25/06 14:45	06/02/06	7301	Sec	U	No
LA-140	2007	7.64E-01	6.57E+00	1.10E+01	pCi/L	1	3309.07	1 1111	1 03/23/00 11.13	, 55,52,66				

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery High recovery Page 15 of 15

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

QC Results Summary

OC Summary Report

L28777 for

6/6/2006

4:42:01PM

H-3

Method Blank Summary

TBE Sample ID

WG4066-1

Radionuclide H-3

Matrix WO

Count Date/Time 06/02/2006 11:04 Blank Result < 1.660E+00

Units pCi/Total Qualifier P/F U

LCS Sample Summary

TBE Sample ID

WG4066-2

Radionuclide H-3

Matrix WO

Count Date/Time 06/02/2006 12:08 Spike Value 5.05E+002

LCS Result 5.810E+02

Units pCi/Total Spike Recovery 115.1

70-130

Range Qualifier P/F

Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000

Duplicate Summary

TBE Sample ID

Radionuclide H-3 WG4066-3

Matrix WG

Count Date/Time 06/02/2006 12:25 **Original Result** 3.190E+02

DUP Result 3.440E+02 Units pCi/L **RPD**

Range Qualifier P/F < 30

NE

L28777-1

Compound/analyte was analyzed, peak not identified and/or not detected above MDC U

< 5 times the MDC are not evaluated

** Nuclide not detected

Spiking level < 5 times activity ***

Pass Fail F

Not evaluated NE

Page: 1

QC Summary Report

L28777 for

6/6/2006

4:42:01PM

L28777

H-3

Associated Samples for	WG4066
<u>SAMPLENUM</u>	CLIENTID
L28777-1	WG-DN-DSP-DN-105-052306-JL-051
L28777-2	WG-DN-DSP-DN-106-052306-JL-052
L28777-3	WG-DN-DSP-DN107-052306-JL-053
L28777-4	WG-DN-DSP-152-052306-JH-001
L28777-5	WG-DN-DSP-157M-052306-JH-002
L28777-6	WG-DN-DSP-157S-052306-JH-003
L28777-7	WG-DN-DSP-DN-150-052406-JL-054
L28777-8	WG-DN-DSP-DN-151-052406-JL-055
L28777-9	WG-DN-DSP-DN-108-052406-JL-056
L28777-10	WG-DN-DSP-126-052406-JH-004
L28777-11	WG-DN-DSP-153-052406-JH-005
L28777-12	WG-DN-DSP-154-052506-JH-006
L28777-13	WG-DN-DSP-158M-052506-JH-007
L28777-14	WG-DN-DSP-158S-052506-JH-008
L28777-15	WG-DN-DSP-159M-052506-JH-009

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

Spiking level < 5 times activity ***

Pass P Fail F

Not evaluated NE

QC Summary Report

L28777 for

4:42:01PM 6/6/2006

TOTAL SR

				IOIALSK		<u> </u>				
	Method Blank Summary									
TBE Sample ID WG4092-1	Radionuclide TOTAL SR	<u>Matrix</u> WO	Count Date/Time 06/06/2006 16:43		Blank Result < 7.170E-01	<u>Units</u> pCi/Total	<u>Qualifier</u> <u>P/F</u> U P			
LCS Sample Summary										
TBE Sample ID WG4092-2	Radionuclide TOTAL SR	<u>Matrix</u> WO	Count Date/Time 06/06/2006 16:43	Spike Value 5.84E+001	LCS Result 6.090E+01	Units pCi/TotalSpike Recovery 104.3	Range Qualifier P/F 70-130 + P			
Spike ID: 90SR-Spike conc: 2.34E Spike Vol: 2.50E	+002									
				Duplicate Summar	\mathbf{y}					
TBE Sample ID WG4092-3 L28777-1	Radionuclide TOTAL SR	<u>Matrix</u> WG	Count Date/Time 06/06/2006 16:43	Original Result < 1.220E+00	<u>DUP Result</u> < 1.250E+00	<u>Units</u> <u>RPD</u> pCi/L	Range Qualifier P/F <30 ** NE			

Not evaluated NE

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected **

Spiking level < 5 times activity ***

Pass Fail F

QC Summary Report

L28777 for

6/6/2006

4:42:01PM

L28777

SR-90 (FAST)

Associated Samples for	WG4092
<u>SAMPLENUM</u>	CLIENTID
L28777-1	WG-DN-DSP-DN-105-052306-JL-051
L28777-2	WG-DN-DSP-DN-106-052306-JL-052
L28777-3	WG-DN-DSP-DN107-052306-JL-053
L28777-4	WG-DN-DSP-152-052306-JH-001
L28777-5	WG-DN-DSP-157M-052306-JH-002
L28777-6	WG-DN-DSP-157S-052306-JH-003
L28777-7	WG-DN-DSP-DN-150-052406-JL-054
L28777-8	WG-DN-DSP-DN-151-052406-JL-055
L28777-9	WG-DN-DSP-DN-108-052406-JL-056
L28777-10	WG-DN-DSP-126-052406-JH-004
L28777-11	WG-DN-DSP-153-052406-JH-005
L28777-12	WG-DN-DSP-154-052506-JH-006
L28777-13	WG-DN-DSP-158M-052506-JH-007
L28777-14	WG-DN-DSP-158S-052506-JH-008
L28777-15	WG-DN-DSP-159M-052506-JH-009

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

Spiking level < 5 times activity ***

Pass Fail

Not evaluated NE

Page: 4

Raw Data

Raw Data Sheet (rawdata) Jun 06 2006, 04:53 pm

Customer: Exelon Work Order: L28777

Page: 1

Nuclide: H-3	oject : <u>EX001-3</u>	ESPDRES-06									Decay &	
		_	*** 7 5-2	Mount	Count	Counter	Total	Sample	Bkg	Bkg	Eff. Ingrowth	Analyst
ample ID Run Analysis Reference	Volume/	Scavenge	Milking	Mount	Recovery Date/time	ID	counts	dt (min)	counts	dt(min)	Factor	
Client ID # Date/time	Aliquot	Date/time	Date/time	0	02-jun-06	LS7	191	60	1.63	60	.219	DW
L28777-1 H-3				U	13:29							
IG-DN-DSP-DN-105-05230	10 ml				10.20							
Activity: 3.19E+02 * Error: 1.17E+02	MDC: 1.58E+02				02-jun-06	LS7	380	30.23	1.63	60	.208	DW
L28777-2 H-3				0	14:33							
VG-DN-DSP-DN-106-05230	10 ml				14:33							
Activity: 2.37E+03 * Error: 2.89E+02	MDC: 2.34E+02				02-jun-06	LS7	394	8.2	1.63	60	.213	DW
L28777-3 H-3				0	15:07	20,						
WG-DN-DSP-DN107-052306	10 ml				15:07							
Activity: 9.82E+03 * Error: 1.03E+03	MDC: 4.39E+02				02-jun-06	LS7	93	60	1.63	60	.209	DW
L28777-4 H-3				0	-	100/	,,	-				
WG-DN-DSP-152-052306-J	10 ml				15:18							
Activity: -1.73E+01 Error: 9.93E+01	MDC: 1.66E+02 *					LS7	88	60	1.63	60	.211	DW
L28777-5 H-3				0	02-jun-06	LS/	80	00	2.00			
WG-DN-DSP-157M-052306-	10 ml				16:22							
Activity: -3.42E+01 Error: 9.72E+01	MDC: 1.64E+02	r					97	60	1.63	60	.213	DW
L28777-6 H-3				0	02-jun-06	LS7	97	00	1.05	•	,	
WG-DN-DSP-157S-052306-	10 ml				17:26							
WG-DN-DSP-1575-052300- Activity: -2.12E+00 Error: 9.88E+01	MDC: 1.63E+02	•						60	1.63	60	.215	DW
				0	02-jun-06	LS7	119	60	1.03	00		
11207777	10 ml				18:30							
WG-DN-DSP-DN-150-05240	MDC: 1.61E+02	ŧ							7 53	60	.214	DW
Activity: 7.35E+01 Error: 1.03E+02	IMC. I.GIBIOL			0	02-jun-06	LS7	125	60	1.63	60	.217	
L28777-8 H-3	10 ml				19:34							
WG-DN-DSP-DN-151-05240	MDC: 1.62E+02	k						<u></u>			016	DW
Activity: 9.71E+01 Error: 1.05E+02	MDC: 1.025702			0	02-jun-06	LS7	376	34.48	1.63	60	.216	D11
L28777-9 H-3	10 -1			-	21:42							
WG-DN-DSP-DN-108-05240	10 ml											DW
Activity: 1.93E+03 * Error: 2.44E+02	MDC: 2.11E+02			0	02-jun-06	LS7	97	60	1.63	60	.213	DΜ
L28777-10 H-3				-	22:20							
WG-DN-DSP-126-052406-J	10 ml											
Activity: -4.23E+00 Error: 9.83E+01	MDC: 1.63E+02	*		0	02-jun-06	LS7	89	60	1.63	60	.219	DW
L28777-11 H-3	_			·	23:23							
WG-DN-DSP-153-052406-J	10 ml											
Activity: -3.09E+01 Error: 9.38E+01	MDC: 1.58E+02	*		0	03-jun-0	LS7	95	60	1.63	60	.214	DW
L28777-12 H-3				U	00:27							
WG-DN-DSP-154-052506-J	10 ml				00127							
Activity: -8.42E+00 Error: 9.75E+01	MDC: 1.62E+02	*		0	03-jun-0	LS7	83	60	1.63	60	.213	DW
L28777-13 H-3				U	01:31	, 25,						
WG-DN-DSP-158M-052506-	10 ml				01:31							
Activity: -5.3E+01 Error: 9.5E+01	MDC: 1.63E+02	*			03-jun-0	5 LS7	117	60	1.63	3 60	.218	DW
L28777-14 H-3				0	03-jun-0 02:34	о 1137						
WG-DN-DSP-158S-052506-	10 ml				02:34							
Activity: 6.63E+01 Error: 1.01E+02	MDC: 1.59E+02	*					249	60	1.6	3 60	.214	DW
L28777-15 H-3				0	03-jun-0	6 LS7	243	00				
WG-DN-DSP-159M-052506-	10 ml				03:38							
Activity: 5.31E+02 * Error: 1.31E+02	MDC: 1.62E+02											

50 0f 127

Customer: Exelon Work Order: L28777

Project : EX001-3ESPDRES-06 Decay & Nuclide: SR-90 (FAST) Eff. Ingrowth Analyst Bkq Bkq Sample Counter Total Count Mount Scavenge Milking Volume/ Factor Reference Sample ID Run Analysis dt(min) counts dt (min) Weight Recovery Date/time ID counts Date/time Date/time CJF .354 .999 Date/time Aliquot 400 264 Client ID X2A 119 150 06-jun-06 0 06-jun-06 23-may-06 TOTAL SR T-28777-1 16:43 71.77 10:30 11:30 450 ml WG-DN-DSP-DN-105-05230 MDC: 1.22E+00 * .345 .999 CJF Activity: 5.25E-01 Error: 6.56E-01 400 289 150 06-jun-06 X2B 137 0 06-jun-06 TOTAL SR 23-may-06 L28777-2 16:43 71.51 10:30 450 ml WG-DN-DSP-DN-106-05230 12:30 MDC: 1.31E+00 * CJF Activity: 7.75E-01 Error: 7.22E-01 400 .344 .999 277 150 115 06-jun-06 X2C 0 06-jun-06 TOTAL SR 23-may-06 T-28777-3 79.03 16:43 10:30 450 ml 13:50 WG-DN-DSP-DN107-052306 CJF MDC: 1.17E+00 * .999 Activity: 2.73E-01 Error: 6.1E-01 307 400 .343 150 119 06-jun-06 X2D 0 06-jun-06 TOTAL SR 23-may-06 L28777-4 16:43 69.09 10:30 450 ml WG-DN-DSP-152-052306-J 11:14 MDC: 1.41E+00 * CJF Activity: 1.09E-01 Error: 7.17E-01 .335 .999 150 363 400 136 хза 06-jun-06 0 06-jun-06 TOTAL SR 23-may-06 L28777-5 16:43 63.17 10:30 450 ml WG-DN-DSP-157M-052306-13:36 CJE Activity: -3.94E-03 Error: 8.63E-01 MDC: 1.72E+00 * .351 .999 400 279 Y1B 134 150 06-jun-06 0 06-jun-06 TOTAL SR 23-may-06 16:48 82.53 10:30 450 ml 15:50 WG-DN-DSP-157S-052306-CJF Activity: 6.77E-01 Error: 6.07E-01 MDC: 1.1E+00 * .345 .999 400 150 300 102 06-jun-06 Y1C 0 06-jun-06 TOTAL SR 24-may-06 L28777-7 16:48 111.83 10:30 450 ml WG-DN-DSP-DN-150-05240 12:25 MDC: 8.55E-01 * Activity: -1.82E-01 Error: 4.16E-01 CJF 400 .362 .999 305 110 150 06-jun-06 **Y1**D 0 06-jun-06 TOTAL SR 24-may-06 L28777-8 16:48 52.42 10:30 450 ml 14:15 WG-DN-DSP-DN-151-05240 MDC: 1.75E+00 * Activity: -1.54E-01 Error: 8.7E-01 .999 CJF .349 150 280 400 147 06-jun-06 Y2A 0 06-jun-06 TOTAL SR 24-may-06 16:48 81.72 10:30 17:05 450 ml WG-DN-DSP-DN-108-05240 MDC: 1.12E+00 * CJF Activity: 9.85E-01 Error: 6.4E-01 .999 .356 150 315 400 06-jun-06 Y2B 102 0 06-jun-06 TOTAL SR 24-may-06 L28777-10 16:48 61.29 10:30 WG-DN-DSP-126-052406-J 11:37 450 ml Activity: -4.93E-01 Error: 7.4E-01 MDC: 1.55E+00 * .999 CJF 400 .35 150 268 06-jun-06 Y2C 88 0 06-jun-06 TOTAL SR 24-may-06 L28777-11 16:48 52.69 10:30 450 ml 13:20 WG-DN-DSP-153-052406-J Activity: -4.53E-01 Error: 8.12E-01 MDC: 1.69E+00 * CJF 400 .347 .999 150 291 102 Y3A 06-jun-06 0 06-jun-06 TOTAL SR 25-may-06 L28777-12 16:48 56.45 10:30 450 ml 06:40 WG-DN-DSP-154-052506-J Activity: -2.43E-01 Error: 8.15E-01 MDC: 1.66E+00 * CJF .999 279 400 .341 89 150 Y1A 0 06-jun-06 06-jun-06 TOTAL SR 25-may-06 L28777-13 16:48 48.66 10:30 09:40 450 ml WG-DN-DSP-158M-052506-MDC: 1.92E+00 * CJF Activity: -6.3E-01 Error: 9.13E-01 .346 .999 400 150 292 93 06-jun-06 Y3B 0 06-jun-06 TOTAL SR 25-may-06 T-28777-14 16:48 59.95 10:30 11:09 450 ml WG-DN-DSP-158S-052506-CJF H Activity: -5.31E-01 Error: 7.45E-01 MDC: 1.57E+00 * .352 .999 400 262 Y3D 94 150 06-jun-06 0 06-jun-06 TOTAL SR 25-may-06 L28777-15 ū 16:48 62.10 10:30 WG-DN-DSP-159M-052506-14:45 450 ml MDC: 1.41E+00 * Activity: -1.3E-01 Error: 7E-01

Page: 2

8777 ഗ 0 н N

2-Sigma

LIMS: Analyst: Sec. Review

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 11:23:27.80 TBE04 P-40312B HpGe ******** Aquisition Date/Time: 1-JUN-2006 08:53:14.38 ______

LIMS No., Customer Name, Client ID: L28777-1 WG DRESDEN

Smple Date: 23-MAY-2006 11:30:00. : 04L28777-1

Geometry : 0435L090804 Sample ID : WG : 04BG050506MT Sample Type BKGFILE : 3.55620E+00 L Start Channel: 90 Energy Tol: 1.00000 Real Time: 0 02:30:02.13 Pk Srch Sens: 5.00000 Live time : 0 02:30:00.59 : 4090

End Channel Library Used: LIBD MDA Constant : 0.00

Pk It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1	140.10* 198.33* 238.60* 295.12* 351.74* 582.84* 596.08 609.30* 1460.62* 1763.92*	26 56 1 26 55 20 31 66 12 22	201 179 98 117 95 52 43 94 27	1.80 2.66	1192.77	1.68E+00 1.52E+00 1.32E+00 1.17E+00 8.00E-01 7.86E-01 7.73E-01	2.87E-03101.3 6.21E-03 46.1 8.83E-05***** 2.85E-03 79.0 6.07E-03 41.7 2.19E-03 77.4 3.41E-03 42.3 7.35E-03 34.1 1.37E-03111.7 2.46E-03 33.4	3.00E+00 5.13E+00 1.86E+00 1.55E+00 6.79E+00 1.10E+00 4.26E+00 9.98E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural Uncorrected Decay Corr pCi/L pCi/L %Eff %Abn

%Error Area 223.34 2.489E+01 Energy Nuclide 3.921E-01 2.489E+01 10.67* 12 4426.87 1460.81 1.520E+00 9.896E-02 9.984E-02 K-40 44.60* 1 238.63 ----- Line Not Found TH-228 1.511E+00 3.95 240.98

Flag: "*" = Keyline

Summary of Nuclide Activity

Acquisition date : 1-JUN-2006 08:53:14

Sample ID : 04L28777-1

Total number of lines in spectrum

10 7

Number of unidentified lines

Number of lines tentatively identified by NID 3 30.00%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Uncorrected bood, 1-1 2-Sigma Error & Error 2.489E+01 2.489E+01 5.558E+01 223.34 2-Sigma Error %Error Flags Decay Hlife Nuclide

1.00 2.489E+01 K-40 1.28E+09Y 442.0E-02 4426.87 1.01 9.896E-02 9.984E-02 1.91Y TH-228

_____ _____ Total Activity : 2.499E+01 2.499E+01

Grand Total Activity: 2.499E+01 2.499E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 04L28777-1 Page: 3
Acquisition date: 1-JUN-2006 08:53:14

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1 1	140.10 198.33 295.12 351.74 582.84 596.08 609.30 1763.92	26 56 26 55 20 31 66 22	201 179 117 95 52 43 94 5	1.19 1.73 1.11 1.84 2.41 1.61 1.80 3.21	1192.77 1219.21	1164 1188 1214	9 8 13 11 9 14	2.87E-03 6.21E-03 2.85E-03 6.07E-03 2.19E-03 3.41E-03 7.35E-03 2.46E-03	92.1 **** 83.4 **** 84.5 68.1	1.82E+00 1.68E+00 1.32E+00 1.17E+00 8.00E-01 7.86E-01 7.73E-01 3.43E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 10
Number of unidentified lines 7
Number of lines tentatively identified by NID 3 30.00%

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags Hlife Decay pCi/L pCi/L 28E+09Y 1.00 2.489E+01 2.489E+01 Nuclide 5.558E+01 223.34 2.489E+01 K-40 1.28E+09Y 442.0E-02 4426.87 1.91Y 1.01 9.896E-02 9.984E-02 TH-228 _____ _____ 2.499E+01 Total Activity : 2.499E+01

Grand Total Activity : 2.499E+01 2.499E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Idenois					
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 TH-228	2.489E+01 9.984E-02	5.558E+01 4.420E+00	5.747E+01 9.150E+00	0.000E+00 0.000E+00	0.433 0.011
Non-Ide	entified Nuclide	es			
	Key-Line Activity K.I	L. Act error	MDA	MDA error	Act/MDA

Activity K.L. Act error MDA (pCi/L)

Nuclide (pCi/L) Ided (pCi/L)

BE-7 7.222E+00 2.810E+01 4.676E+01 0.000E+00 0.154

			Half-Life to	a aboxt	
NA-24	3.782E-02	3.656E-02		0.000E+00	0.057
CR-51	3.016E+00	3.221E+01	5.266E+01	0.000E+00	0.123
MN-54	6.589E-01	3.194E+00	5.377E+00	0.000E+00	-0.167
CO-57	-7.713E-01	2.817E+00	4.625E+00	0.000E+00	0.173
CO-58	9.869E-01	3.363E+00	5.714E+00	0.000E+00	0.056
FE-59	6.762E-01	7.167E+00	1.197E+01	0.000E+00	-0.055
CO-60	-3.495E-01	3.758E+00	6.405E+00	0.000E+00	0.406
ZN-65	5.244E+00	7.344E+00	1.293E+01	0.000E+00	-0.468
SE-75	-3.211E+00	4.317E+00	6.854E+00	0.000E+00	1.671
SR-85	1.323E+01	4.224E+00	7.918E+00	0.000E+00	-0.132
Y-88	-7.567E-01	3.590E+00	5.729E+00	0.000E+00	0.294
NB-94	1.692E+00	3.400E+00	5.755E+00	0.000E+00	0.424
NB-95	2.375E+00	3.241E+00	5.606E+00		-0.730
ZR-95	-6.406E+00	6.010E+00	8.775E+00	0.000E+00	-0.394
MO-99	-1.346E+02	2.224E+02	3.420E+02	0.000E+00	0.385
RU-103	2.357E+00	3.594E+00	6.122E+00	0.000E+00	-0.133
RU-106	-6.211E+00	2.962E+01	4.655E+01	0.000E+00	0.094
AG-110m	5.064E-01	3.244E+00	5.393E+00	0.000E+00	0.455
SN-113	3.210E+00	4.064E+00	7.054E+00	0.000E+00	0.455
SB-124	1.103E+00	6.869E+00	5.355E+00	0.000E+00	0.206
SB-125	4.400E+00	9.211E+00	1.562E+01	0.000E+00	0.282
TE-129M	4.427E+01	4.266E+01	7.452E+01	0.000E+00	
I-131	-1.766E+00	6.506E+00	1.067E+01	0.000E+00	-0.165
BA-133	2.888E+00	4.725E+00	7.067E+00	0.000E+00	0.409
CS-134	1.564E+00	4.973E+00	5.704E+00	0.000E+00	0.274
CS-136	-3.787E+00	4.641E+00	7.087E+00	0.000E+00	-0.534
CS-137	6.715E-01	3.485E+00	5.807E+00	0.000E+00	0.116
CE-139	-3.185E-01	3.070E+00	4.988E+00	0.000E+00	-0.064
BA-140	-5.105E+00	1.761E+01	2.787E+01	0.000E+00	-0.183
LA-140	1.726E+00	6.450E+00	1.090E+01	0.000E+00	0.158
CE-141	7.204E+00	6.624E+00	9.938E+00	0.000E+00	0.725
CE-144	-1.260E+01	2.414E+01	3.468E+01	0.000E+00	-0.363
EU-152	-4.691E+00	1.203E+01	1.598E+01	0.000E+00	-0.294
EU-154	-2.500E+00	5.883E+00	9.596E+00	0.000E+00	-0.261
RA-226	-2.028E+01	7.740E+01	1.264E+02	0.000E+00	-0.160
AC-228	2.719E-01	1.310E+01	2.252E+01	0.000E+00	0.012
TH-232	2.711E-01	1.306E+01	2.245E+01	0.000E+00	0.012
U-235	1.458E+01	2.587E+01	3.772E+01	0.000E+00	0.387
U-238	-5.852E+01	3.815E+02	6.123E+02	0.000E+00	-0.096
AM-241	-2.650E+01	2.693E+01	4.238E+01	0.000E+00	-0.625
WIII-7-TT	2.0502.02				

```
3.556E+00,L28777-1 WG DR
                     ,06/01/2006 11:23,05/23/2006 11:30,
A,04L28777-1
                                             ,03/14/2005 09:04,0435L090804
                     ,LIBD
B,04L28777-1
                                                   5.747E+01,,
                                                                    0.433
                                    5.558E+01,
                     2.489E+01,
           ,YES,
C, K-40
                                                                    0.011
                                                   9.150E+00,,
                                    4.420E+00,
                     9.984E-02,
            , YES,
C, TH-228
                                                                    0.154
                                                   4.676E+01,,
                                    2.810E+01,
                     7.222E+00,
            ,NO,
C, BE-7
                                                                    0.057
                                                   5.266E+01,,
                                    3.221E+01,
                     3.016E+00,
            , NO
C, CR-51
                                                                    0.123
                                                   5.377E+00,,
                                    3.194E+00,
            , NO
                     6.589E-01,
C, MN-54
                                                                   -0.167
                                                   4.625E+00,,
                                    2.817E+00,
                    -7.713E-01,
            , NO
C, CO-57
                                                                    0.173
                                                   5.714E+00,,
                                    3.363E+00,
                     9.869E-01,
            , NO
C, CO-58
                                                                    0.056
                                                   1.197E+01,,
                                    7.167E+00,
            , NO
                     6.762E-01,
C, FE-59
                                                                   -0.055
                                                   6.405E+00,,
                                    3.758E+00,
                    -3.495E-01,
            ,NO
C, CO-60
                                                                     0.406
                                                   1.293E+01,,
                                    7.344E+00,
                     5.244E+00,
            , NO
C, ZN-65
                                                                    -0.468
                                                   6.854E+00,,
                                    4.317E+00,
                    -3.211E+00,
            ,NO
C, SE-75
                                                                     1.671
                                                   7.918E+00,,
                                    4.224E+00,
                     1.323E+01,
C, SR-85
            , NO
                                                                    -0.132
                                                   5.729E+00,,
                                    3.590E+00,
                    -7.567E-01,
C, Y-88
            , NO
                                                                     0.294
                                                   5.755E+00,,
                                    3.400E+00,
                     1.692E+00,
            , NO
C, NB-94
                                                                     0.424
                                                   5.606E+00,,
                                    3.241E+00,
                     2.375E+00,
C, NB-95
            , NO
                                                                    -0.730
                                                    8.775E+00,,
                                    6.010E+00,
                    -6.406E+00,
C, ZR-95
            , NO
                                                                    -0.394
                                                    3.420E+02,,
                                    2.224E+02,
                    -1.346E+02,
 C,MO-99
            , NO
                                                                     0.385
                                                    6.122E+00,,
                                    3.594E+00,
                     2.357E+00,
            , NO
 C, RU-103
                                                                    -0.133
                                                    4.655E+01,,
                                     2.962E+01,
                    -6.211E+00,
            , NO
 C, RU-106
                                                    5.393E+00,,
                                                                     0.094
                                     3.244E+00,
                      5.064E-01,
            ,NO
 C, AG-110m
                                                                     0.455
                                                    7.054E+00,,
                                     4.064E+00,
                      3.210E+00,
 C, SN-113
            , NO
                                                                     0.206
                                                    5.355E+00,,
                                     6.869E+00,
                      1.103E+00,
             , NO
 C,SB-124
                                                                     0.282
                                                    1.562E+01,,
                                     9.211E+00,
                      4.400E+00,
             , NO
 C,SB-125
                                                                     0.594
                                                    7.452E+01,,
                                     4.266E+01,
                      4.427E+01,
            , NO
 C, TE-129M
                                                    1.067E+01,,
                                                                    -0.165
                                     6.506E+00,
                     -1.766E+00,
             , NO
 C, I-131
                                                                     0.409
                                                    7.067E+00,,
                                     4.725E+00,
                      2.888E+00,
 C, BA-133
             , NO
                                                                     0.274
                                                    5.704E+00,,
                      1.564E+00,
                                     4.973E+00,
 C, CS-134
             , NO
                                                                    -0.534
                                                    7.087E+00,,
                                     4.641E+00,
                     -3.787E+00,
 C, CS-136
             , NO
                                                                     0.116
                                                    5.807E+00,,
                                     3.485E+00,
                      6.715E-01,
 C, CS-137
             , NO
                                                                    -0.064
                                                    4.988E+00,,
                                     3.070E+00,
                     -3.185E-01,
             , NO
 C, CE-139
                                                                    -0.183
                                                    2.787E+01,,
                                     1.761E+01,
                     -5.105E+00,
             , NO
 C, BA-140
                                                                      0.158
                                                    1.090E+01,,
                                     6.450E+00,
                      1.726E+00,
             , NO
 C, LA-140
                                                                     0.725
                                                    9.938E+00,,
                                     6.624E+00,
                      7.204E+00,
             , NO
 C, CE-141
                                                                     -0.363
                                                    3.468E+01,,
                                     2.414E+01,
                     -1.260E+01,
             , NO
 C, CE-144
                                                    1.598E+01,,
                                                                     -0.294
                                     1.203E+01,
                     -4.691E+00,
 C, EU-152
             , NO
                                                                     -0.261
                                                    9.596E+00,,
                                     5.883E+00,
                     -2.500E+00,
 C, EU-154
             , NO
                                                                     -0.160
                                                    1.264E+02,,
                                     7.740E+01,
                     -2.028E+01,
             , NO
 C, RA-226
                                                    2.252E+01,,
                                                                      0.012
                                     1.310E+01,
             , NO
                      2.719E-01,
 C, AC-228
                                                                      0.012
                                                    2.245E+01,,
                                     1.306E+01,
                      2.711E-01,
 C, TH-232
             , NO
                                                                      0.387
                                                    3.772E+01,,
                                     2.587E+01,
                      1.458E+01,
  C, U-235
             , NO
                                                                     -0.096
                                                     6.123E+02,,
                                     3.815E+02,
                     -5.852E+01,
             , NO
  C, U-238
                                                     4.238E+01,,
                                                                     -0.625
                                     2.693E+01,
```

-2.650E+01,

, NO

C, AM-241

Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 10:48:26.76

TBE07 P-10768B HpGe ******* Aquisition Date/Time: 1-JUN-2006 08:53:17.70

LIMS No., Customer Name, Client ID: L28777-2 WG DRESDEN

Smple Date: 23-MAY-2006 12:30:00. : 07L28777-2 Sample ID

Geometry : 0735L090904 Sample Type : WG BKGFILE : 07BG050506MT : 3.60160E+00 L Start Channel: 40 Energy Tol: 1.00000 Real Time: 0 01:55:02.58

End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 01:55:01.19 MDA Constant: 0.00 Library Used: LIBD

Pk It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 1 2 5 3 1 4 1 5 1 6 1 7 1	65.68* 241.45 351.79* 596.21 609.33* 1409.07 1765.03*	60 61 56 40 79 14	215 125 156 47 53 11	1.93 1.55	132.20 483.87 704.60 1193.51 1219.76 2819.00 3530.59	9.81E-01 5.29E-01	8.81E-03 8.06E-03 5.73E-03 1.14E-02 2.06E-03	40.9 50.5 36.9 25.1 56.3	3.35E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Summary of Nuclide Activity Sample ID : 07L28777-2

Page: 2 Acquisition date: 1-JUN-2006 08:53:17

7 Total number of lines in spectrum Number of unidentified lines 6 Number of lines tentatively identified by NID 14.29% 1 **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 07L28777-2

Page: 3 Acquisition date : 1-JUN-2006 08:53:17

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff]	Flags
1 5 1 1 1	65.68 241.45 351.79 596.21 609.33 1409.07 1765.03	60 61 56 40 79 14	125 156 47 53	1.57 1.83 1.60 1.98 1.93 1.55 2.29	704.60 1193.51 1219.76 2819.00	474 700 1189 1213 2809	19 14 11 15 14	8.63E-03 8.81E-03 8.06E-03 5.73E-03 1.14E-02 2.06E-03 1.70E-03	81.7 **** 73.8 50.3 ****	7.01E-01 1.80E+00 1.43E+00 9.96E-01 9.81E-01 5.29E-01 4.54E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum Number of unidentified lines

Number of lines tentatively identified by NID

1 **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found

"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	1.237E+01	3.116E+01	5.306E+01	0.000E+00	0.233
NA-24	-1.815E-02	3.397E-02	Half-Life to		0 100
K-40	1.729E+01	4.638E+01	9.107E+01	0.000E+00	0.190
CR-51	-2.377E+01	3.431E+01	5.324E+01	0.000E+00	-0.446
MN-54	1.191E+00	3.416E+00	5.827E+00	0.000E+00	0.204
CO-57	-2.798E+00	2.925E+00	4.701E+00	0.000E+00	-0.595
CO-58	-2.505E+00	3.748E+00	5.742E+00	0.000E+00	-0.436
FE-59	3.201E-01	7.226E+00	1.199E+01	0.000E+00	0.027
CO-60	1.424E+00	3.385E+00	5.860E+00	0.000E+00	0.243
ZN-65	8.529E+00	7.490E+00	1.359E+01	0.000E+00	0.628
SE-75	-8.627E-01	4.264E+00	6.929E+00	0.000E+00	-0.125
SR-85	1.693E+01	4.106E+00	8.108E+00	0.000E+00	2.088
Y-88	-6.403E+00	4.182E+00	5.296E+00	0.000E+00	-1.209
NB-94	-1.233E+00	3.198E+00	5.114E+00	0.000E+00	-0.241
NB-95	4.233E+00	3.529E+00	6.321E+00	0.000E+00	0.670
ZR-95	-6.726E+00	6.167E+00	9.105E+00	0.000E+00	-0.739
MO-99	-3.665E+01	2.295E+02	3.714E+02	0.000E+00	-0.099
RU-103	2.636E+00	3.703E+00	6.418E+00	0.000E+00	0.411
RU-106	1.434E+01	3.065E+01	5.023E+01	0.000E+00	0.286
AG-110m	-1.604E+00	3.251E+00	5.187E+00	0.000E+00	-0.309
SN-113	7.383E-03	4.310E+00	7.083E+00	0.000E+00	0.001

an 104	-5.684E-01	8.110E+00	5.742E+00	0.000E+00	-0.099
SB-124	1.986E+00	8.395E+00	1.392E+01	0.000E+00	0.143
SB-125	3.030E+01	4.431E+01	7.503E+01	0.000E+00	0.404
TE-129M	1.446E+00	6.685E+00	1.120E+01	0.000E+00	0.129
I-131	4.264E+00	5.189E+00	7.803E+00	0.000E+00	0.547
BA-133	4.264E+00 5.334E+00	7.606E+00	6.484E+00	0.000E+00	0.823
CS-134	-2.129E+00	5.460E+00	8.571E+00	0.000E+00	-0.248
CS-136	4.550E+00	3.463E+00	6.295E+00	0.000E+00	0.723
CS-137	4.816E-01	3.157E+00	5.208E+00	0.000E+00	0.092
CE-139	-1.482E+00	1.726E+01	2.822E+01	0.000E+00	-0.053
BA-140	2.479E+00	6.465E+00	1.115E+01	0.000E+00	0.222
LA-140	-7.903E+00	6.163E+00	9.646E+00	0.000E+00	-0.819
CE-141	-4.233E+01	2.345E+01	3.607E+01	0.000E+00	-1.174
CE-144	-4.233E+01	1.156E+01	1.637E+01	0.000E+00	-0.281
EU-152	-4.537E+00	6.085E+00	9.870E+00	0.000E+00	-0.460
EU-154	5.048E+01	7.609E+01	1.311E+02	0.000E+00	0.385
RA-226	-2.297E+00	1.296E+01	2.200E+01	0.000E+00	-0.104
AC-228	6.730E+00	6.852E+00	1.085E+01	0.000E+00	0.621
TH-228	• • • • • • • • • • • • • • • • • • • •	1.292E+01	2.194E+01	0.000E+00	-0.104
TH-232	-2.290E+00	2.409E+01	3.826E+01	0.000E+00	-0.627
U-235	-2.398E+01	3.935E+02	6.587E+02	0.000E+00	0.121
U-238	7.975E+01	2.605E+01	3.884E+01	0.000E+00	-0.684
AM-241	-2.657E+01	Z.603E+01	J. UUTHTUL	J. J. J. J. J. J. J. J. J. J. J. J. J. J	

```
3.602E+00,L28777-2 WG DR
                     ,06/01/2006 10:48,05/23/2006 12:30,
A,07L28777-2
                                             ,06/23/2005 07:26,0735L090904
                     ,LIBD
B,07L28777-2
                                                                    0.233
                                    3.116E+01,
                                                   5.306E+01,,
                    1.237E+01,
C, BE-7
           , NO
                                                                    0.190
                                                   9.107E+01,,
                                    4.638E+01,
                     1.729E+01,
C, K-40
           , NO
                                                                   -0.446
                                                   5.324E+01,,
                                    3.431E+01,
C, CR-51
                    -2.377E+01,
            , NO
                                                                    0.204
                                                   5.827E+00,,
                     1.191E+00,
                                    3.416E+00,
           , NO
C, MN-54
                                                                   -0.595
                                    2.925E+00,
                                                   4.701E+00,,
C, CO-57
            , NO
                    -2.798E+00,
                                                   5.742E+00,,
                                                                   -0.436
                    -2.505E+00,
                                    3.748E+00,
C, CO-58
            , NO
                                                                    0.027
                                                   1.199E+01,,
                                    7.226E+00,
            , NO
                     3.201E-01,
C, FE-59
                                                                    0.243
                                                   5.860E+00,,
                                    3.385E+00,
            , NO
                     1.424E+00,
C, CO-60
                                                   1.359E+01,,
                                                                    0.628
                     8.529E+00,
                                    7.490E+00,
C, ZN-65
            , NO
                                    4.264E+00,
                                                   6.929E+00,,
                                                                    -0.125
            , NO
                    -8.627E-01,
C,SE-75
                                                   8.108E+00,,
                                                                    2.088
                                    4.106E+00,
                     1.693E+01,
C, SR-85
            , NO
                                                   5.296E+00,,
                                                                    -1.209
                    -6.403E+00,
                                    4.182E+00,
C, Y-88
            , NO
                                                                    -0.241
                    -1.233E+00,
                                                   5.114E+00,,
                                    3.198E+00,
C, NB-94
            , NO
                                                   6.321E+00,,
                                                                     0.670
                                    3.529E+00,
            , NO
                     4.233E+00,
C, NB-95
                                                                    -0.739
                                                   9.105E+00,,
                                    6.167E+00,
                    -6.726E+00,
            , NO
C, ZR-95
                                                   3.714E+02,,
                                                                    -0.099
            , NO
                                    2.295E+02,
C, MO-99
                    -3.665E+01,
                                                                     0.411
                                                   6.418E+00,,
                                    3.703E+00,
            , NO
                     2.636E+00,
C, RU-103
                                    3.065E+01,
                                                   5.023E+01,,
                                                                     0.286
            , NO
C, RU-106
                     1.434E+01,
                                                   5.187E+00,,
                                                                    -0.309
                                    3.251E+00,
                    -1.604E+00,
C, AG-110m
            , NO
                                                                     0.001
                                                   7.083E+00,,
                                    4.310E+00,
                     7.383E-03,
C, SN-113
            , NO
                                                   5.742E+00,,
                                                                    -0.099
                                    8.110E+00,
                    -5.684E-01,
            , NO
C,SB-124
                                                   1.392E+01,,
                                                                     0.143
            , NO
                     1.986E+00,
                                    8.395E+00,
C,SB-125
                                                   7.503E+01,,
                                                                     0.404
                                    4.431E+01,
C, TE-129M
            , NO
                     3.030E+01,
                                                                     0.129
                                                   1.120E+01,,
                     1.446E+00,
                                    6.685E+00,
C, I-131
            , NO
                                                   7.803E+00,,
                                                                     0.547
                                    5.189E+00,
            , NO
                     4.264E+00,
C, BA-133
                                    7.606E+00,
                                                    6.484E+00,,
                                                                     0.823
                     5.334E+00,
C, CS-134
            , NO
                                                    8.571E+00,,
                                                                    -0.248
                                    5.460E+00,
                    -2.129E+00,
C, CS-136
            , NO
                                    3.463E+00,
                                                                     0.723
                                                    6.295E+00,,
C, CS-137
            , NO
                     4.550E+00,
                                                                     0.092
                                                    5.208E+00,,
            , NO
                     4.816E-01,
                                    3.157E+00,
C, CE-139
                                                                    -0.053
                    -1.482E+00,
                                    1.726E+01,
                                                    2.822E+01,,
            , NO
C, BA-140
                                                    1.115E+01,,
                                                                     0.222
            , NO
                                    6.465E+00,
                     2.479E+00,
C, LA-140
                                    6.163E+00,
                                                    9.646E+00,,
                                                                    -0.819
                    -7.903E+00,
C, CE-141
            , NO
                                                    3.607E+01,,
                                                                    -1.174
                                    2.345E+01,
C, CE-144
            , NO
                    -4.233E+01,
                                                    1.637E+01,,
                                                                    -0.281
                    -4.604E+00,
                                    1.156E+01,
C, EU-152
            , NO
                                                                    -0.460
                                    6.085E+00,
                                                    9.870E+00,,
                    -4.537E+00,
C, EU-154
            , NO
                                                    1.311E+02,,
                                                                     0.385
                                    7.609E+01,
                     5.048E+01,
C, RA-226
            , NO
                                                                    -0.104
                                                    2.200E+01,,
                                    1.296E+01,
                    -2.297E+00,
C, AC-228
            , NO
                                                                     0.621
                                                    1.085E+01,,
                                     6.852E+00,
C, TH-228
            ,NO
                     6.730E+00,
                                                    2.194E+01,,
                                                                    -0.104
                    -2.290E+00,
                                     1.292E+01,
C, TH-232
            , NO
                                                                    -0.627
                                     2.409E+01,
                                                    3.826E+01,,
                    -2.398E+01,
C, U-235
            , NO
                                     3.935E+02,
                                                    6.587E+02,,
                                                                     0.121
                      7.975E+01,
 C, U-238
            , NO
```

2.605E+01,

-2.657E+01,

C, AM-241

, NO

3.884E+01,,

-0.684

LIMS: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 13:24:21.98 TBE13 P-10727B HpGe ******* Aquisition Date/Time: 1-JUN-2006 10:44:10.58

_____ LIMS No., Customer Name, Client ID: L28777-3 WG EXELON/DRESDEN

Smple Date: 23-MAY-2006 13:50:00. : 13L28777-3 Sample ID Geometry : 1335L090904

Sample Type : wg : 3.62180E+00 l Quantity Start Channel: 25

BKGFILE : 13BG050506MT Energy Tol : 1.50000 Real Time : 0 02:40:04.28 End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 02:40:01.56 MDA Constant: 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1 1	93.00* 139.84* 198.56* 238.60* 351.87* 583.98* 596.02 609.07* 1120.75* 1460.88* 1764.20* 1910.87	20 85 101 58 72 92 44 64 28 7 19	522 280 251 172 180 76 60 69 32 39 20 10	2.24 1.32 2.41 1.81 2.91	185.99 279.62 397.01 477.07 703.55 1167.84 1191.94 1218.06 2242.35 2923.82 3531.92 3826.09	2.02E+00 1.90E+00 1.73E+00 1.34E+00 9.25E-01 9.11E-01 8.97E-01 5.69E-01 4.69E-01 4.11E-01	6.70E-03	36.9 31.8 44.4 42.4 23.3 38.3 30.0 49.3 249.6 57.3	1.48E+00 2.87E+00 1.17E+00 2.12E+00 2.54E+01 3.06E+00 3.49E-01 7.67E-01 1.37E+00 1.35E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide	Type: macure	3.			Uncorrected	Decay Corr	2-Sigma
Nuclide K-40 TH-228	Energy 1460.81 238.63	Area 7 58	%Abn 10.67* 44.60*	%Eff 4.688E-01 1.733E+00 1.723E+00	pCi/l 1.109E+01 5.861E+00	pCi/l 1.109E+01 5.913E+00 ne Not Found	%Error 499.15 88.85
	240.98		3.95	1.723E+00	Ll.	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity

Acquisition date : 1-JUN-2006 10:44:10 Sample ID : 13L28777-3

Total number of lines in spectrum 12 Number of unidentified lines

Number of lines tentatively identified by NID 3 25.00%

Nuclide Type : natural

K-40 1.28E+09Y	ecay 1.00	Uncorrected pCi/l 1.109E+01 5.861E+00	Decay Corr 2-Sigma Error 5.534E+01 5.254E+00	2-Sigma %Error 499.15 88.85	Flags

Total Activity: 1.695E+01 1.700E+01

Grand Total Activity: 1.695E+01 1.700E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 13L28777-3 Page: 3
Acquisition date: 1-JUN-2006 10:44:10

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1 1 1	93.00 139.84 198.56 351.87 583.98 596.02 609.07 1120.75 1764.20 1910.87	20 85 101 72 92 44 64 28 19	522 280 251 180 76 60 69 32 20	1.40 1.29 2.15 2.07 1.60 2.24 1.32 2.41 2.91 2.04	1191.94 1218.06 2242.35 3531.92	276 392 698 1162 1186 1214 2237 3527	8 10 13 14 11 10 12	2.11E-03 8.84E-03 1.05E-02 7.49E-03 9.63E-03 4.61E-03 6.70E-03 2.93E-03 1.95E-03	63.7 84.8 46.6 76.6 60.0 98.6 ****	1.53E+00 2.02E+00 1.90E+00 1.34E+00 9.25E-01 9.11E-01 8.97E-01 5.69E-01 4.11E-01 3.90E-01	Т

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 12
Number of unidentified lines 9
Number of lines tentatively identified by NID 3 25.00%

Nuclide Type : natural

Nuclide K-40 TH-228	Hlife 1.28E+09Y 1.91Y	Decay 1.00	Wtd Mean Uncorrected pCi/l 1.109E+01 5.861E+00	Wtd Mean Decay Corr pCi/l 1.109E+01 5.913E+00	Decay Corr 2-Sigma Error 5.534E+01 5.254E+00	2-Sigma %Error 499.15 88.85	
	Total Acti	ivity :	1.695E+01	1.700E+01			

Grand Total Activity: 1.695E+01 1.700E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/l)	Act error	MDA (pCi/l)	MDA error	Act/MDA
K-40 TH-228	1.109E+01 5.913E+00	5.534E+01 5.254E+00	4.308E+01 8.700E+00	0.000E+00 0.000E+00	0.257 0.680
Non-Ide	ntified Nuclide	es			

Key-Line
Activity K.L. Act error
MDA
MDA error Act/MDA
Nuclide (pCi/l) Ided (pCi/l)

		2.780E+01	4.421E+01	0.000E+00	-0.288
BE-7	-1.272E+01	3.180E-02	Half-Life to	short	
NA-24	-7.944E-02	3.104E+01	5.070E+01	0.000E+00	-0.258
CR-51	-1.307E+01	3.078E+00	4.921E+00	0.000E+00	-0.179
MN-54	-8.789E-01	3.027E+00	4.994E+00	0.000E+00	-0.192
CO-57	-9.583E-01	3.196E+00	5.069E+00	0.000E+00	-0.257
CO-58	-1.305E+00	6.440E+00	1.055E+01	0.000E+00	-0.054
FE-59	-5.673E-01	3.066E+00	4.422E+00	0.000E+00	-0.720
CO-60	-3.185E+00	8.313E+00	1.168E+01	0.000E+00	0.061
ZN-65	7.090E-01		6.966E+00	0.000E+00	0.100
SE-75	6.986E-01	4.268E+00	7.161E+00	0.000E+00	1.797
SR-85	1.287E+01	3.850E+00	4.530E+00	0.000E+00	-0.529
Y-88	-2.394E+00	3.114E+00	4.695E+00	0.000E+00	0.044
NB-94	2.053E-01	2.832E+00	5.095E+00	0.000E+00	0.263
NB-95	1.342E+00	3.003E+00	9.213E+00	0.000E+00	0.178
ZR-95	1.636E+00	5.487E+00	3.313E+02	0.000E+00	-0.013
MO-99	-4.243E+00	2.017E+02	6.091E+00	0.000E+00	0.415
RU-103	2.527E+00	3.596E+00		0.000E+00	-0.057
RU-106	-2.698E+00	2.843E+01	4.692E+01	0.000E+00	-0.006
AG-110m	-3.048E-02	2.991E+00	4.948E+00	0.000E+00	-0.117
SN-113	-7.858E-01	4.129E+00	6.745E+00	0.000E+00	1.037
SB-124	5.838E+00	6.057E+00	5.629E+00	0.000E+00	0.694
SB-125	1.025E+01	8.445E+00	1.476E+01	0.000E+00	0.197
TE-129M	1.328E+01	4.053E+01	6.751E+01	0.000E+00	0.069
I-131	7.422E-01	6.488E+00	1.079E+01	0.000E+00	0.715
BA-133	5.234E+00	4.846E+00	7.315E+00	0.000E+00	0.911
CS-134	5.299E+00	4.613E+00	5.814E+00	0.000E+00	-0.167
CS-136	-1.216E+00	4.553E+00	7.291E+00	0.000E+00	-0.169
CS-137	-9.177E-01	3.341E+00	5.432E+00	0.000E+00	-0.226
CE-139	-1.144E+00	3.113E+00	5.074E+00	0.000E+00	0.155
BA-140	4.367E+00	1.707E+01	2.816E+01	0.000E+00	-0.328
LA-140	-2.612E+00	5.134E+00	7.963E+00	0.000E+00	-0.193
CE-141	-1.878E+00	6.975E+00	9.750E+00	0.000E+00	-0.729
CE-144	-2.711E+01	2.742E+01	3.718E+01	0.000E+00	-0.762
EU-152	-1.152E+01	1.148E+01	1.511E+01	0.000E+00	0.189
EU-154	1.968E+00	6.196E+00	1.042E+01	0.000E+00	0.105
RA-226	1.455E+01	8.006E+01	1.381E+02		-0.416
AC-228	-8.052E+00	1.195E+01	1.937E+01	0.000E+00	-0.416
TH-232	-8.029E+00	1.192E+01	1.931E+01	0.000E+00	-0.456
U-235	-1.689E+01	2.677E+01	3.705E+01	0.000E+00	-0.436
U-238	-7.033E+00	3.117E+02	5.205E+02	0.000E+00	-1.376
AM-241	-6.189E+01	2.949E+01	4.498E+01	0.000E+00	-1.3/0
211 232					

```
3.622E+00,L28777-3 WG EX
                     ,06/01/2006 13:24,05/23/2006 13:50,
                                             ,06/01/2006 10:13,1335L090904
A,13L28777-3
                     , LIBD
B,13L28777-3
                                                                    0.257
                                                   4.308E+01,,
                                    5.534E+01,
                    1.109E+01,
C, K-40
            ,YES,
                                                                    0.680
                                                   8.700E+00,,
                                    5.254E+00,
                     5.913E+00,
            , YES,
C, TH-228
                                                                   -0.288
                                                   4.421E+01,,
                                    2.780E+01,
                    -1.272E+01,
            , NO
C, BE-7
                                                                   -0.258
                                                   5.070E+01,,
                                    3.104E+01,
                    -1.307E+01,
            , NO
C, CR-51
                                                                   -0.179
                                                   4.921E+00,,
                                    3.078E+00,
                    -8.789E-01,
            , NO
C, MN-54
                                                                   -0.192
                                                   4.994E+00,,
                                    3.027E+00,
                    -9.583E-01,
            , NO
                                                                    -0.257
C, CO-57
                                                   5.069E+00,,
                                    3.196E+00,
                    -1.305E+00,
            , NO
C, CO-58
                                                                    -0.054
                                                   1.055E+01,,
                                    6.440E+00,
                    -5.673E-01,
            , NO
                                                                    -0.720
C, FE-59
                                                   4.422E+00,,
                                    3.066E+00,
                    -3.185E+00,
            , NO
                                                                     0.061
C, CO-60
                                                   1.168E+01,,
                                    8.313E+00,
                     7.090E-01,
            , NO
                                                                     0.100
C, ZN-65
                                                   6.966E+00,,
                                    4.268E+00,
                     6.986E-01,
            , NO
                                                                     1.797
C, SE-75
                                                   7.161E+00,,
                                    3.850E+00,
                     1.287E+01,
            , NO
C, SR-85
                                                                    -0.529
                                                   4.530E+00,,
                                     3.114E+00,
                    -2.394E+00,
            , NO
 C, Y-88
                                                                     0.044
                                                    4.695E+00,,
                                     2.832E+00,
                     2.053E-01,
            ,NO
                                                                     0.263
 C, NB-94
                                                    5.095E+00,,
                                     3.003E+00,
                      1.342E+00,
             , NO
 C, NB-95
                                                                     0.178
                                                    9.213E+00,,
                                     5.487E+00,
                      1.636E+00,
            , NO
 C, ZR-95
                                                                    -0.013
                                                    3.313E+02,,
                                     2.017E+02,
                     -4.243E+00,
             ,NO
                                                                     0.415
 C, MO-99
                                                    6.091E+00,,
                                     3.596E+00,
                      2.527E+00,
             ,NO
 C, RU-103
                                                                    -0.057
                                                    4.692E+01,,
                                     2.843E+01,
                     -2.698E+00,
                                                                    -0.006
             , NO
 C, RU-106
                                                    4.948E+00,,
                                     2.991E+00,
                     -3.048E-02,
            , NO
 C, AG-110m
                                                                    -0.117
                                                    6.745E+00,,
                                     4.129E+00,
                     -7.858E-01,
             ,NO
 C, SN-113
                                                                     1.037
                                                    5.629E+00,,
                                     6.057E+00,
                      5.838E+00,
 C,SB-124
             NO
                                                                      0.694
                                                    1.476E+01,,
                                     8.445E+00,
                      1.025E+01,
             , NO
 C,SB-125
                                                                      0.197
                                                    6.751E+01,,
                                     4.053E+01,
                      1.328E+01,
 C, TE-129M
             , NO
                                                                      0.069
                                                    1.079E+01,,
                                     6.488E+00,
                      7.422E-01,
             , NO
                                                                      0.715
 C, I-131
                                                    7.315E+00,,
                                     4.846E+00,
                      5.234E+00,
 C, BA-133
             , NO
                                                                      0.911
                                                    5.814E+00,,
                                     4.613E+00,
                      5.299E+00,
             , NO
 C, CS-134
                                                                     -0.167
                                                     7.291E+00,,
                                      4.553E+00,
                     -1.216E+00,
             , NO
 C, CS-136
                                                                     -0.169
                  ,
                                                     5.432E+00,,
                                      3.341E+00,
                     -9.177E-01,
             , NO
  C, CS-137
                                                                     -0.226
                                                     5.074E+00,,
                                      3.113E+00,
                     -1.144E+00,
             , NO
  C, CE-139
                                                     2.816E+01,,
                                                                      0.155
                                      1.707E+01,
                       4.367E+00,
              , NO
  C,BA-140
                                                                     -0.328
                                                     7.963E+00,,
                                      5.134E+00,
                      -2.612E+00,
              , NO
  C, LA-140
                                                                     -0.193
                                                     9.750E+00,,
                                      6.975E+00,
                      -1.878E+00,
              , NO
  C, CE-141
                                                                     -0.729
                                                     3.718E+01,,
                                      2.742E+01,
                      -2.711E+01,
              , NO
  C, CE-144
                                                                     -0.762
                                                     1.511E+01,,
                                      1.148E+01,
                      -1.152E+01,
              , NO
  C, EU-152
                                                                      0.189
                                                     1.042E+01,,
                                      6.196E+00,
                       1.968E+00,
              , NO
  C, EU-154
                                                                      0.105
                                                     1.381E+02,,
                                      8.006E+01,
                       1.455E+01,
              , NO
  C, RA-226
                                                                     -0.416
                                                     1.937E+01,,
                                      1.195E+01,
                      -8.052E+00,
              , NO
  C, AC-228
                                                                     -0.416
                                                     1.931E+01,,
                                      1.192E+01,
                      -8.029E+00,
              , NO
  C, TH-232
                                                                      -0.456
                                                     3.705E+01,,
                                      2.677E+01,
                      -1.689E+01,
              , NO
  C, U-235
                                                     5.205E+02,,
                                                                      -0.014
                                      3.117E+02,
                      -7.033E+00,
  C, U-238
              , NO
                                                                      -1.376
                                                     4.498E+01,,
                                      2.949E+01,
                      -6.189E+01,
```

,NO,

C, AM-241

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 13:27:07.40 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 1-JUN-2006 10:57:01.52

LIMS No., Customer Name, Client ID: L28777-4 WG DRESDEN

Sample ID : 07L28777-4 Smple Date: 23-MAY-2006 11:14:00.

MDA Constant : 0.00 Library Used: LIBD

Pk I	t	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8	1 1 1 1	66.16* 140.03* 186.20* 569.60* 583.43* 595.92 609.31* 1313.25	114 88 79 28 72 30 48 52	276 277 223 33 40 78 64 8	3.61 (1.94 (2.05 (133.17 280.95 373.32 1140.29 1167.94 1192.92 1219.72 2627.42	2.02E+00 1.03E+00 1.01E+00 9.96E-01 9.81E-01	9.81E-03 8.82E-03 3.06E-03	37.3 44.5 41.8 26.2 62.1 38.8	3.57E+00 1.90E+00 6.73E+00 1.55E+00 1.60E+00 1.87E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Sigma Nuclide Energy Area %Abn %Eff pCi/L pCi/L %Error RA-226 186.21 79 3.28* 2.020E+00 9.922E+01 9.922E+01 88.93

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2
Sample ID: 07L28777-4 Acquisition date: 1-JUN-2006 10:57:01

Total number of lines in spectrum 8
Number of unidentified lines 6
Number of lines tentatively identified by NID 2 25.00%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags

RA-226 1600.00Y 1.00 9.922E+01 9.922E+01 8.824E+01 88.93

Total Activity: 9.922E+01 9.922E+01

Grand Total Activity : 9.922E+01 9.922E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 07L28777-4

Acquisition date : 1-JUN-2006 10:57:01

25.00%

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	66.16	114	276	1.67	133.17	129	9	1.26E-02	57.1	7.19E-01	
1	140.03	88	277	1.69	280.95	277	10	9.81E-03	74.5	2.09E+00	
1	569.60	28	33	2.10	1140.29	1137	8	3.06E-03	83.5	1.03E+00	
1	583.43	72	40	3.61	1167.94	1161	18	8.01E-03	52.4	1.01E+00	${f T}$
1	595.92	30	78	1.94	1192.92	1187	12	3.32E-03	***	9.96E-01	
1	609.31	48	64	2.05	1219.72	1214	11	5.38E-03	77.5	9.81E-01	
1	1313.25	52	8	8.94	2627.42	2623	16	5.74E-03	33.1	5.56E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 8 Number of unidentified lines 6
Number of lines tentatively identified by NID 2

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife pCi/L pCi/L 2-Sigma Error %Error Flags Decay RA-226 1600.00Y 1.00 9.922E+01 9.922E+01 8.824E+01 88.93 _____

> Total Activity: 9.922E+01 9.922E+01

Grand Total Activity: 9.922E+01 9.922E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
RA-226	9.922E+01	8.824E+01	1.033E+02	0.000E+00	0.961 *
Non-Ide	ntified Nucl	ides			
	Key-Line Activity	K.L. Act error	MDA	MDA error	Act/MDA

Nuclide		K.L. Act error Ided	MDA (pCi/L)	MDA error	Act/MDA
BE-7	9.693E+00	2.541E+01	4.317E+01	0.000E+00	0.225
NA-24	-2.935E-02	3.426E-02	Half-Life to	oo short	
K-40	1.162E+01	3.982E+01	7.764E+01	0.000E+00	0.150
CR-51	-3.117E+01	2.830E+01	4.302E+01	0.000E+00	-0.725

MN-54	8.340E-01	2.857E+00	4.843E+00	0.000E+00	0.172
CO-57	2.131E+00	2.552E+00	4.400E+00	0.000E+00	0.484
CO-58	-4.101E+00	3.085E+00	4.470E+00	0.000E+00	-0.917
FE-59	9.905E-01	5.969E+00	1.000E+01	0.000E+00	0.099
CO-60	3.472E-01	2.854E+00	4.777E+00	0.000E+00	0.073
ZN-65	9.076E+00	6.440E+00	1.178E+01	0.000E+00	0.770
SE-75	2.248E+00	3.712E+00	6.264E+00	0.000E+00	0.359
SR-85	1.686E+01	3.576E+00	7.063E+00	0.000E+00	2.387
Y-88	1.533E+00	3.689E+00	6.287E+00	0.000E+00	0.244
NB-94	-1.824E+00	2.857E+00	4.509E+00	0.000E+00	-0.404
NB-95	1.420E+00	3.157E+00	5.324E+00	0.000E+00	0.267
ZR-95	1.406E+00	5.636E+00	9.386E+00	0.000E+00	0.150
MO-99	-1.979E+00	1.978E+02	3.242E+02	0.000E+00	-0.006
RU-103	7.159E-01	3.269E+00	5.485E+00	0.000E+00	0.131
RU-106	-1.769E+01	2.799E+01	4.348E+01	0.000E+00	-0.407
AG-110m	-1.996E-02	2.718E+00	4.504E+00	0.000E+00	-0.004
SN-113	-1.440E+00	3.628E+00	5.828E+00	0.000E+00	-0.247
SB-124	-6.680E+00	8.421E+00	4.962E+00	0.000E+00	-1.346
SB-125	3.844E+00	7.506E+00	1.262E+01	0.000E+00	0.305
TE-129M	-6.602E-01	3.504E+01	5.669E+01	0.000E+00	-0.012
I-131	3.719E+00	5.824E+00	9.952E+00	0.000E+00	0.374
BA-133	-2.442E+00	4.080E+00	6.570E+00	0.000E+00	-0.372
CS-134	2.085E+00	5.781E+00	5.322E+00	0.000E+00	0.392
CS-136	7.310E-01	4.463E+00	7.342E+00	0.000E+00	0.100
CS-137	-7.268E-01	3.000E+00	4.889E+00	0.000E+00	-0.149
CE-139	-8.211E-03	2.677E+00	4.386E+00	0.000E+00	-0.002
BA-140	-4.949E+00	1.572E+01	2.534E+01	0.000E+00	-0.195
LA-140	4.144E-01	5.552E+00	9.252E+00	0.000E+00	0.045
CE-141	3.151E+00	5.879E+00	8.614E+00	0.000E+00	0.366
CE-144	-9.293E+00	2.167E+01	3.165E+01	0.000E+00	-0.294
EU-152	-3.152E+01	9.394E+00	1.311E+01	0.000E+00	-2.405
EU-154	5.774E+00	5.351E+00	9.293E+00	0.000E+00	0.621
AC-228	5.455E+00	1.028E+01	1.842E+01	0.000E+00	0.296
TH-228	4.553E+00	5.325E+00	9.393E+00	0.000E+00	0.485
TH-232	5.439E+00	1.025E+01	1.836E+01	0.000E+00	0.296
U-235	-9.579E+00	2.355E+01	3.290E+01	0.000E+00	-0.291
U-238	1.755E+02	3.153E+02	5.417E+02	0.000E+00	0.324
AM-241	-1.100E+01	2.249E+01	3.474E+01	0.000E+00	-0.317

-0.317

3.474E+01,,

```
3.625E+00,L28777-4 WG DR
                     ,06/01/2006 13:27,05/23/2006 11:14,
A,07L28777-4
                                             ,06/23/2005 07:26,0735L090904
                     ,LIBD
B,07L28777-4
                                                                    0.961
                                                   1.033E+02,,
                     9.922E+01,
                                    8.824E+01,
C, RA-226
           ,YES,
                                                                    0.225
                                    2.541E+01,
                                                   4.317E+01,,
           , NO
                     9.693E+00,
C, BE-7
                                                                    0.150
                                                   7.764E+01,,
                                    3.982E+01,
                     1.162E+01,
C, K-40
           , NO
                                                   4.302E+01,,
                                                                   -0.725
                                    2.830E+01,
                    -3.117E+01,
C, CR-51
           , NO
                                                                    0.172
                                                   4.843E+00,,
                                    2.857E+00,
           , NO
                     8.340E-01,
C, MN-54
                                                   4.400E+00,,
                                                                    0.484
                                    2.552E+00,
                     2.131E+00,
C, CO-57
           , NO
                                                                   -0.917
                                                   4.470E+00,,
                                    3.085E+00,
                    -4.101E+00,
C, CO-58
           , NO
                                                   1.000E+01,,
                                                                    0.099
                                    5.969E+00,
           , NO
                     9.905E-01,
C, FE-59
                                                                    0.073
                                    2.854E+00,
                                                   4.777E+00,,
                     3.472E-01,
C, CO-60
            , NO
                                                   1.178E+01,,
                                                                    0.770
                                    6.440E+00,
C, ZN-65
            , NO
                     9.076E+00,
                                                                    0.359
                                                   6.264E+00,,
                                    3.712E+00,
            , NO
                     2.248E+00,
C, SE-75
                                                                    2.387
                                                   7.063E+00,,
                                    3.576E+00,
            , NO
                     1.686E+01,
C, SR-85
                                                                    0.244
                                    3.689E+00,
                                                   6.287E+00,,
            , NO
                     1.533E+00,
C, Y-88
                                                   4.509E+00,,
                                                                    -0.404
                    -1.824E+00,
                                    2.857E+00,
C, NB-94
            , NO
                                                                     0.267
                                                   5.324E+00,,
                                    3.157E+00,
C, NB-95
            , NO
                     1.420E+00,
                                                   9.386E+00,,
                                                                     0.150
                                    5.636E+00,
                     1.406E+00,
C, ZR-95
            , NO
                                                                    -0.006
                                                   3.242E+02,,
                    -1.979E+00,
                                    1.978E+02,
C, MO-99
            , NO
                                                   5.485E+00,,
                                                                     0.131
                     7.159E-01,
                                    3.269E+00,
C, RU-103
            , NO
                                                                    -0.407
                                                   4.348E+01,,
                                    2.799E+01,
            , NO
                    -1.769E+01,
C, RU-106
                                                                    -0.004
                                                   4.504E+00,,
                                    2.718E+00,
                    -1.996E-02,
C, AG-110m
            , NO
                                    3.628E+00,
                                                   5.828E+00,,
                                                                    -0.247
                    -1.440E+00,
C, SN-113
            , NO
                                                                    -1.346
                                                   4.962E+00,,
                    -6.680E+00,
                                    8.421E+00,
            , NO
C,SB-124
                                                                     0.305
            , NO
                                                   1.262E+01,,
                                    7.506E+00,
                     3.844E+00,
C,SB-125
                                                                    -0.012
                    -6.602E-01,
                                                   5.669E+01,,
                                    3.504E+01,
C, TE-129M
            , NO
                                                                     0.374
                                                   9.952E+00,,
                     3.719E+00,
                                    5.824E+00,
C, I-131
            , NO
                                                   6.570E+00,,
                                                                    -0.372
                                    4.080E+00,
            , NO
                    -2.442E+00,
C, BA-133
                                                   5.322E+00,,
                                                                     0.392
                     2.085E+00,
                                    5.781E+00,
C, CS-134
            , NO
                                                                     0.100
                     7.310E-01,
                                    4.463E+00,
                                                   7.342E+00,,
C, CS-136
            , NO
                                                   4.889E+00,,
                                                                    -0.149
                                    3.000E+00,
                    -7.268E-01,
C, CS-137
            , NO
                                                   4.386E+00,,
                                                                    -0.002
                                    2.677E+00,
C, CE-139
            , NO
                    -8.211E-03,
                                                                    -0.195
                                    1.572E+01,
                                                   2.534E+01,,
            ,NO
                    -4.949E+00,
C,BA-140
                                                    9.252E+00,,
                                                                     0.045
                                     5.552E+00,
            , NO
                     4.144E-01,
C, LA-140
                                                                     0.366
                                     5.879E+00,
                                                    8.614E+00,,
                     3.151E+00,
C, CE-141
            , NO
                                                    3.165E+01,,
                                                                    -0.294
                                     2.167E+01,
                    -9.293E+00,
C, CE-144
            , NO
                                                                    -2.405
                                                    1.311E+01,,
                                     9.394E+00,
C, EU-152
            , NO
                    -3.152E+01,
                                                    9.293E+00,,
                                                                     0.621
            , NO
                     5.774E+00,
                                     5.351E+00,
C, EU-154
                                                    1.842E+01,,
                                                                     0.296
            , NO
                     5.455E+00,
                                     1.028E+01,
C, AC-228
                                                                     0.485
                                     5.325E+00,
                                                    9.393E+00,,
                     4.553E+00,
            , NO
C, TH-228
                                                    1.836E+01,,
                                                                     0.296
            , NO
                                     1.025E+01,
                      5.439E+00,
C, TH-232
                                                                    -0.291
                                                    3.290E+01,,
                                     2.355E+01,
C, U-235
            , NO
                    -9.579E+00,
                                                                     0.324
                                                    5.417E+02,,
                      1.755E+02,
                                     3.153E+02,
 C, U-238
            , NO
```

2.249E+01,

-1.100E+01,

C, AM-241

, NO

LIMS: Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 14:17:34.86 TBE23 03017322 HpGe ******* Aquisition Date/Time: 1-JUN-2006 10:57:06.64

LIMS No., Customer Name, Client ID: L28777-5 WG DRESDEN

Smple Date: 23-MAY-2006 13:36:00. : 23L28777-5 Sample ID

Sample Type : WG

Geometry : 2335L090704 : 23BG050506MT BKGFILE : 3.58520E+00 L Quantity Energy Tol : 1.50000 Real Time : 0 03:20:08.06 Start Channel : 50 Pk Srch Sens: 5.00000 Live time : 0 03:20:00.00 End Channel : 4090

Library Used: LIBD MDA Constant : 0.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1 2 3 4 5 6 7 8 9 10 11 12	4 0 0 0 0 0 0 0 0 0	33.76* 63.32* 65.83* 92.56* 139.52* 197.86* 295.19* 351.86* 582.91* 609.07* 1120.26* 1460.96*	15 2 29 6 90 135 19 91 21 107 57	26 369 378 466 472 309 188 187 80 79 55 51	1.23 1.93	67.84 126.92 131.94 185.36 279.20 395.80 590.35 703.62 1165.52 1217.82 2240.05 2921.57	9.42E-01 1.02E+00 1.69E+00 2.05E+00 1.90E+00 1.50E+00 1.32E+00 8.89E-01 8.59E-01 5.52E-01	1.24E-03132.7 1.49E-04***** 2.45E-03113.1 5.05E-04671.9 7.52E-03 45.5 1.13E-02 26.4 1.56E-03142.9 7.60E-03 33.2 1.79E-03 85.6 8.90E-03 21.2 4.71E-03 35.8 1.10E-03153.6	2.33E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

2-Sigma Uncorrected Decay Corr %Error pCi/L %Eff pCi/L %Abn Nuclide Energy Area 307.20 1.692E+01 10.67* 4.594E-01 1.692E+01 K-40 1460.81 13

Flaq: "*" = Keyline

Summary of Nuclide Activity

Acquisition date : 1-JUN-2006 10:57:06 Sample ID : 23L28777-5

Total number of lines in spectrum

12 10

Number of unidentified lines

Number of lines tentatively identified by NID 2 16.67%

Nuclide Type : natural

2-Sigma Uncorrected Decay Corr Decay Corr

2-Sigma Error %Error Flags 5.198E+01 307.20 pCi/L pCi/L Nuclide Hlife Decay

K-40 1.28E+09Y 1.00 1.692E+01 1.692E+01

Total Activity: 1.692E+01 1.692E+01

Grand Total Activity: 1.692E+01 1.692E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 23L28777-5

Acquisition date : 1-JUN-2006 10:57:06

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff]	Flags
4 0 0 0 0 0 0 0	33.76 63.32 65.83 92.56 139.52 197.86 295.19 351.86 582.91 609.07 1120.26	15 2 29 6 90 135 19 91 21 107 57	26 369 378 466 472 309 188 187 80 79 55	1.19 0.89 1.30 1.33 1.16 1.36 1.02 1.08 1.07 1.23	67.84 126.92 131.94 185.36 279.20 395.80 590.35 703.62 1165.52 1217.82 2240.05	124 131 182 275 391 587 698 1160 1212	7 7 8 9 10 9 12 10	7.52E-03 1.13E-02 1.56E-03 7.60E-03 1.79E-03 8.90E-03	***	9.34E-02 9.42E-01 1.02E+00 1.69E+00 2.05E+00 1.90E+00 1.50E+00 1.32E+00 8.89E-01 8.59E-01 5.52E-01	Т

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 12 Number of unidentified lines 10

Number of lines tentatively identified by NID 16.67% 2

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay 307.20 5.198E+01 1.692E+01 1.692E+01 1.00 K-40 1.28E+09Y _____ _____

1.692E+01 1.692E+01 Total Activity:

Grand Total Activity: 1.692E+01 1.692E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA				
K-40	1.692E+01	5.198E+01	4.118E+01	0.000E+00	0.411				
Non-Identified Nuclides									

Key-Line Act/MDA MDA error MDAActivity K.L. Act error (pCi/L) Nuclide (pCi/L) Ided

	E 600E 01	O ((2D.01	4.532E+01	0.000E+00	0.017
BE-7	7.692E-01	2.663E+01 2.967E-02	Half-Life		0.017
NA-24	-4.752E-02		4.934E+01	0.000E+00	-0.307
CR-51	-1.514E+01	2.944E+01	4.934E+01 4.996E+00	0.000E+00	0.562
MN-54	2.808E+00	2.701E+00	5.569E+00	0.000E+00	0.346
CO-57	1.929E+00	3.268E+00		0.000E+00	-0.076
CO-58	-3.832E-01	2.925E+00	5.026E+00	0.000E+00	0.319
FE-59	3.304E+00	5.627E+00	1.036E+01	0.000E+00	0.156
CO-60	7.685E-01	2.713E+00	4.917E+00	0.000E+00	1.208
ZN-65	1.527E+01	7.029E+00	1.264E+01	0.000E+00	-0.230
SE-75	-1.566E+00	4.033E+00	6.820E+00	0.000E+00	1.691
SR-85	1.074E+01	3.334E+00	6.348E+00		-0.418
Y-88	-2.076E+00	2.982E+00	4.971E+00	0.000E+00	-0.418
NB-94	-5.034E-01	2.560E+00	4.396E+00	0.000E+00	0.665
NB-95	3.666E+00	2.966E+00	5.513E+00	0.000E+00	0.865
ZR-95	1.186E+00	5.102E+00	8.992E+00	0.000E+00	0.132
MO-99	8.097E+01	1.891E+02	3.375E+02	0.000E+00	
RU-103	1.675E+00	3.412E+00	5.922E+00	0.000E+00	0.283
RU-106	-1.935E+01	2.555E+01	4.197E+01	0.000E+00	-0.461
AG-110m	1.376E+00	2.717E+00	4.862E+00	0.000E+00	0.283
SN-113	1.730E+00	3.920E+00	6.798E+00	0.000E+00	0.255
SB-124	-3.693E+00	3.808E+00	5.166E+00	0.000E+00	-0.715
SB-125	-3.405E+00	8.063E+00	1.347E+01	0.000E+00	-0.253
TE-129M	9.200E+00	3.850E+01	6.619E+01	0.000E+00	0.139
I-131	5.664E+00	6.270E+00	1.107E+01	0.000E+00	0.512
BA-133	4.698E+00	4.757E+00	7.243E+00	0.000E+00	0.649
CS-134	3.034E+00	3.919E+00	5.983E+00	0.000E+00	0.507
CS-136	1.835E+00	4.134E+00	7.390E+00	0.000E+00	0.248
CS-137	-1.107E+00	2.931E+00	4.988E+00	0.000E+00	-0.222
CE-139	-1.197E+00	3.259E+00	5.401E+00	0.000E+00	-0.222
BA-140	-3.173E+00	1.489E+01	2.507E+01	0.000E+00	-0.127
LA-140	-1.990E+00	4.846E+00	8.386E+00	0.000E+00	-0.237
CE-141	-4.907E-01	7.682E+00	1.090E+01	0.000E+00	-0.045
CE-144	-2.248E+01	2.926E+01	4.060E+01	0.000E+00	-0.554
EU-152	-1.713E+01	1.147E+01	1.515E+01	0.000E+00	-1.131
EU-154	5.478E+00	6.734E+00	1.153E+01	0.000E+00	0.475
RA-226	4.668E+01	7.872E+01	1.363E+02	0.000E+00	0.343
AC-228	5.960E-01	1.024E+01	1.819E+01	0.000E+00	0.033
TH-228	2.991E+00	5.710E+00	9.712E+00	0.000E+00	0.308
TH-232	5.943E-01	1.021E+01	1.814E+01	0.000E+00	0.033
U-235	5.372E+00	2.947E+01	4.224E+01	0.000E+00	0.127
U-238	1.753E+02	3.256E+02	5.891E+02	0.000E+00	0.298
AM-241	2.767E+01	1.905E+01	2.831E+01	0.000E+00	0.977

0.977

2.831E+01,,

```
,06/01/2006 14:17,05/23/2006 13:36,
                                                                 3.585E+00,L28777-5 WG DR
A,23L28777-5
                     ,LIBD
                                             ,06/01/2006 10:14,2335L090704
B,23L28777-5
                                    5.198E+01,
                                                   4.118E+01,,
                                                                     0.411
C, K-40
           , YES,
                     1.692E+01,
C, BE-7
           ,NO
                     7.692E-01,
                                    2.663E+01,
                                                   4.532E+01,
                                                                     0.017
C, CR-51
                                    2.944E+01,
                                                   4.934E+01,,
                                                                   -0.307
           , NO
                   -1.514E+01,
           , NO
C, MN-54
                     2.808E+00,
                                    2.701E+00,
                                                   4.996E+00,,
                                                                     0.562
                                                   5.569E+00,,
                                                                    0.346
C, CO-57
           , NO
                                    3.268E+00,
                     1.929E+00,
C, CO-58
                    -3.832E-01,
                                    2.925E+00,
                                                   5.026E+00,,
                                                                   -0.076
           , NO
                                                                     0.319
C, FE-59
                     3.304E+00,
                                    5.627E+00,
                                                   1.036E+01,,
            , NO
C, CO-60
                     7.685E-01,
                                    2.713E+00,
                                                   4.917E+00,,
                                                                     0.156
           , NO
           , NO
                                    7.029E+00,
                                                   1.264E+01,,
                                                                     1.208
C, ZN-65
                     1.527E+01,
                                                   6.820E+00,,
                                                                    -0.230
C, SE-75
                    -1.566E+00,
                                    4.033E+00,
            , NO
           , NO
                                                   6.348E+00,,
                                    3.334E+00,
                                                                     1.691
C, SR-85
                     1.074E+01,
                                                                   -0.418
                                                   4.971E+00,,
C, Y-88
            , NO
                    -2.076E+00,
                                    2.982E+00,
            , NO
                                                   4.396E+00,,
                                                                    -0.115
C,NB-94
                    -5.034E-01,
                                    2.560E+00,
                                    2.966E+00,
C, NB-95
                     3.666E+00,
                                                   5.513E+00,,
                                                                     0.665
            , NO
                                                   8.992E+00,,
C, ZR-95
            , NO
                     1.186E+00,
                                    5.102E+00,
                                                                     0.132
                                                   3.375E+02,,
                                                                     0.240
            , NO
                     8.097E+01,
                                    1.891E+02,
C,MO-99
            , NO
C, RU-103
                     1.675E+00,
                                    3.412E+00,
                                                   5.922E+00,,
                                                                     0.283
                                    2.555E+01,
                                                   4.197E+01,,
                                                                    -0.461
C, RU-106
                    -1.935E+01,
            , NO
            ,NO
C, AG-110m
                     1.376E+00,
                                    2.717E+00,
                                                   4.862E+00,,
                                                                     0.283
                                                   6.798E+00,,
                                                                     0.255
                     1.730E+00,
                                    3.920E+00,
C,SN-113
            ,NO
                                                   5.166E+00,,
                                                                    -0.715
C,SB-124
            , NO
                    -3.693E+00,
                                    3.808E+00,
            , NO
                                                                    -0.253
C,SB-125
                    -3.405E+00,
                                    8.063E+00,
                                                   1.347E+01,,
            , NO
                     9.200E+00,
                                    3.850E+01,
                                                   6.619E+01,,
                                                                     0.139
C, TE-129M
            , NO
                                                   1.107E+01,,
                                                                     0.512
C, I-131
                     5.664E+00,
                                    6.270E+00,
C, BA-133
                     4.698E+00,
                                    4.757E+00,
                                                   7.243E+00,,
                                                                     0.649
            , NO
            , NO
                                    3.919E+00,
                                                   5.983E+00,,
                                                                     0.507
C, CS-134
                     3.034E+00,
                                                   7.390E+00,,
                                    4.134E+00,
                                                                     0.248
C, CS-136
            , NO
                     1.835E+00,
C, CS-137
                    -1.107E+00,
                                    2.931E+00,
                                                   4.988E+00,,
                                                                    -0.222
            , NO
                                                   5.401E+00,,
                                                                    -0.222
                                    3.259E+00,
C, CE-139
            ,NO
                    -1.197E+00,
            , NO
C, BA-140
                    -3.173E+00,
                                    1.489E+01,
                                                   2.507E+01,,
                                                                    -0.127
                                    4.846E+00,
                                                   8.386E+00,,
                                                                    -0.237
C, LA-140
            , NO
                    -1.990E+00,
                    -4.907E-01,
                                    7.682E+00,
                                                   1.090E+01,,
                                                                    -0.045
C, CE-141
            , NO
C, CE-144
                    -2.248E+01,
                                    2.926E+01,
                                                   4.060E+01,,
                                                                    -0.554
            , NO
                                    1.147E+01,
                                                   1.515E+01,,
                                                                    -1.131
C, EU-152
            , NO
                    -1.713E+01,
                                                                     0.475
                                    6.734E+00,
                                                   1.153E+01,,
C, EU-154
            , NO
                     5.478E+00,
                                                                     0.343
C, RA-226
            , NO
                     4.668E+01,
                                    7.872E+01,
                                                   1.363E+02,,
            , NO
                                                                     0.033
C, AC-228
                     5.960E-01,
                                    1.024E+01,
                                                   1.819E+01,,
            ,NO
                     2.991E+00,
                                    5.710E+00,
                                                   9.712E+00,,
                                                                     0.308
C, TH-228
                     5.943E-01,
                                    1.021E+01,
                                                   1.814E+01,,
                                                                     0.033
C, TH-232
            , NO
                                                                     0.127
                                    2.947E+01,
                                                   4.224E+01,,
C, U-235
                     5.372E+00,
            , NO
C, U-238
            , NO
                     1.753E+02,
                                    3.256E+02,
                                                   5.891E+02,,
                                                                     0.298
```

1.905E+01,

C, AM-241

,NO ,

2.767E+01,

Sec. Review: Analyst:

nalyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 14:31:07.08 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 1-JUN-2006 11:27:19.06

LIMS No., Customer Name, Client ID: L28777-6 WG DRESDEN

Sample ID : 04L28777-6 Smple Date: 23-MAY-2006 15:50:00.

Sample Type : WG Geometry : 0435L090804
Quantity : 3.53510E+00 L BKGFILE : 04BG050506MT
Start Channel : 90 Energy Tol : 1.00000 Real Time : 0 03:03:38.31
End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 03:03:36.43

MDA Constant : 0.00 Library Used: LIBD

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

163.35

Nuclide T	ype: fissio	n			Uncorrected Decay Corr	2-Sigma
Nuclide CS-137	Energy 661.65	Area 37	%Abn 85.12*	%Eff 7.258E-01	pCi/L pCi/L 4.199E+00 4.201E+00	%Error 94.85
Nuclide T	Type: natura	1			Uncorrected Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L pCi/L	%Error
RA-226	186.21	51	3.28*	1.727E+00	6.268E+01 6.268E+01	109.47
AC-228	835.50		1.75	6.054E-01		155 (2)
	911.07	14	27.70*	5.657E-01		155.63
TH-228	238.63	19	44.60*	1.519E+00		244.67
	240.98		3.95	1.511E+00		
TH-232	583.14	54	30.25	7.995E-01	1.537E+01 1.537E+01	63.85
	911.07	14	27.70*	5.657E-01		155.63
•	969.11		16.60	5.389E-01		
U-235	143.76		10.50*	1.822E+00	_	
					Time Not Found	

1.796E+00 -----

4.70

Line Not Found

185.71 51 54.00 1.727E+00 3.807E+00 3.807E+00 109.47 205.31 ----- 4.70 1.652E+00 ----- Line Not Found -----

Flag: "*" = Keyline

Summary of Nuclide Activity

Acquisition date: 1-JUN-2006 11:27:19 Sample ID : 04L28777-6

Total number of lines in spectrum

14

Number of unidentified lines Number of lines tentatively identified by NID

5

35.71%

Nuclide Type : fission

Nuclide CS-137	Hlife 30.17Y	Decay	Uncorrected pCi/L 4.199E+00	pCi/L 4.201E+00	Decay Corr 2-Sigma Error 3.985E+00	
			4 199E+00	4 201E+00		

Total Activity: 4.199E+00 4.201E+00

Nuclide Type : natural

Nuclide RA-226 AC-228 TH-228 TH-232 U-235	Hlife 1600.00Y 5.75Y 1.91Y 1.41E+10Y 7.04E+08Y	Decay 1.00 1.00 1.01 1.00	6.137E+00 1.914E+00 6.137E+00	Decay Corr pCi/L 6.268E+01 6.155E+00 1.931E+00 6.137E+00 3.807E+00	2-Sigma Error 6.861E+01 9.578E+00 4.724E+00 9.550E+00	109.47 155.63 244.67 155.63	
				0 0715,01			

Total Activity: 8.067E+01 8.071E+01

Grand Total Activity : 8.487E+01 8.491E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 04L28777-6

Page: 3 Acquisition date: 1-JUN-2006 11:27:19

Danie)IC ID . 0										
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1 1	66.62 140.16 198.95 295.16 351.78 596.56 609.34 934.17 1764.47	57 68 50 35 85 20 99 27 18	408 288 296 131 123 82 42 36 4	0.88 1.65 1.44 1.45 1.92 0.83 1.88 4.06 3.14	1219.29	1188 1213 1863	10 12 8 11 12 12	5.13E-03 6.17E-03 4.55E-03 3.17E-03 7.68E-03 1.79E-03 9.01E-03 2.44E-03 1.64E-03	**** 58.7 **** 36.1 94.5	6.57E-0 1.82E+0 1.68E+0 1.32E+0 1.17E+0 7.86E-0 7.73E-0 5.55E-0 3.43E-0	0 0 0 0 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 1.4 Number of unidentified lines

Number of lines tentatively identified by NID

5 35.71%

Nuclide Type : fission

Nuclide '	Type : Ilssion	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Dood I	2-Sigma
Nuclide CS-137	Hlife Deca 30.17Y 1.0	y pCi/L	pCi/L 4.201E+00	2-Sigma Error 3.985E+00	%Error Flags 94.85
	Total Activity	: 4.199E+00	4.201E+00		

Nuclide	Type : natural	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr 2-Sigma Error	2-Sigma %Error	Flags
Nuclide RA-226 TH-228 TH-232	1600.00Y 1.00 1.91Y 1.01 1.41E+10Y 1.00		pCi/L 6.268E+01 1.931E+00 1.063E+01 7.524E+01	6.861E+01	109.47 244.67 64.40	
	Total Activity :	7.522E+01	7.524E+U1			

Grand Total Activity: 7.942E+01 7.944E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Interfe	ring	Interfered			
Nuclide	Line	Nuclide	Line		
TH-232	911.07	AC-228	911.07		

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
CS-137 RA-226 TH-228 TH-232	4.201E+00 6.268E+01 1.931E+00 1.063E+01	3.985E+00 6.861E+01 4.724E+00 6.845E+00	5.056E+00 1.141E+02 8.361E+00 1.823E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.831 0.549 0.231 0.583
Non-Identified Nuclides					
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 K-40	-1.036E+01 -5.632E-02 5.639E+00	2.510E+01 3.095E-02 3.922E+01	3.990E+01 Half-Life too 7.493E+01	0.000E+00	0.075
CR-51 MN-54	-1.850E+01 1.974E+00 9.574E-01	3.135E+01 2.988E+00 2.662E+00	4.956E+01 5.185E+00 4.471E+00	0.000E+00 0.000E+00 0.000E+00	-0.373 0.381 0.214
CO-57 CO-58 FE-59	9.574E-01 -2.078E-01 5.079E+00 3.001E+00	2.994E+00 6.612E+00 3.441E+00	4.937E+00 1.164E+01 6.334E+00	0.000E+00 0.000E+00 0.000E+00	-0.042 0.437 0.474
CO-60 ZN-65 SE-75	4.220E+00 -7.470E-01 1.915E+01	7.028E+00 3.944E+00 3.972E+00	1.217E+01 6.444E+00 7.757E+00	0.000E+00 0.000E+00 0.000E+00	0.347 -0.116 2.468
SR-85 Y-88 NB-94	-2.558E+00 6.589E-01	3.731E+00 2.711E+00 3.195E+00	5.633E+00 4.510E+00 5.571E+00	0.000E+00 0.000E+00 0.000E+00	-0.454 0.146 0.572
NB-95 ZR-95 MO-99	3.186E+00 -5.487E+00 -6.459E+00 3.003E-01	5.542E+00 2.061E+02 3.551E+00	8.255E+00 3.344E+02 5.815E+00	0.000E+00 0.000E+00 0.000E+00	-0.665 -0.019 0.052
RU-103 RU-106 AG-110m	1.686E+01 2.804E+00	2.702E+01 3.580E+00 3.934E+00	4.646E+01 5.358E+00 6.795E+00	0.000E+00 0.000E+00 0.000E+00	0.363 0.523 0.479
SN-113 SB-124 SB-125	3.258E+00 3.790E+00 2.538E+00	5.743E+00 8.201E+00 3.914E+01	5.063E+00 1.375E+01 6.548E+01	0.000E+00 0.000E+00 0.000E+00	0.749 0.185 0.215
TE-129M I-131 BA-133	1.408E+01 3.699E-01 2.673E+00	6.000E+00 4.729E+00 5.367E+00	1.003E+01 6.990E+00 5.253E+00	0.000E+00 0.000E+00 0.000E+00	0.037 0.382 1.245
CS-134 CS-136 CE-139	6.539E+00 1.899E+00 1.304E+00	4.191E+00 2.721E+00 1.571E+01	7.202E+00 4.520E+00 2.575E+01	0.000E+00 0.000E+00 0.000E+00	0.264 0.288 0.102
BA-140 LA-140 CE-141	2.639E+00 1.807E+00 -3.469E-01	6.275E+00 6.244E+00 2.317E+01	1.057E+01 8.784E+00 3.277E+01	0.000E+00 0.000E+00 0.000E+00	0.171 -0.039 -0.651
CE-144 EU-152 EU-154	-2.134E+01 -1.487E+01 -1.365E+00	1.131E+01 5.500E+00 9.578E+00	1.469E+01 9.045E+00 1.959E+01	0.000E+00 0.000E+00 0.000E+00	-1.012 -0.151 0.314
AC-228 U-235 U-238 AM-241	6.155E+00 3.398E+00 1.023E+02 -2.100E+01	2.375E+01 3.349E+02 2.678E+01	3.379E+01 5.602E+02 3.835E+01	0.000E+00 0.000E+00 0.000E+00	0.101 0.183 -0.548

```
3.535E+00,L28777-6 WG DR
                     ,06/01/2006 14:31,05/23/2006 15:50,
                                             ,03/14/2005 09:04,0435L090804
A,04L28777-6
                     ,LIBD
B,04L28777-6
                                                                    0.831
                                                   5.056E+00,,
                                    3.985E+00,
                     4.201E+00,
           , YES,
                                                                    0.549
C, CS-137
                                                   1.141E+02,,
                                    6.861E+01,
                     6.268E+01,
            , YES,
                                                                    0.231
C, RA-226
                                                   8.361E+00,,
                                    4.724E+00,
                     1.931E+00,
            ,YES,
                                                                    0.583
C, TH-228
                                                   1.823E+01,,
                                    6.845E+00,
                     1.063E+01,
            ,YES,
                                                                   -0.260
C, TH-232
                                                   3.990E+01,,
                                    2.510E+01,
                    -1.036E+01,
            ,NO,
                                                                    0.075
C, BE-7
                                                   7.493E+01,,
                                    3.922E+01,
                     5.639E+00,
            , NO
                                                                    -0.373
C, K-40
                                                   4.956E+01,,
                                    3.135E+01,
                    -1.850E+01,
C, CR-51
            NO
                                                   5.185E+00,,
                                                                     0.381
                                    2.988E+00,
                     1.974E+00,
            , NO
                                                                     0.214
C, MN-54
                                                   4.471E+00,,
                                    2.662E+00,
                     9.574E-01,
            , NO
                                                                    -0.042
C, CO-57
                                                   4.937E+00,,
                                    2.994E+00,
                    -2.078E-01,
            ,NO
                                                                     0.437
C,CO-58
                                                    1.164E+01,,
                                     6.612E+00,
                     5.079E+00,
                                                                     0.474
            , NO
C, FE-59
                                                    6.334E+00,,
                                     3.441E+00,
                     3.001E+00,
            , NO
                                                                     0.347
 C,CO-60
                                                    1.217E+01,,
                                     7.028E+00,
                     4.220E+00,
            , NO
                                                                    -0.116
 C, ZN-65
                                                    6.444E+00,,
                                     3.944E+00,
                    -7.470E-01,
 C, SE-75
            , NO
                                                                     2.468
                                                    7.757E+00,,
                                     3.972E+00,
                      1.915E+01,
            ,NO
                                                                    -0.454
 C, SR-85
                                                    5.633E+00,,
                                     3.731E+00,
                     -2.558E+00,
                                                                     0.146
             , NO
 C, Y-88
                                                    4.510E+00,,
                                     2.711E+00,
                      6.589E-01,
             , NO
                                                                     0.572
 C, NB-94
                                                    5.571E+00,,
                                     3.195E+00,
                      3.186E+00,
             , NO
 C, NB-95
                                                                    -0.665
                                                    8.255E+00,,
                                     5.542E+00,
                     -5.487E+00,
             , NO
                                                                    -0.019
 C, ZR-95
                                                    3.344E+02,,
                                     2.061E+02,
                     -6.459E+00,
             , NO
 C, MO-99
                                                                      0.052
                                                    5.815E+00,,
                                     3.551E+00,
                      3.003E-01,
             , NO
                                                                      0.363
                                                    4.646E+01,,
 C, RU-103
                                     2.702E+01,
                      1.686E+01,
             , NO
                                                                      0.523
 C, RU-106
                                                    5.358E+00,,
                                     3.580E+00,
                      2.804E+00,
             ,NO
 C, AG-110m
                                                                      0.479
                                                    6.795E+00,,
                                     3.934E+00,
                      3.258E+00,
             , NO
                                                                      0.749
 C, SN-113
                                                    5.063E+00,,
                                     5.743E+00,
                      3.790E+00,
             , NO
                                                                      0.185
 C,SB-124
                                                     1.375E+01,,
                                     8.201E+00,
                      2.538E+00,
             , NO
                                                                      0.215
  C,SB-125
                                                     6.548E+01,,
                                     3.914E+01,
                      1.408E+01,
             , NO
                                                                      0.037
  C, TE-129M
                                                     1.003E+01,,
                                      6.000E+00,
                      3.699E-01,
  C, I-131
             , NO
                                                                      0.382
                                                     6.990E+00,,
                                      4.729E+00,
                       2.673E+00,
              ,NO
                                                                      1.245
  C, BA-133
                                                     5.253E+00,,
                                      5.367E+00,
                       6.539E+00,
              , NO
                                                                      0.264
  C, CS-134
                                                     7.202E+00,,
                                      4.191E+00,
                       1.899E+00,
              , NO
                                                                      0.288
  C, CS-136
                                                     4.520E+00,,
                                      2.721E+00,
                       1.304E+00,
              , NO
                                                                      0.102
  C, CE-139
                                                     2.575E+01,,
                                      1.571E+01,
                       2.639E+00,
              , NO
  C, BA-140
                                                                      0.171
                                                     1.057E+01,,
                                      6.275E+00,
                       1.807E+00,
              , NO
                                                                      -0.039
  C, LA-140
                                                     8.784E+00,,
                                      6.244E+00,
                      -3.469E-01,
              , NO
                                                                      -0.651
  C, CE-141
                                                     3.277E+01,,
                                      2.317E+01,
                      -2.134E+01,
              , NO
                                                                      -1.012
  C, CE-144
                                                     1.469E+01,,
                                      1.131E+01,
                      -1.487E+01,
              , NO
                                                                      -0.151
  C, EU-152
                                                     9.045E+00,,
                                      5.500E+00,
                      -1.365E+00,
              , NO
  C.EU-154
                                                     1.959E+01,,
                                                                       0.314
                                      9.578E+00,
                       6.155E+00,
              , NO
                                                                       0.101
  C, AC-228
                                                     3.379E+01,,
                                      2.375E+01,
                       3.398E+00,
              , NO
                                                                       0.183
  C, U-235
                                                      5.602E+02,,
                                      3.349E+02,
                       1.023E+02,
              , NO
                                                                      -0.548
   C, U-238
                                                      3.835E+01,,
                                      2.678E+01,
                      -2.100E+01,
              ,NO,
```

C, AM-241

Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 16:15:19.56 TBE13 P-10727B HpGe ******* Aquisition Date/Time: 1-JUN-2006 13:33:12.89

LIMS No., Customer Name, Client ID: L28777-7 WG EXELON/DRES

: 13L28777-7 Smple Date: 24-MAY-2006 12:25:00. Sample ID

Geometry : 1335L090904 Sample Type : WG Quantity : 3.59090E+00 L BKGFILE: 13BG050506MT Start Channel: 25 Energy Tol: 1.50000 Kear Time: 0 02:41:48.79
End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 02:41:48.79

Library Used: LIBD MDA Constant : 0.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1	1	92.70*	12	375	1.30	185.39	1.52E+00	1.26E-03323.6	1.68E+00
2	1	139.88*	86	262	1.26	279.71	2.02E+00	8.87E-03 35.2	1.47E+00
3	1	185.55*	0	305	1.31	371.01	1.95E+00	4.49E-05****	1.05E+00
4	1	198.20*	67	215	1.35	396.29	1.90E+00	6.94E-03 41.1	1.31E+00
5	0	238.25*	15	278	0.81	476.36	1.73E+00	1.57E-03217.5	
6	1	295.28*	32	163	1.17	590.39	1.52E+00	3.32E-03 80.7	3.04E+00
7	1	351.49*	88	147	1.49	702.80	1.34E+00	9.04E-03 30.1	2.60E+00
8	1	583.57*	24	112	2.50	1167.03	9.26E-01	2.50E-03106.5	1.58E+00
9	1	609.63*	79	107	2.01	1219.17	8.96E-01	8.09E-03 32.1	1.86E+00
10	1	1120.69*	40	24	2.56	2242.24	5.69E-01	4.12E-03 34.6	6.00E-01
11	1	1461.17*	29	33	2.49	2924.40	4.69E-01	3.02E-03 58.7	1.29E+00
12	1	1947.29	25	12	2.98	3899.14	3.86E-01	2.54E-03 29.4	1.04E+00

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	29	10.67*	4.688E-01	4.542E+01	4.542E+01	117.39
RA-226	186.21	0	3.28*	1.947E+00	5.297E-01	5.297E-01	16102.71
TH-228	238.63	15	44.60*	1.734E+00	1.524E+00	1.536E+00	435.04
	240.98		3.95	1.723E+00	Li	ne Not Found]
U-235	143.76		10.50*	2.023E+00	Li	ne Not Found	i
	163.35		4.70	2.011E+00	Li	ne Not Found]
	185.71	0	54.00	1.947E+00	3.217E-02	3.217E-02	16102.71
	205.31	1444 SQL 2012 2012 2012	4.70	1.871E+00	Li	ne Not Found	d

Page: 2

Acquisition date : 1-JUN-2006 13:33:12 Summary of Nuclide Activity Sample ID: 13L28777-7

12

Total number of lines in spectrum Number of unidentified lines

Number of lines tentatively identified by NID 4 33.33%

Nuclide Type : natural

Nuclide	Type . nacara-		D- corr	Decay Corr 2-Sigma
Nuclide K-40 RA-226 TH-228 U-235	1.28E+09Y 1. 1600.00Y 1. 1.91Y 1.	00 4.542E+01 00 5.297E-01 01 1.524E+00 00 3.217E-02	Decay Corr pCi/L 4.542E+01 5.297E-01 1.536E+00 3.217E-02 4.752E+01	2-Sigma Error %Error Flags 5.332E+01 117.39 853.0E-01 16102.71 6.682E+00 435.04 518.1E-02 16102.71 K

4.752E+01 Grand Total Activity: 4.751E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 13L28777-7

Page: Acquisition date : 1-JUN-2006 13:33:12

Samp	ole ID : 1	3128///-	/			_		a. /a.a	0.Tinn	%Eff	Flags
Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Ρw	Cts/Sec	2PIT		_
1 1 1 1 1 1 1	92.70 139.88 198.20 295.28 351.49 583.57 609.63 1120.69 1947.29	12 86 67 32 88 24 79 40 25.	375 262 215 163 147 112 107 24	1.30 1.26 1.35 1.17 1.49 2.50 2.01 2.56 2.98	185.39 279.71 396.29 590.39 702.80 1167.03 1219.17 2242.24 3899.14	276 393 587 699 1160 1213	8 10 11 17 14 16	1.26E-03 8.87E-03 6.94E-03 3.32E-03 9.04E-03 2.50E-03 8.09E-03 4.12E-03 2.54E-03	70.4 82.2 **** 60.2 **** 64.1 69.2	1.52E+0 2.02E+0 1.90E+0 1.52E+0 1.34E+0 9.26E-0 8.96E-0 5.69E-0 3.86E-0	0 0 0 0 0 0 0 0 0 0 1 T

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

12 Total number of lines in spectrum 8 Number of unidentified lines 33.33% Number of lines tentatively identified by NID

Nuclide Type : natural

Nuclide '	Type : natural	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr 2-Sigma
	Hlife Decay 1.28E+09Y 1.00 1600.00Y 1.00 1.91Y 1.01 Total Activity:	pCi/L 4.542E+01 5.297E-01 1.524E+00	pCi/L 4.542E+01 5.297E-01 1.536E+00 4.749E+01	5.332E+01 117.39 853.0E-01 16102.71 6.682E+00 435.04

4.749E+01 Grand Total Activity: 4.747E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

ldenti	Tied Nucliaes			MED A CHECK	Act/MDA
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	1100,112
K-40 RA-226 TH-228	4.542E+01 5.297E-01 1.536E+00	5.332E+01 8.530E+01 6.682E+00	4.633E+01 1.187E+02 8.346E+00	0.000E+00 0.000E+00 0.000E+00	0.980 0.004 0.184

---- Non-Identified Nuclides ----

Act/MDA Key-Line MDA error MDA Activity K.L. Act error

			(pCi/L)		
Nuclide	(pCi/L) Ided		-	o 000E+00	0.010
Nuclide BE-7 NA-24 CR-51 MN-54 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-95 XN-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-136 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 AC-228 TH-232 U-235 U-238	4.601E-01 -6.690E-03 -1.572E+01 7.528E-01 -3.266E+00 -1.448E+00 1.225E-02 8.359E+00 1.635E-01 1.551E+01 1.653E+00 -6.695E-01 1.551E+01 1.653E+00 -4.380E+01 7.526E-01 4.888E+00 -5.989E-01 6.407E-01 -4.193E+00 -4.068E-01 1.738E+00 -2.647E+00 2.723E+00 -3.207E+00 -2.984E+00 -2.984E+00 -1.133E+00 -1.133E+00 -1.133E+00 -1.133E+00 -1.133E+00 -1.133E+00 -1.133E+00 -1.133E+00 -1.133E+00 -3.257E+00 -3.248E+00 -3.248E+00 -3.248E+00 -3.248E+00 -3.248E+00 -3.257E+00	2.736E+01 1.183E-02 3.103E+00 3.245E+00 3.060E+00 3.186E+00 3.12E+00 3.12E+00 3.12E+00 3.14E++00 3.228E+00 2.778E+00 3.228E+00 2.887E+00 4.04E+00 3.507E+00 4.048E+00 4.048E+00 3.954E+00 3.954E+00 3.172E+00 3.754E+00 3.754E+00 3.754E+00 3.754E+00 3.754E+00 3.754E+00 3.765E+00 3.765E+00 1.626E+01 1.126E+01 6.286E+01 1.126E+01 3.379E+01 2.682E+01 3.379E+02 2.954E+01	4.474E+01 Half-Life too 5.051E+01 5.388E+00 4.932E+00 5.035E+00 1.102E+01 5.071E+00 1.157E+00 6.681E+00 7.523E+00 5.618E+00 6.7515E+00 9.934E+00 3.051E+00 6.731E+00 6.731E+00 6.731E+01 1.037E+01 1.037E+01 1.037E+01 7.355E+00 5.596E+00 7.463E+00 5.408E+01 7.355E+00 7.463E+00 5.408E+01 1.008E+01 1.008E+01 1.008E+01 1.008E+01 1.008E+01 1.008E+01 1.008E+01 1.590E+01 1.590E+01 1.590E+01	0.00E+00 short 0.000E+00	0.010 -0.311 0.140 -0.662 -0.288 0.111 -0.005 0.723 0.024 2.062 0.294 -0.149 0.209 -0.242 0.144 0.130 0.104 -0.127 0.095 -0.806 -0.027 0.401 0.168 0.309 0.487 -0.430 0.270 -0.539 -0.113 -0.516 0.545 -0.289 -0.222 -0.758 -0.162 0.051 0.393 -1.403
AM-241	-6.314E+01				

```
3.591E+00,L28777-7 WG EX
                     ,06/01/2006 16:15,05/24/2006 12:25,
                                             ,06/01/2006 10:13,1335L090904
A,13L28777-7
                     ,LIBD
                                                                    0.980
B,13L28777-7
                                                   4.633E+01,,
                                    5.332E+01,
                     4.542E+01,
                                                                    0.004
            , YES,
                                                   1.187E+02,,
C, K-40
                                    8.530E+01,
                     5.297E-01,
                                                                     0.184
            , YES,
                                                   8.346E+00,,
C, RA-226
                                    6.682E+00,
                     1.536E+00,
            ,YES,
                                                                     0.010
C, TH-228
                                                   4.474E+01,,
                                    2.736E+01,
                     4.601E-01,
                                                                    -0.311
            , NO ,
                                                   5.051E+01,,
C, BE-7
                                    3.103E+01,
                    -1.572E+01,
                                                                     0.140
            , NO
                                                   5.388E+00,,
C, CR-51
                                    3.245E+00,
                     7.528E-01,
                                                                    -0.662
            , NO
                                                   4.932E+00,,
C, MN-54
                                    3.060E+00,
                    -3.266E+00,
                                                                    -0.288
            , NO
C, CO-57
                                                    5.035E+00,,
                                    3.186E+00,
                    -1.448E+00,
                                                                     0.111
            , NO
                                                    1.102E+01,,
C, CO-58
                                     6.579E+00,
                     1.225E+00,
                                                                    -0.005
            , NO
                                                    5.071E+00,,
C, FE-59
                                     3.112E+00,
                    -2.506E-02,
                                                                     0.723
            , NO
C,CO-60
                                                    1.157E+01,,
                                     7.263E+00,
                     8.359E+00,
                                                                     0.024
                                                    6.681E+00,,
 C, ZN-65
            , NO
                      1.635E-01,
                                     4.114E+00,
                                                                     2.062
            , NO
 C, SE-75
                                                    7.523E+00,,
                                     3.995E+00,
                      1.551E+01,
                                                                     0.294
 C, SR-85
             ,NO
                                                    5.618E+00,,
                                     3.228E+00,
                      1.653E+00,
                                                                    -0.149
 C,Y-88
             , NO
                                                    4.507E+00,,
                                     2.778E+00,
                     -6.695E-01,
                                                                      0.209
             , NO
 C, NB-94
                                                    5.515E+00,,
                                     3.281E+00,
                      1.150E+00,
                                                                     -0.242
             , NO
                                                    9.934E+00,,
 C, NB-95
                                     6.204E+00,
                     -2.403E+00,
                                                                      0.144
             , NO
                                                    3.051E+02,,
 C, ZR-95
                                     1.826E+02,
                      4.380E+01,
                                                                      0.130
                                                    5.788E+00,,
             , NO
 C, MO-99
                                     3.507E+00,
                      7.526E-01,
             , NO
                                                                      0.104
                                                    4.681E+01,,
 C, RU-103
                                     2.828E+01,
                      4.888E+00,
                                                                     -0.127
             , NO
                                                    4.713E+00,,
 C, RU-106
                                     2.887E+00,
                     -5.989E-01,
                                                                      0.095
            , NO
 C, AG-110m
                                                     6.731E+00,,
                                     4.051E+00,
                      6.407E-01,
                                                                     -0.806
                                                     5.203E+00,,
             , NO
 C, SN-113
                                      4.048E+00,
                     -4.193E+00,
             , NO
                                                                     -0.027
                                                     1.500E+01,,
  C,SB-124
                                      9.155E+00,
                      -4.068E-01,
                                                                      0.401
              , NO
  C,SB-125
                                                     6.710E+01,,
                                      3.954E+01,
                       2.690E+01,
             , NO
                                                                      0.168
  C, TE-129M
                                                     1.037E+01,,
                                      6.187E+00,
                       1.738E+00,
                                                                      0.309
              , NO
  C, I-131
                                                     7.355E+00,,
                                      5.076E+00,
                       2.274E+00,
                                                                      0.487
              , NO
                                                     5.596E+00,,
  C, BA-133
                                      3.754E+00,
                       2.723E+00,
                                                                     -0.430
              , NO
  C, CS-134
                                                     7.463E+00,,
                                      4.794E+00,
                      -3.207E+00,
                                                                       0.270
  C, CS-136
              , NO
                                                     5.408E+00,,
                                      3.172E+00,
                       1.459E+00,
                                                                      -0.539
              , NO
                                                     4.913E+00,,
  C, CS-137
                                      3.065E+00,
                      -2.647E+00,
                                                     2.636E+01,,
                                                                      -0.113
              , NO
  C, CE-139
                                      1.642E+01,
                      -2.984E+00,
                                                                      -0.516
              , NO
                                                     8.053E+00,,
  C,BA-140
                                      5.336E+00,
                      -4.153E+00,
                                                                       0.545
              , NO
                                                     9.929E+00,,
  C, LA-140
                                      6.763E+00,
                       5.411E+00,
                                                                      -0.289
              , NO
                                                     3.921E+01,,
  C, CE-141
                                       2.810E+01,
                      -1.133E+01,
                                                                      -0.222
              , NO
   C, CE-144
                                                      1.609E+01,,
                                       1.126E+01,
                      -3.569E+00,
              , NO
                                                                      -0.758
   C, EU-152
                                                      1.008E+01,,
                                       6.286E+00,
                      -7.637E+00,
                                                                      -0.162
              , NO
                                                      2.004E+01,,
   C, EU-154
                                       1.202E+01,
                       -3.257E+00,
                                                                      -0.162
               , NO
                                                      1.999E+01,,
   C, AC-228
                                       1.199E+01,
                       -3.248E+00,
                                                                       0.051
               , NO
                                                      3.835E+01,,
   C, TH-232
                                       2.682E+01,
                        1.972E+00,
                                                                       0.393
   C, U-235
               , NO
                                                      5.935E+02,,
                                       3.379E+02,
                        2.333E+02,
               , NO
                                                                      -1.403
                                                      4.500E+01,,
   C, U-238
                                       2.954E+01,
                       -6.314E+01,
```

, NO

C, AM-241

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 17:26:00.29 TBE23 03017322 HpGe ******* Aquisition Date/Time: 1-JUN-2006 14:28:31.94

LIMS No., Customer Name, Client ID: WG L28777-8 DRESDEN

Smple Date: 24-MAY-2006 14:15:00.

Geometry : 2335L090704 : 23L28777-8 BKGFILE : 23BG050506MT Sample ID : WG

Energy Tol : 1.50000 Real Time : 0 02:57:15.07 Sample Type : 3.55010E+00 L Quantity

Pk Srch Sens: 5.00000 Live time: 0 02:57:07.59 Start Channel : 50 End Channel : 4090 Library Used: LIBD

MDA Constant : 0.00

		Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec		Fit
Pk It 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0	Energy 63.65* 92.59* 139.38* 186.10* 351.76* 596.11 609.02* 910.29* 1461.17*	26 56 69 29 46 45 63 46 23	450 479 354 435 96 67 47 35 26	1.36 1.52 1.38	185.41 278.93 372.30 703.43 1191.92 1217.71 1820.11 2921.97	1.32E+00 8.73E-01 8.59E-01 6.39E-01	5.29E-03 6.50E-03 2.71E-03 4.34E-03 4.27E-03 5.90E-03 4.33E-03 2.17E-03	48.0 152.4 41.6 37.0 26.6 34.4	
			-1-1	a lbar	hackgroul	la subcrac	,		

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natura	.1		%Eff	Uncorrected pCi/L	Decay Corr pCi/L	2-Sigma %Error 140.09
Nuclide K-40 RA-226 AC-228	Energy 1460.81 186.21 835.50 911.07	Area 23 29 46	3.28*	4.594E-01 1.946E+00 6.790E-01	3.374E+01 3.234E+01 Li	ne Not Found	304.71

Page: 2 Summary of Nuclide Activity Acquisition date : $1-JUN-2006\ 14:28:31$ Sample ID : 23L28777-8

9

6

Total number of lines in spectrum

Number of unidentified lines
Number of lines tentatively identified by NID 33.33% 3

Nuclide Type : natural

Nuclide Hlife Decay Decay pCi/L pCi/L pCi/L 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 3.374E+01 3.374E+01 4.727E+01 140.09 RA-226 1600.00Y 1.00 3.234E+01 3.234E+01 9.855E+01 304.71 AC-228 5.75Y 1.00 1.861E+01 1.866E+01 1.285E+01 68.85 Total Activity: 8.470E+01 8.475E+01	Nuclide 1.28E+09Y K-40 1.28E+09Y RA-226 1600.00Y AC-228 5.75Y	cay pCi/L .00 3.374E+01 .00 3.234E+01 .00 1.861E+01	pCi/L 3.374E+01 3.234E+01 1.866E+01	2-Sigma Error 4.727E+01 9.855E+01 1.285E+01	140.09 304.71	gs
---	--	--	--	--	------------------	----

8.475E+01 Grand Total Activity: 8.470E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

3

-0.08

0.000E+00

Unidentified Energy Lines Sample ID : 23L28777-8

Page : Acquisition date : 1-JUN-2006 14:28:31

Sample ID: 23L28777-8										0755	Flags
		Area	Bkgnd	FWHM	Channel	Left				%Eff	3
0 0 0 0 0	Energy 63.65 92.59 139.38 351.76 596.11 609.02	26 56 69 46 45 63	450 479 354 96 67 47	0.80 1.05 1.11 1.19 1.43 1.36	127.59 185.41 278.93 703.43 1191.92 1217.71	181 276 700 1187	9 7 7 10	2.40E-03 5.29E-03 6.50E-03 4.34E-03 4.27E-03 5.90E-03	**** 96.0 83.2 73.9	8.73E-0	00 00 00 01
					_3						

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

9 Total number of lines in spectrum 6 Number of unidentified lines 33.33% Number of lines tentatively identified by NID

Nuclide	Type : natu		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay com-	2-Sigma %Error Flags
Nuclide K-40 RA-226 AC-228	Hlife 1.28E+09Y 1600.00Y 5.75Y	Decay 1.00 1.00 1.00	pCi/L 3.374E+01 3.234E+01 1.861E+01	pCi/L 3.374E+01 3.234E+01 1.866E+01 8.475E+01	2-Sigma Effor 4.727E+01 9.855E+01 1.285E+01	140.09 304.71 68.85

8.475E+01 Grand Total Activity: 8.470E+01

"M" = Manually accepted "A" = Nuclide specific abn. limit Flags: "K" = Keyline not found "E" = Manually edited

Interference Report

Nuclide

BE-7

No interference correction performed

-3.787E+00

Combined Activity-MDA Report

Tdont i	fied Nuclides				7 - I. /NATOA
Idenci	Activity	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide	(pCi/L)	4.727E+01	5.409E+01	0.000E+00	0.624 0.242
K-40 RA-226 AC-228	3.374E+01 -226 3.234E+01		1.335E+02 1.845E+01	0.000E+00 0.000E+00	1.012
Non-I	dentified Nuclide	es			
	Key-Line Activity K		MDA (pCi/L)	MDA error	Act/MDi
Nuclide	(pCi/L) Id	ea	-	0.0000.00	-0.08

2.808E+01

4.752E+01

```
3.550E+00,WG L28777-8 DR
                     ,06/01/2006 17:26,05/24/2006 14:15,
A,23L28777-8
                                             ,06/01/2006 10:14,2335L090704
B, 23L28777-8
                     ,LIBD
                                                                    0.624
                                                   5.409E+01,,
                                    4.727E+01,
                     3.374E+01,
           , YES,
C, K-40
                                                                    0.242
                                                   1.335E+02,,
                                    9.855E+01,
                     3.234E+01,
            , YES,
C, RA-226
                                                                    1.012
                                                   1.845E+01,,
                     1.866E+01,
                                    1.285E+01,
C, AC-228
            ,YES,
                                                                   -0.080
                                                   4.752E+01,,
                                    2.808E+01,
                    -3.787E+00,
            , NO
C, BE-7
                                                                    -0.585
                                                   5.250E+01,,
                                    3.187E+01,
                    -3.070E+01,
            , NO
C, CR-51
                                                                     0.215
                                                   5.482E+00,,
                                    3.086E+00,
                     1.177E+00,
C, MN-54
            , NO
                                                                    -0.190
                                                   6.047E+00,,
                                    3.619E+00,
                    -1.146E+00,
C, CO-57
            , NO
                                                                    -0.243
                                                   5.399E+00,,
                                    3.199E+00,
            , NO
                    -1.312E+00,
C, CO-58
                                                                     0.188
                                                   1.067E+01,,
                                    5.854E+00,
                     2.006E+00,
C, FE-59
            , NO
                                                                    -0.279
                                                   4.629E+00,,
                                    2.724E+00,
                    -1.292E+00,
C, CO-60
            , NO
                                                   1.127E+01,,
                                                                     0.137
                                    6.255E+00,
                     1.549E+00,
C, ZN-65
            , NO
                                                   7.486E+00,,
                                                                    -0.356
                                    4.456E+00,
                    -2.664E+00,
C, SE-75
            , NO
                                                   7.353E+00,,
                                                                     2.044
                     1.503E+01,
                                    3.767E+00,
            , NO
C, SR-85
                                                                    -0.360
                                                    5.471E+00,,
                                    3.244E+00,
                    -1.970E+00,
C, Y-88
            , NO
                                                                     0.154
                                                    5.297E+00,,
                                    3.007E+00,
                     8.138E-01,
            , NO
C, NB-94
                                                                     0.398
                                                    5.957E+00,,
                                    3.291E+00,
                     2.373E+00,
            , NO
C, NB-95
                                                                    -0.267
                                                    9.330E+00,,
                                    5.526E+00,
                    -2.489E+00,
C, ZR-95
            , NO
                                                                    -0.610
                                                    2.603E+02,,
                    -1.587E+02,
                                    1.603E+02,
C, MO-99
            , NO
                                                                    -0.029
                                                    6.064E+00,,
                                    3.574E+00,
                    -1.737E-01,
C, RU-103
            , NO
                                                                     0.390
                                                    5.064E+01,,
                                    2.791E+01,
                     1.973E+01,
C, RU-106
            , NO
                                                                    -0.197
                                                    4.984E+00,,
                                     2.917E+00,
                    -9.812E-01,
C, AG-110m , NO
                                                                     0.205
                                                    7.377E+00,,
                                     4.260E+00,
                     1.512E+00,
C, SN-113
            , NO
                                                                     0.687
                                     6.301E+00,
                                                    5.457E+00,,
                     3.751E+00,
            , NO
C,SB-124
                                                                     0.400
                                                    1.560E+01,,
                     6.233E+00,
                                     8.849E+00,
C,SB-125
            ,NO
                                                                    -0.124
                                                    6.955E+01,,
                                     4.126E+01,
            , NO
                    -8.617E+00,
C, TE-129M
                                                    1.095E+01,,
                                                                     0.347
                                     6.251E+00,
            ,NO
                      3.798E+00,
C, I-131
                                                                     0.351
                                                    7.598E+00,,
                      2.666E+00,
                                     5.096E+00,
            , NO
 C,BA-133
                                                                     1.330
                                                    6.078E+00,,
                                     5.388E+00,
            ,NO
                      8.082E+00,
 C, CS-134
                                                                    -0.049
                                                    7.408E+00,,
                                     4.281E+00,
                     -3.606E-01,
 C, CS-136
            , NO
                                                                     0.029
                                                    5.450E+00,,
                                     3.111E+00,
 C, CS-137
             , NO
                      1.604E-01,
                                                    5.994E+00,,
                                                                      0.022
                                     3.577E+00,
                      1.291E-01,
             , NO
 C, CE-139
                                                                      0.588
                                                    3.064E+01,,
                      1.802E+01,
                                     1.706E+01,
             , NO
 C, BA-140
                                                                      0.119
                                                    9.618E+00,,
                                     5.241E+00,
                      1.147E+00,
             , NO
 C, LA-140
                                                                      0.372
                                     8.032E+00,
                                                    1.167E+01,,
                      4.346E+00,
 C, CE-141
             , NO
                                                                    -0.681
                                                    4.584E+01,,
                     -3.121E+01,
                                     3.324E+01,
             ,NO
 C, CE-144
                                                                     -0.632
                                                    1.586E+01,,
                                     1.122E+01,
                     -1.003E+01,
 C, EU-152
             , NO
                                                                     -0.104
                                                    1.248E+01,,
             , NO
                     -1.300E+00,
                                     7.444E+00,
 C, EU-154
                                                                      0.445
                                                    1.089E+01,,
                                     6.345E+00,
                      4.846E+00,
             ,NO
 C, TH-228
                                                                      0.877
                                     1.282E+01,
                                                    2.122E+01,,
                      1.861E+01,
 C, TH-232
             , NO
                                     3.159E+01,
                                                    4.580E+01,,
                                                                      0.296
 C, U-235
                      1.355E+01,
             , NO
                                                    5.589E+02,,
                                                                     -0.021
                                     3.159E+02,
             , NO
                     -1.147E+01,
 C, U-238
                                                                      0.246
```

2.129E+01,

7.480E+00,

C, AM-241

, NO

3.036E+01,,

Sec. Review:

Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 17:26:07.58

TBE04 P-40312B HpGe ******* Aquisition Date/Time: 1-JUN-2006 14:33:49.16

LIMS No., Customer Name, Client ID: WG L28777-9 DRESDEN

Smple Date: 24-MAY-2006 17:05:00. : 04L28777-9

Sample ID Geometry : 0435L090804 Sample Type : WG BKGFILE : 04BG050506MT Quantity : 3.50310E+00 L

Start Channel: 90 Energy Tol: 1.00000 Real Time: 0 02:52:13.04 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 02:52:11.29 MDA Constant : 0.00 Library Used: LIBD

Pk I	(t	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1 1	66.26* 139.67* 185.80* 198.43* 238.37* 295.18* 351.91* 583.24* 595.85 609.19* 1460.34*	65 63 28 109 5 43 30 1 38 20	236 238 174 239 147 79 104 63 51 65 16	1.44 1.56 1.38 2.44 1.36 0.97 1.17 1.93 1.86 1.64 2.45	133.09 279.93 372.19 397.46 477.36 590.97 704.45 1167.09 1192.31 1218.99 2920.88	1.82E+00 1.73E+00 1.68E+00 1.52E+00	2.87E-03 6.39E-05 3.70E-03 1.89E-03	47.4 91.2 30.3 438.3 40.2 68.4 **** 41.1 88.4	9.78E-01 1.38E+00 9.40E-01 2.61E+00 3.31E+00 1.71E+00 1.66E+00 4.44E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide	Type: natura	∄ ⊥			Uncorrected	Decay Corr	2-Sigma
Nuclide K-40 RA-226 TH-228	Energy 1460.81 186.21 238.63 240.98	Area 11 28 5	%Abn 10.67* 3.28* 44.60* 3.95	%Eff 3.921E-01 1.727E+00 1.521E+00 1.511E+00	pCi/L 2.036E+01 3.627E+01 5.860E-01	pCi/L 2.036E+01 3.627E+01 5.907E-01 ne Not Found ne Not Found	%Error 218.56 182.30 876.50
U-235	143.76 163.35 185.71 205.31	28	10.50* 4.70 54.00 4.70	1.822E+00 1.796E+00 1.727E+00 1.652E+00	Li 2.203E+00	ne Not Found 2.203E+00 ne Not Found	182.30

Page: 2

Summary of Nuclide Activity

Acquisition date : $1-JUN-2006\ 1\overline{4}:33:49$ Sample ID : 04L28777-9

11

Total number of lines in spectrum

Number of unidentified lines

Number of lines tentatively identified by NID 4 36.36%

Nuclide Type : natural

RA-226 TH-228	Hlife 1.28E+09Y 1600.00Y 1.91Y 7.04E+08Y	Decay 1.00 1.00 1.01	5.860E-01	Decay Corr pCi/L 2.036E+01 3.627E+01 5.907E-01 2.203E+00	4.449E+01 6.612E+01 51.77E-01	2-Sigma %Error 218.56 182.30 876.50 182.30	
0-233	7.0111001						

Total Activity : 5.941E+01 5.942E+01

Grand Total Activity : 5.941E+01 5.942E+01

"M" = Manually accepted

Flags: "K" = Keyline not found
"E" = Manually edited "A" = Nuclide specific abn. limit Unidentified Energy Lines Sample ID : 04L28777-9

Page: 3 Acquisition date : $1-JUN-2006\ 14:33:49$

Samp	TC ID . 0										m7
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff :	Flags
1 1 1 1 1 1	66.26 139.67 198.43 295.18 351.91 583.24 595.85 609.19	65 63 109 43 30 1 38 20	236 238 239 79 104 63 51 65	1.44 1.56 2.44 0.97 1.17 1.93 1.86	1192.31	275 392 587 700 1161 1187	9 12 7 9 13 12	6.26E-03 6.08E-03 1.06E-02 4.16E-03 2.87E-03 6.39E-05 3.70E-03 1.89E-03	94.8 60.6 80.5 **** 82.1	6.46E-01 1.82E+00 1.68E+00 1.32E+00 1.17E+00 7.99E-01 7.86E-01 7.73E-01	T

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 11 Number of unidentified lines
Number of lines tentatively identified by NID 36.36%

Nuclide Type : natural

Nuclide Type : naturar	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	•
Nuclide K-40 1.28E+09Y 1.00 RA-226 1600.00Y 1.00 TH-228 1.91Y 1.01	pCi/L 2.036E+01 3.627E+01 5.860E-01	pCi/L 2.036E+01 3.627E+01 5.907E-01 5.722E+01	2-Sigma Error 4.449E+01 6.612E+01 51.77E-01	%Error Flags 218.56 182.30 876.50	,

Grand Total Activity: 5.721E+01 5.722E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	2.036E+01	4.449E+01	4.808E+01	0.000E+00	0.423
RA-226	3.627E+01	6.612E+01	1.111E+02	0.000E+00	0.327
TH-228	5.907E-01	5.177E+00	8.473E+00	0.000E+00	0.070

---- Non-Identified Nuclides ----

	11011						
Nucl	ide	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA

1 603E+01	2.626E+01	4.463E+01	0.000E+00	0.359
	1.228E-02	Half-Life to	o short	
	2.992E+01	4.742E+01		-0.307
	3.000E+00	5.253E+00		0.420
		4.433E+00		-0.049
		5.553E+00		0.090
_		1.109E+01		0.167
		6.097E+00		-0.016
		1.186E+01		0.007
		6.927E+00		0.270
		7.790E+00	0.000E+00	2.045
		5.841E+00	0.000E+00	0.300
		4.766E+00	0.000E+00	-0.042
		5.289E+00	0.000E+00	0.188
		8.927E+00	0.000E+00	-0.177
		2.632E+02	0.000E+00	0.044
			0.000E+00	0.257
			0.000E+00	0.472
			0.000E+00	0.473
			0.000E+00	0.050
			0.000E+00	0.392
			0.000E+00	-0.518
			0.000E+00	-0.028
			0.000E+00	-0.217
			0.000E+00	0.547
			0.000E+00	0.655
			0.000E+00	0.388
			0.000E+00	-0.076
			0.000E+00	-1.056
			0.000E+00	0.214
			0.000E+00	0.289
		_	0.000E+00	0.379
			0.000E+00	-0.132
			0.000E+00	-0.760
			0.000E+00	-0.152
		_	0.000E+00	0.061
			0.000E+00	0.061
			0.000E+00	0.230
				-0.079
				-0.654
-2.644E+U1	Z.04ZDTUI	7.0110101		
	1.603E+01 -1.233E-02 -1.455E+01 2.208E+00 -2.183E-01 5.008E-01 1.849E+00 -9.560E-02 7.941E-02 1.869E+00 1.593E+01 1.755E+00 -2.023E-01 9.950E-01 -1.581E+00 1.155E+01 1.378E+00 2.404E+01 2.482E+00 3.244E-01 2.112E+00 -6.940E+00 -1.786E+00 -1.786E+00 3.682E+00 3.682E+00 3.682E+00 3.682E+00 3.682E+00 -4.108E-01 -4.496E+00 5.411E+00 2.790E+00 3.583E+00 -4.568E+00 -1.112E+01 -1.390E+00 1.291E+00 1.288E+00 8.346E+00 -4.635E+01 -2.644E+01	1.233E-02 -1.455E+01 2.208E+00 3.000E+00 -2.183E-01 5.008E-01 3.311E+00 1.849E+00 -9.560E-02 7.941E-02 1.869E+00 1.593E+01 1.755E+00 -2.023E-01 9.950E-01 -1.581E+00 1.155E+01 1.608E+02 1.378E+00 2.404E+01 2.482E+00 3.244E-01 2.112E+00 -6.940E+00 -1.786E+00 3.96E+00 3.96E+00 3.051E+00 3.051E+00 -1.991E+00 3.051E+00 -1.991E+00 3.051E+00 -1.108E-01 -1.991E+00 3.051E+00 -1.108E-01 -1.108E-01 -1.108E-01 -1.108E-01 -1.108E+01 -1.108E+01 -1.108E+01 -1.108E+01 -1.112E+01 -1.390E+00 -1.288E+00 -1.237E+01 -1.288E+00 -1.234E+01 -1.390E+00 -1.237E+01 -1.288E+00 -1.234E+01 -1.288E+00 -1.234E+01	1.233E-02	1.603E+01

```
3.503E+00,WG L28777-9 DR
                     ,06/01/2006 17:26,05/24/2006 17:05,
A,04L28777-9
                                             ,03/14/2005 09:04,0435L090804
                     ,LIBD
B,04L28777-9
                                                   4.808E+01,,
                                                                    0.423
                                    4.449E+01,
           , YES,
                     2.036E+01,
C, K-40
                                                                    0.327
                                                   1.111E+02,,
                                    6.612E+01,
                     3.627E+01,
           , YES,
C, RA-226
                                                                     0.070
                                                   8.473E+00,,
                                    5.177E+00,
                     5.907E-01,
C, TH-228
            ,YES,
                                                                    0.359
                                                   4.463E+01,,
                                    2.626E+01,
                     1.603E+01,
C, BE-7
            , NO
                                                                    -0.307
                                                   4.742E+01,,
                                    2.992E+01,
            , NO
                    -1.455E+01,
C, CR-51
                                                                     0.420
                                                   5.253E+00,,
                     2.208E+00,
                                    3.000E+00,
            , NO
C, MN-54
                                                   4.433E+00,,
                                                                    -0.049
                                    2.679E+00,
                    -2.183E-01,
            , NO
C, CO-57
                                                                     0.090
                                                   5.553E+00,,
                                    3.311E+00,
                     5.008E-01,
            , NO
C, CO-58
                                                                     0.167
                                                   1.109E+01,,
                                    6.533E+00,
                     1.849E+00,
            , NO
C, FE-59
                                                                    -0.016
                                                   6.097E+00,,
                    -9.560E-02,
                                    3.566E+00,
C, CO-60
            , NO
                                                                     0.007
                                                   1.186E+01,,
                                    7.166E+00,
                     7.941E-02,
            , NO
C, ZN-65
                                                                     0.270
                                                   6.927E+00,,
                                    4.123E+00,
                     1.869E+00,
            , NO
C, SE-75
                                                                     2.045
                                                   7.790E+00,,
                                    4.095E+00,
                     1.593E+01,
C, SR-85
            , NO
                                                                     0.300
                                                   5.841E+00,,
                                    3.304E+00,
                     1.755E+00,
C, Y-88
            , NO
                                                                    -0.042
                                                   4.766E+00,,
                                    2.932E+00,
                    -2.023E-01,
            , NO
C, NB-94
                                                                     0.188
                                                    5.289E+00,,
                                    3.178E+00,
            ,NO
                     9.950E-01,
C, NB-95
                                                                    -0.177
                                                    8.927E+00,,
                                    5.632E+00,
                    -1.581E+00,
C, ZR-95
            , NO
                                                                     0.044
                                                    2.632E+02,,
                                    1.608E+02,
                     1.155E+01,
            ,NO
C,MO-99
                                                                     0.257
                                                    5.368E+00,,
                                     3.200E+00,
                     1.378E+00,
C, RU-103
            , NO
                                                                     0.472
                                                    5.099E+01,,
                                     2.930E+01,
                     2.404E+01,
            ,NO
C, RU-106
                                                                     0.473
                                                    5.244E+00,,
                      2.482E+00,
                                     3.015E+00,
            , NO
 C, AG-110m
                                                                     0.050
                                                    6.467E+00,,
                                     3.882E+00,
                      3.244E-01,
            , NO
 C, SN-113
                                                                     0.392
                                                    5.382E+00,,
                                     6.670E+00,
            , NO
                      2.112E+00,
 C,SB-124
                                                                    -0.518
                                                    1.339E+01,,
                     -6.940E+00,
                                     8.546E+00,
             , NO
 C,SB-125
                                                                    -0.028
                                                    6.476E+01,,
                                     3.962E+01,
                     -1.786E+00,
 C, TE-129M , NO
                                                                    -0.217
                                                    9.179E+00,,
                                     5.617E+00,
                     -1.991E+00,
             , NO
 C, I-131
                                                    7.141E+00,,
                                                                     0.547
                                     4.732E+00,
                      3.906E+00,
             ,NO
 C, BA-133
                                                                     0.655
                                                    5.619E+00,,
                      3.682E+00,
                                     5.616E+00,
             ,NO
 C, CS-134
                                                                     0.388
                                                    7.859E+00,,
                                     4.507E+00,
                      3.051E+00,
 C, CS-136
             , NO
                                                                     -0.076
                                                    5.429E+00,,
                                     3.337E+00,
                     -4.108E-01,
 C, CS-137
             , NO
                                                                     -1.056
                                                    4.256E+00,,
                                     2.794E+00,
             ,NO
                     -4.496E+00,
 C, CE-139
                                                    2.528E+01,,
                                                                      0.214
                      5.411E+00,
                                     1.521E+01,
             , NO
 C, BA-140
                                                                      0.289
                                                    9.642E+00,,
                                     5.568E+00,
                      2.790E+00,
             , NO
 C, LA-140
                                                                      0.379
                                                    9.466E+00,,
                                     6.522E+00,
                      3.583E+00,
             , NO
 C, CE-141
                                                                     -0.132
                                                    3.463E+01,,
                                     2.464E+01,
                     -4.568E+00,
             , NO
 C, CE-144
                                                    1.464E+01,,
                                                                     -0.760
                                     1.108E+01,
                     -1.112E+01,
 C, EU-152
             , NO
                                                                     -0.152
                                                    9.135E+00,,
                                     5.558E+00,
                     -1.390E+00,
             , NO
 C, EU-154
                                                                      0.061
                                                    2.134E+01,,
                                     1.237E+01,
                      1.291E+00,
             , NO
 C, AC-228
                                                                      0.061
                                                    2.128E+01,,
                      1.288E+00,
                                     1.234E+01,
             ,NO
 C, TH-232
                                                                      0.230
                                                     3.629E+01,,
                                     2.526E+01,
                      8.346E+00,
             , NO
 C, U-235
                                                                     -0.079
                                                     5.858E+02,,
                                     3.637E+02,
             , NO
                     -4.635E+01,
 C, U-238
                                                     4.044E+01,,
                                                                     -0.654
                                     2.642E+01,
```

-2.644E+01,

C, AM-241

,NO ,

Analyst: LIMS: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 19:44:25.77

TBE13 P-10727B HpGe ******* Aquisition Date/Time: 1-JUN-2006 16:17:15.09

LIMS No., Customer Name, Client ID: WG L28777-10 DRESDEN

Smple Date: 24-MAY-2006 11:37:00. : 13L28777-10 Sample ID

Geometry : 1335L090904 BKGFILE : 13BG050506MT : WG Sample Type Quantity : 3.42300E+00 L

Pk Srch Sens: 5.00000 Live time : 0 03:26:59.36 End Channel : 4090

MDA Constant : 0.00 Library Used: LIBD

Pk It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec		Fit
1 1 2 1 3 3 4 1 5 1 6 1 7 1 8 1 10 1 11 1 12 1 13 1 14 1 15 1	63.26* 66.05* 77.34* 92.73* 140.02* 185.63* 198.07* 295.26* 351.99* 595.55 609.22* 912.32* 1120.77* 1461.13* 1744.76 1764.55*	16 85 76 9 34 5 77 94 214 55 217 177 33 51 51 24	343 391 514 491 414 418 339 201 216 68 140 58 52 12 5	1.03 1.63 1.40 1.30 1.01 1.69 1.33 1.06 1.59 1.62 1.25 1.23 2.32 8.13	1824.99 2242.40 2924.31 3492.92	6.19E-01 7.15E-01 1.10E+00 1.52E+00 2.02E+00 1.95E+00 1.90E+00 1.52E+00 1.34E+00 9.12E-01 8.96E-01 6.63E-01 4.69E-01 4.11E-03	6.82E-03 6.13E-03 7.57E-04 2.71E-03 4.23E-04 6.19E-03 7.56E-03 1.73E-02 4.41E-03 1.75E-02 1.42E-02 2.65E-03 4.08E-03	41.2 58.1 484.6 110.6 819.9 43.8 29.3 16.3 29.2 14.7 9.9 48.1 32.9 315.1	1.90E+00 6.59E+00 1.01E+00 3.81E+00 7.63E-01 1.33E+00 1.71E+00 1.80E+00 5.86E-01 2.52E+02 1.33E+00 6.84E-01 1.08E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natura	al			Uncorrected Decay Corr 2-Sigma %Error
Nuclide K-40 RA-226 AC-228 U-235	Energy 1460.81 186.21 835.50 911.07 143.76 163.35 185.71 205.31	Area 51 5 177 5	%Abn 10.67* 3.28* 1.75 27.70* 10.50* 4.70 54.00 4.70	%Eff 4.688E-01 1.947E+00 7.084E-01 6.634E-01 2.023E+00 2.011E+00 1.947E+00	6.441E+01 6.441E+01 65.72 5.236E+00 5.236E+00 1639.72 Line Not Found 6.115E+01 6.132E+01 19.75 Line Not Found Line Not Found 3.180E-01 3.180E-01 1639.72

Page: 2 Acquisition date : 1-JUN-2006 16:17:15 Summary of Nuclide Activity Sample ID : 13L28777-10

16 Total number of lines in spectrum 13 Number of unidentified lines

Number of lines tentatively identified by NID 3 18.75%

Nuclide Type : natural

Nucliuc Type .	Uncorre	cted Decay Corr	Decay Corr	2-Sigma	മുടവു
Nuclide Hlife K-40 1.28E+09Y RA-226 1600.00Y AC-228 5.75Y U-235 7.04E+08Y	Uncorre Decay pCi/ 1.00 6.441E 1.00 5.236E 1.00 6.115E 1.00 3.180E	L pCi/L 6.441E+01 6.236E+00 6.132E+01	2-Sigma Error 4.233E+01 85.86E+00 1.211E+01	%Error 65.72 1639.72 19.75 1639.72	
_		7.02 1 313E+02			

Total Activity: 1.311E+02 1.313E+02

1.313E+02 Grand Total Activity: 1.311E+02

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 13L28777-10

Page: 3 Acquisition date : 1-JUN-2006 16:17:15

Jamp	/1C 1D							, _	0	%Eff	Flags
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	QULT	riago
1 3 1 1 1 1 1 1	63.26 66.05 77.34 92.73 140.02 198.07 295.26 351.99 595.55 609.22 1120.77 1744.76 1764.55	16 85 76 9 34 77 94 214 55 217 33 51 24	343 391 514 491 414 339 201 216 68 140 52 5	1.03 1.63 1.40 1.30 1.01 1.33 1.06 1.30 1.59 1.62 1.23 8.13 2.74	126.56 132.13 154.70 185.46 279.98 396.03 590.36 703.79 1190.99 1218.35 2242.40 3492.92 3532.62	181 276 393 588 698 1187 1211 2238 3487	7 12 10 8 8 8 12 8 16 10 18	1.75E-02 2.65E-03 4.09E-03	*** *** 87.5 58.7 32.6 58.5 29.5 96.2 30.3	6.19E-0 7.15E-0 1.10E+0 1.52E+0 2.02E+0 1.90E+0 1.52E+0 9.12E-0 8.96E-0 4.14E-0 4.11E-0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 16 Number of unidentified lines 13 Number of lines tentatively identified by NID 3 18.75%

Nuclide Type : natural

Nuclide Type : natural	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr 2-Sigma
Nuclide K-40 1.28E+09Y 1.00 RA-226 1600.00Y 1.00 AC-228 5.75Y 1.00	pCi/L 6.441E+01 5.236E+00 6.115E+01	pCi/L 6.441E+01 5.236E+00 6.132E+01 1.310E+02	2-Sigma Error %Error Flags 4.233E+01 65.72 85.86E+00 1639.72 1.211E+01 19.75

Grand Total Activity: 1.308E+02 1.310E+02

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	6.441E+01	4.233E+01	4.014E+01	0.000E+00	1.605
RA-226	5.236E+00	8.586E+01	1.133E+02	0.000E+00	0.046
AC-228	6.132E+01	1.211E+01	1.598E+01	0.000E+00	3.838

---- Non-Identified Nuclides ----

27 .74 40	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide BE-7 NA-24 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-136 CS-137	Activity K.L.	2.667E+01 1.488E-02 2.860E+01 2.898E+00 2.85E+00 3.123E+00 6.005E+00 2.858E+00 7.336E+00 4.041E+00 3.453E+00 3.453E+00 3.453E+00 3.22E+00 5.760E+00 1.638E+02 3.229E+00 2.665E+01 2.842E+00 3.809E+00 3.896E+01 5.801E+00 4.719E+00 3.992E+00 4.360E+00 3.080E+00 2.963E+00	(pCi/L) 4.452E+01 Half-Life too 4.573E+01 4.657E+00 4.879E+00 5.120E+00 1.027E+01 4.543E+00 1.106E+01 6.548E+00 7.399E+00 4.967E+00 4.967E+00 2.524E+02 5.383E+00 4.409E+01 4.569E+00 6.543E+00 6.543E+00 1.404E+01 6.270E+01 9.641E+00 7.298E+00 7.298E+00 5.567E+00 4.967E+00	0.000E+00	Act/MDA 0.272 -0.640 -0.157 0.362 0.018 0.298 -0.171 0.527 -0.006 2.734 -0.788 -0.473 0.647 -0.592 -0.633 0.268 0.113 -0.320 0.578 -0.167 0.249 -0.220 0.069 1.147 0.944 0.110 0.950 0.355 -0.181
CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 TH-228 TH-232 U-235 U-238 AM-241	-4.547E+00 6.738E+00 3.310E+00 1.032E+01 -9.338E+00 1.410E+00 3.682E+00 6.115E+01 +1.429E+01 -1.410E+02 2.831E+01	1.573E+01 4.562E+00 6.641E+00 2.607E+01 1.109E+01 5.939E+00 5.831E+00	2.514E+01 8.592E+00 9.586E+00 3.760E+01 1.490E+01 9.949E+00 9.923E+00 1.816E+01 3.768E+01 5.234E+02 4.296E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.784 0.345 0.275 -0.627 0.142 0.371 3.366 0.379 -0.269 0.659

```
3.423E+00,WG L28777-10 D
                     ,06/01/2006 19:44,05/24/2006 11:37,
A,13L28777-10
                                             ,06/01/2006 10:13,1335L090904
                     , LIBD
B, 13L28777-10
                                                                    1.605
                                                   4.014E+01,,
                                    4.233E+01,
                     6.441E+01,
            , YES,
C, K-40
                                                                     0.046
                                                   1.133E+02,,
                                    8.586E+01,
                     5.236E+00,
            ,YES,
C, RA-226
                                                                     3.838
                                                   1.598E+01,,
                                    1.211E+01,
                     6.132E+01,
            , YES,
C, AC-228
                                                                     0.272
                                                   4.452E+01,,
                                    2.667E+01,
                     1.212E+01,
C, BE-7
            , NO
                                                                    -0.640
                                                   4.573E+01,,
                    -2.928E+01,
                                    2.860E+01,
C, CR-51
            , NO
                                                                    -0.157
                                                   4.657E+00,,
                                    2.898E+00,
                    -7.312E-01,
            , NO
C, MN-54
                                                                     0.362
                                                   4.879E+00,,
                                    2.885E+00,
                     1.766E+00,
            , NO
C, CO-57
                                                                     0.018
                                                   5.120E+00,,
                                    3.123E+00,
                     9.214E-02,
            , NO
C, CO-58
                                                                     0.298
                                                   1.027E+01,,
                                    6.005E+00,
                     3.059E+00,
            , NO
C, FE-59
                                                                    -0.171
                                                    4.543E+00,,
                                    2.858E+00,
                    -7.759E-01,
            , NO
C, CO-60
                                                                     0.527
                                                    1.106E+01,,
                                    7.336E+00,
                     5.831E+00,
            , NO
C, ZN-65
                                                                    -0.006
                                                    6.548E+00,,
                                     4.041E+00,
                    -4.244E-02,
            ,NO
C, SE-75
                                                                     2.734
                                                    7.399E+00,,
                                     3.857E+00,
                     2.023E+01,
            , NO
C, SR-85
                                                                    -0.788
                                                    4.967E+00,,
                                     3.453E+00,
                    -3.912E+00,
            , NO
C, Y-88
                                                                    -0.473
                                                    4.528E+00,,
                                     2.863E+00,
                    -2.141E+00,
            , NO
C, NB-94
                                                                     0.647
                                                    5.623E+00,,
                                     3.222E+00,
                     3.640E+00,
            , NO
C, NB-95
                                                                    -0.592
                                                    8.950E+00,,
                                     5.760E+00,
                     -5.296E+00,
            , NO
C, ZR-95
                                                                    -0.633
                                                    2.524E+02,,
                                     1.638E+02,
                     -1.598E+02,
            , NO
 C, MO-99
                                                                      0.268
                                                    5.383E+00,,
                                     3.229E+00,
                      1.440E+00,
            , NO
 C, RU-103
                                                                      0.113
                                                    4.409E+01,,
                                     2.665E+01,
                      4.995E+00,
             , NO
 C, RU-106
                                                                    -0.320
                                                    4.569E+00,,
                                     2.842E+00,
                     -1.464E+00,
            , NO
 C, AG-110m
                                                                      0.578
                                                    6.543E+00,,
                                     3.809E+00,
                      3.782E+00,
             ,NO
 C, SN-113
                                                                     -0.167
                                                    4.915E+00,,
                                     5.618E+00,
                     -8.206E-01,
 C,SB-124
             , NO
                                                                      0.249
                                                    1.404E+01,,
                                     8.397E+00,
                      3.493E+00,
             , NO
 C,SB-125
                                                                     -0.220
                                                    6.270E+01,,
                                     3.896E+01,
                     -1.381E+01,
 C, TE-129M
             , NO
                                                                      0.069
                                                    9.641E+00,,
                                     5.801E+00,
                      6.666E-01,
 C, I-131
             , NO
                                                                      1.147
                                                    7.298E+00,,
                                     4.719E+00,
                      8.368E+00,
             , NO
 C, BA-133
                                                                      0.944
                                                     5.548E+00,,
                                     3.992E+00,
                      5.237E+00,
             , NO
 C, CS-134
                                                                      0.110
                                                     7.215E+00,,
                                     4.360E+00,
                      7.931E-01,
             , NO
 C, CS-136
                                                                      0.950
                                                     5.567E+00,,
                      5.290E+00,
                                     3.080E+00,
             ,NO
 C, CS-137
                                                                      0.355
                                                     4.967E+00,,
                                     2.963E+00,
                      1.762E+00,
             , NO
 C, CE-139
                                                                     -0.181
                                                     2.514E+01,,
                                     1.573E+01,
                     -4.547E+00,
             , NO
 C,BA-140
                                                                      0.784
                                                     8.592E+00,,
                                      4.562E+00,
                      6.738E+00,
             , NO
 C, LA-140
                                                                      0.345
                                                     9.586E+00,,
                                      6.641E+00,
                      3.310E+00,
             , NO
 C, CE-141
                                                                      0.275
                                                     3.760E+01,,
                                      2.607E+01,
                      1.032E+01,
             , NO
  C, CE-144
                                                                     -0.627
                                                     1.490E+01,,
                                      1.109E+01,
                     -9.338E+00,
             , NO
  C, EU-152
                                                                      0.142
                                                     9.949E+00,,
                                      5.939E+00,
                       1.410E+00,
             , NO
  C, EU-154
                                                                      0.371
                                                     9.923E+00,,
                                      5.831E+00,
                       3.682E+00,
              , NO
  C, TH-228
                                                                      3.366
                                                     1.816E+01,,
                                      1.208E+01,
                       6.115E+01,
             ,NO
  C, TH-232
                                                                       0.379
                                                     3.768E+01,,
                                      2.597E+01,
                       1.429E+01,
              , NO
  C, U-235
                                                     5.234E+02,,
                                                                      -0.269
                                      3.253E+02,
                      -1.410E+02,
              , NO
  C, U-238
                                                                       0.659
                                                     4.296E+01,,
```

2.951E+01,

2.831E+01,

NO,

C, AM-241

Analyst: LIMS: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 20:20:50.53 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 1-JUN-2006 17:27:53.46

LIMS No., Customer Name, Client ID: WG L28777-11 DRESDEN

Smple Date: 24-MAY-2006 13:20:00. : 04L28777-11

Sample ID Geometry : 0435L090804 : WG Sample Type BKGFILE : 04BG050506MT Quantity : 3.48290E+00 L

MDA Constant : 0.00 Library Used: LIBD

Pk It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1	84.27* 92.93* 139.89* 198.25* 238.66* 294.90* 351.33* 595.98 609.24* 1333.64 1460.46*	6 36 55 127 12 41 33 45 42 42	223 281 257 189 161 135 151 83 69 28 17	1.86	169.10 186.44 280.38 397.10 477.94 590.42 703.27 1192.58 1219.09 2667.58 2921.12	1.40E+00 1.82E+00 1.68E+00 1.52E+00 1.32E+00 1.17E+00 7.86E-01 7.73E-01 4.20E-01	3.17E-03 4.33E-03 4.07E-03	95.5 56.0 21.3 191.8 55.4 79.9 47.5 46.3 28.4	1.84E+00 2.35E+00 6.49E+00 1.16E+00 1.05E+00 3.39E+00 1.48E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide	Type: natura	1 L		Uncorrected	Decay Corr	2-Sigma
Nuclide K-40 TH-228	Energy 1460.81 238.63 240.98	Area 16 12	44.60*	 1.0011.00	pCi/L 2.890E+01 1.342E+00 ne Not Found	%Error 157.71 383.60

Page: 2

Summary of Nuclide Activity

Acquisition date: 1-JUN-2006 17:27:53 Sample ID : 04L28777-11

Total number of lines in spectrum

11 9 Number of unidentified lines

18.18% Number of lines tentatively identified by NID 2

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags pCi/L pCi/L Hlife Decay Nuclide 157.71 4.559E+01 2.890E+01 2.890E+01 1.00

1.28E+09Y K-40 383.60 5.149E+00 1.342E+00 1.01 1.331E+00 1.91Y TH-228 _____ _____

3.025E+01 3.024E+01 Total Activity:

Grand Total Activity: 3.024E+01 3.025E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

MDA error

Unidentified Energy Lines Sample ID : 04L28777-11

Page : Acquisition date : 1-JUN-2006 17:27:53

Samp	ole ID : (04L28777-	11		Acquisiti					
_	Energy	Area	Bkgnd	FWHM	Channel Left P	⊇w	Cts/Sec	%Err	%Eff	Flags
<u>.</u>									1 10E10	

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	SELL	2011 170	^5
1 1 1 1 1 1 1	84.27 92.93 139.89 198.25 294.90 351.33 595.98 609.24 1333.64	6 36 55 127 41 33 45 42	223 281 257 189 135 151 83 69 28	1.38 1.89 1.34 3.41 1.74 1.80 2.08 1.86 1.06	1219.09	276 394 587 698 1187 1211	10 9 9 12 16 14	6.08E-04 3.44E-03 5.30E-03 1.23E-02 3.96E-03 3.17E-03 4.33E-03 4.07E-03 4.08E-03	**** 42.7 *** 95.0 92.6	1.19E+00 1.40E+00 1.82E+00 1.68E+00 1.32E+00 1.17E+00 7.86E-01 7.73E-01 4.20E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum	11	
Total number of fines in spectrum	9	
Number of unidentified lines	D 2	18.18%
Number of lines tentatively identified by NI		

Nuclide Type : natural

Nuclide	Type : natur		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide K-40 TH-228	Hlife 1.28E+09Y 1.91Y	Decay 1.00	pCi/L	pCi/L 2.890E+01 1.342E+00	2-Sigma Error	%Error 157.71 383.60	Flags

Total Activity: 3.024E+01 3.025E+01

Grand Total Activity: 3.024E+01 3.025E+01

"M" = Manually accepted Flags: "K" = Keyline not found

K.L. Act error

Ided

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Nuclide

No interference correction performed

Activity

(pCi/L)

Combined Activity-MDA Report

---- Identified Nuclides ----

Identii	Ted Nucliaes				- 1/2577
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 TH-228	2.890E+01 1.342E+00	4.559E+01 5.149E+00	5.225E+01 8.198E+00	0.000E+00 0.000E+00	0.553 0.164
Non-Ide	entified Nuclide	S			
	Key-Line	7	MΠΔ	MDA error	Act/MDA

MDA

(pCi/L)

		2.688E+01	4.583E+01	0.000E+00	0.395
BE-7	1.811E+01	1.413E-02	Half-Life too	short	
NA-24	-5.837E-02	3.121E+01	5.075E+01	0.000E+00	-0.001
CR-51	-7.058E-02		4.459E+00	0.000E+00	-0.564
MN-54	-2.513E+00	2.916E+00	4.372E+00	0.000E+00	-0.340
CO-57	-1.485E+00	2.689E+00	5.348E+00	0.000E+00	-0.095
CO-58	-5.106E-01	3.266E+00	1.057E+01	0.000E+00	0.251
FE-59	2.656E+00	6.134E+00	6.835E+00	0.000E+00	0.394
CO-60	2.694E+00	3.773E+00		0.000E+00	0.632
ZN-65	7.670E+00	6.668E+00	1.213E+01	0.000E+00	-0.249
SE-75	-1.604E+00	3.989E+00	6.449E+00	0.000E+00	1.900
SR-85	1.403E+01	3.891E+00	7.383E+00	0.000E+00	0.298
Y-88	1.845E+00	3.523E+00	6.199E+00	0.000E+00	-0.280
NB-94	-1.321E+00	2.987E+00	4.718E+00	0.000E+00	0.350
NB-94 NB-95	1.904E+00	3.201E+00	5.444E+00		0.332
	3.212E+00	5.693E+00	9.670E+00	0.000E+00	-0.161
ZR-95	-4.882E+01	1.899E+02	3.028E+02	0.000E+00	-0.017
MO-99	-9.433E-02	3.435E+00	5.587E+00	0.000E+00	0.462
RU-103	2.378E+01	2.963E+01	5.148E+01	0.000E+00	-0.171
RU-106	-8.838E-01	3.212E+00	5.175E+00	0.000E+00	0.275
AG-110m		3.959E+00	6.731E+00	0.000E+00	-
SN-113	1.848E+00	7.703E+00	5.417E+00	0.000E+00	-0.302
SB-124	-1.634E+00	8.333E+00	1.370E+01	0.000E+00	-0.021
SB-125	-2.829E-01	3.896E+01	6.100E+01	0.000E+00	-0.448
TE-129M	-2.732E+01	5.794E+00	9.869E+00	0.000E+00	0.245
I-131	2.417E+00	4.603E+00	6.486E+00	0.000E+00	-0.083
BA-133	-5.416E-01	7.180E+00	5.549E+00	0.000E+00	0.219
CS-134	1.216E+00		7.300E+00	0.000E+00	-0.056
CS-136	-4.085E-01	4.440E+00	5.673E+00	0.000E+00	0.338
CS-137	1.917E+00	3.318E+00	4.750E+00	0.000E+00	-0.573
CE-139	-2.723E+00	3.014E+00	2.736E+01	0.000E+00	0.086
BA-140	2.367E+00	1.673E+01	8.081E+00	0.000E+00	-0.263
LA-140	-2.129E+00	5.223E+00	9.039E+00	0.000E+00	-0.034
CE-141	-3.029E-01	6.423E+00	3.385E+01	0.000E+00	-0.246
CE-144	-8.328E+00	2.431E+01		0.000E+00	-0.634
EU-152	-9.868E+00	1.207E+01	1.556E+01	0.000E+00	-0.425
EU-154	-3.875E+00	5.633E+00	9.109E+00	0.000E+00	-0.038
RA-226	-4.597E+00	7.351E+01	1.207E+02	0.000E+00	-0.023
AC-228	-4.745E-01	1.219E+01	2.084E+01	0.000E+00	-0.023
TH-232	-4.732E-01	1.216E+01	2.078E+01		-0.031
U-235	-1.062E+00	2.462E+01	3.468E+01	0.000E+00	0.495
	2.828E+02	3.234E+02	5.708E+02	0.000E+00	-0.500
U-238	-2.046E+01	2.572E+01	4.093E+01	0.000E+00	-0.500
AM-241	-2.0401101				

```
3.483E+00,WG L28777-11 D
                     ,06/01/2006 20:20,05/24/2006 13:20,
A,04L28777-11
                                             ,03/14/2005 09:04,0435L090804
                     ,LIBD
B,04L28777-11
                                                                     0.553
                                                   5.225E+01,,
                                    4.559E+01,
                     2.890E+01,
           , YES,
C, K-40
                                                                     0.164
                                                   8.198E+00,,
                     1.342E+00,
                                    5.149E+00,
C, TH-228
            ,YES,
                                                                     0.395
                                                   4.583E+01,,
                                    2.688E+01,
                     1.811E+01,
           , NO
C, BE-7
                                                                   -0.001
                                                   5.075E+01,,
                                    3.121E+01,
                    -7.058E-02,
            , NO
C, CR-51
                                                                    -0.564
                                                   4.459E+00,,
                                    2.916E+00,
                    -2.513E+00,
            , NO
C, MN-54
                                                                    -0.340
                                                   4.372E+00,,
                                    2.689E+00,
                    -1.485E+00,
            , NO
C, CO-57
                                                                    -0.095
                                                   5.348E+00,,
                                    3.266E+00,
                    -5.106E-01,
            , NO
C, CO-58
                                                                     0.251
                                                   1.057E+01,,
                                    6.134E+00,
            , NO
                     2.656E+00,
C, FE-59
                                                                     0.394
                                                   6.835E+00,,
                                    3.773E+00,
                     2.694E+00,
            , NO
C, CO-60
                                                   1.213E+01,,
                                                                     0.632
                                    6.668E+00,
                     7.670E+00,
C, ZN-65
            ,NO
                                                                    -0.249
                                                   6.449E+00,,
                                    3.989E+00,
            , NO
                    -1.604E+00,
C, SE-75
                                                                     1.900
                                                   7.383E+00,,
                                    3.891E+00,
                     1.403E+01,
C,SR-85
            , NO
                                                   6.199E+00,,
                                                                     0.298
                                    3.523E+00,
                     1.845E+00,
            , NO
C, Y-88
                                                                    -0.280
                                                   4.718E+00,,
                                    2.987E+00,
                    -1.321E+00,
C, NB-94
            , NO
                                                                     0.350
                                                   5.444E+00,,
                                    3.201E+00,
                     1.904E+00,
C, NB-95
            , NO
                                                                     0.332
                                                   9.670E+00,,
                                    5.693E+00,
            , NO
                     3.212E+00,
C, ZR-95
                                                                    -0.161
                                                   3.028E+02,,
                                    1.899E+02,
                    -4.882E+01,
C, MO-99
            , NO
                                                                    -0.017
                                                    5.587E+00,,
                    -9.433E-02,
                                    3.435E+00,
            , NO
C, RU-103
                                                                     0.462
                                                    5.148E+01,,
                                    2.963E+01,
                     2.378E+01,
C, RU-106
            , NO
                                                                    -0.171
                                                    5.175E+00,,
                                    3.212E+00,
                    -8.838E-01,
C, AG-110m
            , NO
                                                                     0.275
                                                    6.731E+00,,
                                     3.959E+00,
                     1.848E+00,
            , NO
C, SN-113
                                                                    -0.302
                                                    5.417E+00,,
                                     7.703E+00,
                    -1.634E+00,
            , NO
C,SB-124
                                                    1.370E+01,,
                                                                    -0.021
                    -2.829E-01,
                                     8.333E+00,
            , NO
C,SB-125
                                                    6.100E+01,,
                                                                    -0.448
                                     3.896E+01,
                    -2.732E+01,
            , NO
C, TE-129M
                                                                     0.245
                                                    9.869E+00,,
                                     5.794E+00,
            ,NO
                     2.417E+00,
C, I-131
                                                                    -0.083
                                                    6.486E+00,,
                                     4.603E+00,
                     -5.416E-01,
C, BA-133
             , NO
                                                                     0.219
                                                    5.549E+00,,
                                     7.180E+00,
                      1.216E+00,
             , NO
 C, CS-134
                                                                    -0.056
                                                    7.300E+00,,
                     -4.085E-01,
                                     4.440E+00,
            ,NO
 C, CS-136
                                                                     0.338
                                     3.318E+00,
                                                    5.673E+00,,
                      1.917E+00,
 C, CS-137
             , NO
                                                                    -0.573
                                                    4.750E+00,,
                                     3.014E+00,
                     -2.723E+00,
             , NO
 C, CE-139
                                                                      0.086
                                                    2.736E+01,,
                                     1.673E+01,
             , NO
                      2.367E+00,
 C, BA-140
                                                    8.081E+00,,
                                                                     -0.263
                     -2.129E+00,
                                     5.223E+00,
             , NO
 C, LA-140
                                                                     -0.034
                                                    9.039E+00,,
                                     6.423E+00,
                     -3.029E-01,
 C, CE-141
             , NO
                                                                     -0.246
                                                    3.385E+01,,
                                     2.431E+01,
             , NO
                     -8.328E+00,
 C, CE-144
                                                                     -0.634
                                     1.207E+01,
                                                    1.556E+01,,
                     -9.868E+00,
             , NO
 C, EU-152
                                                                     -0.425
                                                    9.109E+00,,
                                     5.633E+00,
                     -3.875E+00,
 C, EU-154
             , NO
                                                                     -0.038
                                                    1.207E+02,,
                     -4.597E+00,
                                     7.351E+01,
 C, RA-226
             , NO
                                                    2.084E+01,,
                                                                     -0.023
                                     1.219E+01,
             , NO
                     -4.745E-01,
 C, AC-228
                                                                     -0.023
                                                    2.078E+01,,
                     -4.732E-01,
                                     1.216E+01,
             , NO
 C, TH-232
                                                                     -0.031
                                                    3.468E+01,,
                                     2.462E+01,
                     -1.062E+00,
 C, U-235
             , NO
                                                    5.708E+02,,
                                                                      0.495
                                     3.234E+02,
                      2.828E+02,
 C, U-238
             , NO
                                                    4.093E+01,,
                                                                     -0.500
                                     2.572E+01,
```

-2.046E+01,

C, AM-241

, NO

Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 1-JUN-2006 20:35:30.80 TBE23 03017322 HpGe ******* Aquisition Date/Time: 1-JUN-2006 17:27:57.03

LIMS No., Customer Name, Client ID: WG L28777-12 DRESDEN

Smple Date: 25-MAY-2006 06:40:00. Sample ID : 23L28777-12

Geometry : 2335L090704 Sample Type : WG BKGFILE : 23BG050506MT Quantity : 3.46670E+00 L

MDA Constant : 0.00 Library Used: LIBD

Pk :	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec		Fit
1 2 3 4 5 6 7 8 9 10 11 12 13	0 2 2 0 0 0 0 0 0 0 0	33.96* 40.90* 43.61 139.22* 185.34* 238.42* 295.00* 351.99* 510.89* 595.94 609.31* 1119.95* 1461.62* 1765.28*	26 11 25 63 28 40 7 233 10 49 166 35 48 49	137 342 248 475 341 393 241 150 161 72 96 17 29 28	1.89 1.47 1.11 1.43 1.61 1.16 1.33 2.45 0.93 1.59 1.31 1.60	703.89 1021.52 1191.57 1218.29 2239.43 2922.88	2.35E-01 3.05E-01 2.05E+00 1.95E+00 1.73E+00 1.50E+00 1.32E+00 9.85E-01 8.74E-01 8.59E-01 5.53E-01 4.59E-01	2.08E-02 9.32E-04 4.34E-03 1.48E-02 3.14E-03	317.6 111.2 62.1 124.3 100.8 392.0 13.2 338.1 34.5 15.5 30.6 37.9	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide	Type: natura	т.			Uncorrected	Decay Corr	2-Sigma
Nuclide K-40 RA-226 TH-228	Energy 1460.81 186.21 238.63 240.98	Area 48 28 40	44.60*	%Eff 4.593E-01 1.949E+00 1.725E+00 1.714E+00	pCi/L 6.745E+01 3.042E+01 3.571E+00	pCi/L 6.745E+01 3.042E+01 3.598E+00 ne Not Found	%Error 75.85 248.64 201.57

Page: 2

Summary of Nuclide Activity Sample ID: 23L28777-12 Acquisition date: 1-JUN-2006 17:27:57

14

11

Total number of lines in spectrum Number of unidentified lines

Number of lines tentatively identified by NID 3 21.43%

Nuclide Type : natural

Nuclide K-40 RA-226 TH-228	1.28E+09Y 1600.00Y	Decay 1.00 1.00	Uncorrected pCi/L 6.745E+01 3.042E+01 3.571E+00	pCi/L 6.745E+01 3.042E+01 3.598E+00	Decay Corr 2-Sigma Error 5.116E+01 7.564E+01 7.253E+00	2-Sigma %Error 75.85 248.64 201.57	Flags
	Total Activ	ity :	1.014E+02	1.015E+02			

Grand Total Activity: 1.014E+02 1.015E+02

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 23L28777-12

Page: 3 Acquisition date : 1-JUN-2006 17:27:57

Samp	Te in : 2	31120777									
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0 2 2 0 0 0 0 0	33.96 40.90 43.61 139.22 295.00 351.99 510.89 595.94 609.31 1119.95 1765.28	26 11 25 63 7 233 10 49 166 35 49	137 342 248 475 241 150 161 72 96 17 28	1.89 1.47 1.11 1.43 1.16 1.33 2.45 0.93 1.59 1.31	68.24 82.11 87.53 278.61 589.96 703.89 1021.52 1191.57 1218.29 2239.43 3530.47	75 275 586 699 1012 1187 1210 2234	16 16 8 8 13 19 9 14	2.19E-03 5.61E-03 6.44E-04 2.08E-02 9.32E-04 4.34E-03 1.48E-02	*** *** 26.4 *** 69.0 31.0 61.3	9.64E-02 2.35E-0 3.05E-0 2.05E+0 1.50E+0 1.32E+0 9.85E-0 8.74E-0 8.59E-0 5.53E-0 4.00E-0	1 0 0 0 1 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 14 11 Number of unidentified lines Number of lines tentatively identified by NID 3 21.43%

Nuclide Type : natural

Nuclide Type : natural	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	El agg
Nuclide K-40 1.28E+09Y 1.00 RA-226 1600.00Y 1.00 TH-228 1.91Y 1.01	pCi/L 6.745E+01 3.042E+01 3.571E+00	pCi/L 6.745E+01 3.042E+01 3.598E+00 1.015E+02	2-Sigma Error 5.116E+01 7.564E+01 7.253E+00	%Error 1 75.85 248.64 201.57	r Lags

Grand Total Activity: 1.014E+02 1.015E+02

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	6.745E+01	5.116E+01	4.604E+01	0.000E+00	1.465
RA-226	3.042E+01	7.564E+01	1.471E+02	0.000E+00	0.207
TH-228	3.598E+00	7.253E+00	1.016E+01	0.000E+00	0.354

⁻⁻⁻⁻ Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA -0.108
BE-7	-5.468E+00	2.999E+01	5.046E+01	0.000E+00	-0.112
NA-24	-2.528E+03	1.306E+04	2.263E+04	0.000E+00 0.000E+00	0.044
CR-51	2.534E+00	3.343E+01	5.716E+01	0.000E+00	0.028
MN-54	1.597E-01	3.246E+00	5.617E+00		-0.325
CO-57	-2.032E+00	3.764E+00	6.252E+00	0.000E+00	-0.063
CO-58	-3.570E-01	3.293E+00	5.659E+00	0.000E+00	0.066
FE-59	7.477E-01	6.415E+00	1.139E+01	0.000E+00 0.000E+00	-0.190
CO-60	-1.009E+00	3.090E+00	5.299E+00		0.538
ZN-65	6.460E+00	7.378E+00	1.201E+01	0.000E+00	-0.285
SE-75	-2.292E+00	4.766E+00	8.029E+00	0.000E+00	2.486
SR-85	1.835E+01	4.084E+00	7.380E+00	0.000E+00	-0.287
Y-88	-1.633E+00	3.337E+00	5.699E+00	0.000E+00	0.260
NB-94	1.427E+00	3.099E+00	5.493E+00	0.000E+00	0.125
NB-95	7.277E-01	3.310E+00	5.802E+00	0.000E+00 0.000E+00	-0.149
ZR-95	-1.470E+00	5.783E+00	9.867E+00		0.046
MO-99	1.236E+01	1.532E+02	2.669E+02	0.000E+00 0.000E+00	0.293
RU-103	1.851E+00	3.680E+00	6.308E+00	0.000E+00	0.582
RU-106	3.167E+01	2.969E+01	5.439E+01	0.000E+00	0.302
AG-110m	5.374E-01	3.039E+00	5.335E+00	0.000E+00	0.373
SN-113	2.806E+00	4.302E+00	7.521E+00	0.000E+00	0.464
SB-124	2.572E+00	6.791E+00	5.540E+00	0.000E+00	-0.026
SB-125	-4.012E-01	8.977E+00	1.526E+01	0.000E+00	-0.345
TE-129M	-2.388E+01	4.190E+01	6.930E+01	0.000E+00	0.221
I-131	2.379E+00	6.316E+00	1.077E+01	0.000E+00	0.905
BA-133	7.658E+00	5.466E+00	8.466E+00	0.000E+00	1.446
CS-134	1.003E+01	5.682E+00	6.933E+00	0.000E+00	0.092
CS-136	7.147E-01	4.447E+00	7.781E+00	0.000E+00	-0.377
CS-137	-2.142E+00	3.396E+00	5.686E+00	0.000E+00	-0.258
CE-139	-1.602E+00	3.755E+00	6.212E+00	0.000E+00	0.136
BA-140	3.949E+00	1.690E+01	2.902E+01	0.000E+00	0.471
LA-140	4.716E+00	5.197E+00	1.002E+01	0.000E+00	0.235
CE-141	2.909E+00	8.622E+00	1.239E+01	0.000E+00	-0.993
CE-144	-4.697E+01	3.475E+01	4.730E+01	0.000E+00	0.147
EU-152	2.429E+00	1.131E+01	1.656E+01	0.000E+00	0.090
EU-154	1.179E+00	7.774E+00	1.311E+01	0.000E+00	-0.051
AC-228	-1.067E+00	1.196E+01	2.093E+01	0.000E+00	-0.051
TH-232	-1.064E+00	1.193E+01	2.088E+01	0.000E+00	0.094
U-235	4.615E+00	3.439E+01 4.917E-		0.000E+00	-0.200
U-238	-1.104E+02	3.214E+02	5.528E+02	0.000E+00	-0.045
AM-241	-1.529E+00	2.042E+01	3.364E+01	0.0001.00	

```
3.467E+00,WG L28777-12 D
                     ,06/01/2006 20:35,05/25/2006 06:40,
A,23L28777-12
                                             ,06/01/2006 10:14,2335L090704
                     ,LIBD
B,23L28777-12
                                                                    1.465
                                                   4.604E+01,,
                                    5.116E+01,
                     6.745E+01,
           ,YES,
C, K-40
                                                                    0.207
                                                   1.471E+02,,
                                    7.564E+01,
                     3.042E+01,
            , YES,
C, RA-226
                                                                    0.354
                                                   1.016E+01,,
                                    7.253E+00,
                     3.598E+00,
            , YES,
C, TH-228
                                                                   -0.108
                                                   5.046E+01,,
                                    2.999E+01,
                    -5.468E+00,
            , NO
C, BE-7
                                                                   -0.112
                                                   2.263E+04,,
                                    1.306E+04,
                    -2.528E+03,
            , NO
C, NA-24
                                                                     0.044
                                                   5.716E+01,,
                                    3.343E+01,
                     2.534E+00,
C, CR-51
            , NO
                                                                     0.028
                                                   5.617E+00,,
                                    3.246E+00,
                     1.597E-01,
C, MN-54
            ,NO
                                                                    -0.325
                                                   6.252E+00,,
                                    3.764E+00,
                    -2.032E+00,
C, CO-57
            , NO
                                                                    -0.063
                                                   5.659E+00,,
                                    3.293E+00,
                    -3.570E-01,
            , NO
C, CO-58
                                                                     0.066
                                                   1.139E+01,,
                                    6.415E+00,
                     7.477E-01,
C, FE-59
            , NO
                                                                    -0.190
                                                   5.299E+00,,
                                    3.090E+00,
                    -1.009E+00,
            , NO
C,CO-60
                                                                     0.538
                                                   1.201E+01,,
                                    7.378E+00,
                     6.460E+00,
            , NO
C, ZN-65
                                                                    -0.285
                                                   8.029E+00,,
                                    4.766E+00,
                    -2.292E+00,
C, SE-75
            , NO
                                                                     2.486
                                    4.084E+00,
                                                   7.380E+00,,
                     1.835E+01,
            , NO
C, SR-85
                                                                    -0.287
                                    3.337E+00,
                                                   5.699E+00,,
                    -1.633E+00,
            , NO
C, Y-88
                                                                     0.260
                                                   5.493E+00,,
                                    3.099E+00,
                     1.427E+00,
            , NO
C, NB-94
                                                                     0.125
                                                   5.802E+00,,
                                    3.310E+00,
                     7.277E-01,
C, NB-95
            , NO
                                                                    -0.149
                                                    9.867E+00,,
                                     5.783E+00,
                    -1.470E+00,
            , NO
C, ZR-95
                                                                     0.046
                                                    2.669E+02,,
                                     1.532E+02,
                     1.236E+01,
            , NO
C, MO-99
                                                                     0.293
                                                    6.308E+00,,
                                     3.680E+00,
            , NO
                      1.851E+00,
C, RU-103
                                                                     0.582
                                                    5.439E+01,,
                      3.167E+01,
                                     2.969E+01,
            ,NO
C, RU-106
                                                                     0.101
                                                    5.335E+00,,
                                     3.039E+00,
                      5.374E-01,
 C, AG-110m
            , NO
                                                                     0.373
                                                    7.521E+00,,
                                     4.302E+00,
                      2.806E+00,
 C, SN-113
            ,NO
                                                                     0.464
                                                    5.540E+00,,
                                     6.791E+00,
                      2.572E+00,
            ,NO
 C,SB-124
                                                                    -0.026
                                                    1.526E+01,,
                                     8.977E+00,
             , NO
                     -4.012E-01,
 C,SB-125
                                                    6.930E+01,,
                                                                    -0.345
                                     4.190E+01,
                     -2.388E+01,
            , NO
 C, TE-129M
                                                                     0.221
                                                    1.077E+01,,
                                     6.316E+00,
                      2.379E+00,
             , NO
 C, I-131
                                                                     0.905
                                                    8.466E+00,,
                                     5.466E+00,
                      7.658E+00,
 C, BA-133
             , NO
                                                                     1.446
                                                    6.933E+00,,
                                     5.682E+00,
             , NO
                      1.003E+01,
 C, CS-134
                                                    7.781E+00,,
                                                                     0.092
                                     4.447E+00,
                      7.147E-01,
             , NO
 C, CS-136
                                                                     -0.377
                                                    5.686E+00,,
                                     3.396E+00,
                     -2.142E+00,
 C, CS-137
             , NO
                                                                     -0.258
                                     3.755E+00,
                                                    6.212E+00,,
                     -1.602E+00,
 C, CE-139
             ,NO
                                                                      0.136
                                                    2.902E+01,,
                                     1.690E+01,
                      3.949E+00,
             ,NO
 C, BA-140
                                                                      0.471
                                     5.197E+00,
                                                    1.002E+01,,
                      4.716E+00,
             , NO
 C, LA-140
                                                                      0.235
                                                    1.239E+01,,
                                     8.622E+00,
                      2.909E+00,
             , NO
 C, CE-141
                                                                     -0.993
                                                    4.730E+01,,
                                     3.475E+01,
                     -4.697E+01,
             , NO
 C, CE-144
                                                                      0.147
                                                    1.656E+01,,
                                     1.131E+01,
                      2.429E+00,
             , NO
 C, EU-152
                                                                      0.090
                                                    1.311E+01,,
                                     7.774E+00,
                      1.179E+00,
             , NO
 C, EU-154
                                                                     -0.051
                                     1.196E+01,
                                                    2.093E+01,,
                     -1.067E+00,
             , NO
 C,AC-228
                                                                     -0.051
                                                    2.088E+01,,
                                     1.193E+01,
             , NO
                     -1.064E+00,
 C, TH-232
                                                     4.917E+01,,
                                                                      0.094
                                      3.439E+01,
             , NO
                      4.615E+00,
 C, U-235
                                                                     -0.200
                                                     5.528E+02,,
                                      3.214E+02,
             , NO
                     -1.104E+02,
  C, U-238
                                                                     -0.045
                                                     3.364E+01,,
                                      2.042E+01,
                     -1.529E+00,
```

, NO

C, AM-241

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 2-JUN-2006 03:59:16.13 TBE11 P-20610B HpGe ******* Aquisition Date/Time: 1-JUN-2006 17:58:57.88

LIMS No., Customer Name, Client ID: WG L28777-13 DRESDEN

Sample ID . 111.28777-13 Smple Date: 25-MAY-2006 09:40:00.

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Er	r Fit
1 2 3 4 5 6 7 8 9 10 11 12 13	0 0 0 0 0 0 0 0 0 0 0	66.26 92.18* 139.60 198.14* 238.88* 294.87* 351.58* 432.86 583.22* 595.97 608.88* 910.55* 1007.82	307 35 246 199 11 101 132 35 120 118 242 0 36 94	2391 1041 1004 768 1078 650 328 365 343 266 205 180 80	1.24 1.27 1.29 1.37 1.11 1.33 1.04 0.91 1.76 1.51 1.80 1.77 1.50 2.16		6.01E-01 1.27E+00 1.69E+00 1.57E+00 1.42E+00 1.23E+00 1.08E+00 9.18E-01 7.27E-01 7.14E-01 7.03E-01 5.14E-01 4.75E-01 4.37E-01	8.53E-03 29. 9.69E-04180. 6.84E-03 24. 5.54E-03 27. 3.02E-04656. 2.81E-03 53. 3.67E-03 29. 9.81E-04113. 3.34E-03 40. 3.28E-03 30. 6.72E-03 15. 8.54E-06**** 1.00E-03 49. 2.60E-03 28.	6 1 5 0 6 3 0 2 0 3 *
14 15 16	0 0 0	1120.25* 1461.02 1761.61*	304 38	49 64	2.41 1.73	2925.06	3.54E-01 3.04E-01	8.45E-03 7.	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natura	al				D	o Ciamo
	4 -				Uncorrected		2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	304	10.67*	3.539E-01	1.651E+02	1.651E+02	15.81
AC-228	835.50		1.75	5.493E-01	Li	ne Not Found	
AC-220	911.07	0	27.70*	5.138E-01	4.426E-02	4.437E-02	
TH-228	238.63	11	44.60*	1.420E+00	3.514E-01	3.540E-01	1311.93
IH-220	240.98		3.95	1.413E+00	Li	ne Not Found	
тн-232	583.14	120	30.25	7.266E-01	1.123E+01	1.123E+01	80.44
IH-232	911.07	0	27.70*	5.138E-01	4.426E-02	4.426E-02	21771.96
		U				ne Not Found	
	969.11		16.60	4.895E-01	<u>1</u> 11.	ITE INCE L'OUTE	•

Summary of Nuclide Activity

Sample ID : 11L28777-13

Page: 2 Acquisition date: 1-JUN-2006 17:58:57

Total number of lines in spectrum Number of unidentified lines

16 12

Number of lines tentatively identified by NID

25.00%

Nuclide Type : natural

AC-228 TH-228	1.28E+09Y 5.75Y 1.91Y	Decay 1.00 1.00 1.01	Uncorrected pCi/L 1.651E+02 4.426E-02 3.514E-01 4.426E-02	Decay Corr pCi/L 1.651E+02 4.437E-02 3.540E-01 4.426E-02	
TH-232	1.41E+10Y	1.00	4.4266-02	4.4202 02	

1.656E+02 Total Activity: 1.656E+02

Grand Total Activity : 1.656E+02

1.656E+02

Flags: "K" = Keyline not found

"E" = Manually edited

"M" = Manually accepted

"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 11L28777-13

Page: 3 Acquisition date: 1-JUN-2006 17:58:57

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0 0 0 0 0 0 0	66.26 92.18 139.60 198.14 294.87 351.58 432.86 595.97 608.88 1007.82 1120.25 1761.61	307 35 246 199 101 132 35 118 242 36 94 38	2391 1041 1004 768 650 328 365 266 205 80 95 64	1.24 1.27 1.29 1.37 1.33 1.04 0.91 1.51 1.80 1.50 2.16 1.73	131.99 184.09 279.36 396.94 591.16 704.98 868.06 1195.12 1220.99 2019.69 2244.48 3524.39	1215 2017 2236	9 9 9 12 8 13 13 13 10 18	5.54E-03 2.81E-03 3.67E-03 9.81E-04 3.28E-03	**** 48.1 54.9 *** 58.7 *** 59.9 30.6 98.8 57.8	6.01E-0 1.27E+0 1.69E+0 1.57E+0 1.23E+0 1.08E+0 9.18E-0 7.14E-0 7.03E-0 4.75E-0 4.37E-0 3.04E-0	0 0 0 0 0 0 1 1 1 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum , 16 Number of unidentified lines 12 25.00%

Number of lines tentatively identified by NID 4

Nuclide	Type : natural	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr 2-Sigma
TH-228	Hlife Decay 1.28E+09Y 1.00 1.91Y 1.01 1.41E+10Y 1.00 Total Activity	pCi/L 1.651E+02 3.514E-01 5.998E+00	pCi/L 1.651E+02 3.540E-01 5.998E+00 1.715E+02	2-Sigma Error %Error Flags 0.261E+02 15.81 46.45E-01 1311.93 6.591E+00 109.88

Grand Total Activity: 1.715E+02 1.715E+02

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Interfe	ring	Interfered		
Nuclide	Line	Nuclide	Line	
TH-232	911.07	AC-228	911.07	

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	1.651E+02	2.611E+01	3.008E+01	0.000E+00	5.489
	3.540E-01	4.645E+00	5.222E+00	0.000E+00	0.068

TH-232 5.998E+00 6.591E+00 1.071E+01 0.000E+00 0.560

Non-Identified	Nuclides
----------------	----------

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	1.156E+00	1.680E+01	2.802E+01	0.000E+00	0.041
	-4.700E+03	8.791E+03	1.387E+04	0.000E+00	-0.339
NA-24 CR-51	-2.007E+01	1.812E+01	2.924E+01	0.000E+00	-0.687
MN-54	1.128E+00	1.870E+00	3.155E+00	0.000E+00	0.358
CO-57	-3.206E-01	1.843E+00	2.981E+00	0.000E+00	-0.108
CO-58	-7.094E-01	1.953E+00	3.178E+00	0.000E+00	-0.223
FE-59	3.373E+00	3.996E+00	6.853E+00	0.000E+00	0.492
CO-60	1.076E-01	1.959E+00	3.205E+00	0.000E+00	0.034
ZN-65	5.726E+00	4.826E+00	7.230E+00	0.000E+00	0.792
SE-75	-3.768E-01	2.522E+00	4.081E+00	0.000E+00	-0.092
SR-85	1.626E+01	2.241E+00	4.316E+00	0.000E+00	3.769
Y-88	-1.531E+00	2.408E+00	3.831E+00	0.000E+00	-0.400
NB-94	-8.750E-01	1.728E+00	2.754E+00	0.000E+00	-0.318
NB-95	1.911E+00	1.969E+00	3.379E+00	0.000E+00	0.566
ZR-95	1.214E-01	3.510E+00	5.829E+00	0.000E+00	0.021
MO-99	1.734E+00	8.859E+01	1.472E+02	0.000E+00	0.012
RU-103	7.250E-01	2.086E+00	3.501E+00	0.000E+00	0.207
RU-105	-9.000E+00	1.753E+01	2.781E+01	0.000E+00	-0.324
AG-110m	-5.781E-01	1.824E+00	2.944E+00	0.000E+00	-0.196
SN-113	1.007E+00	2.503E+00	4.148E+00	0.000E+00	0.243
SB-124	3.020E+00	4.067E+00	3.165E+00	0.000E+00	0.954
SB-124 SB-125	-4.318E+00	6.344E+00	8.461E+00	0.000E+00	-0.510
TE-129M	5.928E+00	2.419E+01	3.961E+01	0.000E+00	0.150
I-131	2.585E+00	3.505E+00	5.878E+00	0.000E+00	0.440
BA-133	2.325E+00	2.981E+00	4.275E+00	0.000E+00	0.544
CS-134	1.014E+01	3.892E+00	3.659E+00	0.000E+00	2.772
CS-134 CS-136	-1.377E+00	2.613E+00	4.217E+00	0.000E+00	-0.326
CS-137	-6.335E-01	2.014E+00	3.250E+00	0.000E+00	-0.195
CE-139	1.044E-01	1.798E+00	2.983E+00	0.000E+00	0.035
BA-140	8.990E+00	9.400E+00	1.603E+01	0.000E+00	0.396
LA-140	2.085E+00	3.072E+00	5.258E+00	0.000E+00	0.529
CE-141	2.986E+00	3.906E+00	5.649E+00	0.000E+00	-0.831
CE-144	-1.855E+01	1.674E+01	2.231E+01	0.000E+00	-0.533
EU-152	-4.955E+00	6.838E+00	9.293E+00	0.000E+00	-0.199
EU-154	-1.234E+00	3.852E+00	6.213E+00	0.000E+00	0.431
RA-226	3.220E+01	4.615E+01	7.471E+01	0.000E+00	0.003
AC-228	4.437E-02	9.661E+00	1.270E+01	0.000E+00	0.003
U-235	1.927E+01	1.543E+01	2.259E+01	0.000E+00	-0.289
U-238	-9.553E+01	2.549E+02	3.310E+02	0.000E+00	-0.289
AM-241	-1.621E+01	2.480E+01	3.611E+01	0.000E+00	-0.449

```
3.662E+00,WG L28777-13 D
                     ,06/02/2006 03:59,05/25/2006 09:40,
A,11L28777-13
                                             ,06/01/2006 08:23,1135L090204
                     ,LIBD
B,11L28777-13
                                                   3.008E+01,,
                                                                     5.489
                                    2.611E+01,
                     1.651E+02,
           ,YES,
C, K-40
                                                                     0.068
                                                   5.222E+00,,
                                    4.645E+00,
            , YES,
                     3.540E-01,
C, TH-228
                                                   1.071E+01,,
                                                                     0.560
            , YES,
                     5.998E+00,
                                    6.591E+00,
C, TH-232
                                                                     0.041
                                                   2.802E+01,,
                     1.156E+00,
                                    1.680E+01,
            , NO
C, BE-7
                                                   1.387E+04,,
                                                                    -0.339
                                    8.791E+03,
                    -4.700E+03,
            , NO
C, NA-24
                                                                    -0.687
                                                   2.924E+01,,
                                    1.812E+01,
                    -2.007E+01,
C, CR-51
            , NO
                                                                     0.358
                                                   3.155E+00,,
                                    1.870E+00,
C, MN-54
            , NO
                     1.128E+00,
                                                                    -0.108
                                                   2.981E+00,,
            ,NO
                    -3.206E-01,
                                    1.843E+00,
C, CO-57
                                                                    -0.223
                                                   3.178E+00,,
                    -7.094E-01,
                                    1.953E+00,
C, CO-58
            , NO
                                                                     0.492
                                    3.996E+00,
                                                   6.853E+00,,
            , NO
                     3.373E+00,
C, FE-59
                                                   3.205E+00,,
                                                                     0.034
                                    1.959E+00,
                     1.076E-01,
            , NO
C, CO-60
                                                                     0.792
                                                   7.230E+00,,
                                    4.826E+00,
C, ZN-65
            , NO
                     5.726E+00,
                                                                    -0.092
                                                   4.081E+00,,
                    -3.768E-01,
                                    2.522E+00,
C, SE-75
            , NO
                                                                     3.769
                                                   4.316E+00,,
                                    2.241E+00,
                     1.626E+01,
C, SR-85
            , NO
                                                                    -0.400
                                    2.408E+00,
                                                    3.831E+00,,
                    -1.531E+00,
            , NO
C, Y-88
                                    1.728E+00,
                                                    2.754E+00,,
                                                                    -0.318
                    -8.750E-01,
C, NB-94
            , NO
                                                    3.379E+00,,
                                                                     0.566
                                    1.969E+00,
                     1.911E+00,
            , NO
C, NB-95
                                                                     0.021
                                                    5.829E+00,,
                                    3.510E+00,
C, ZR-95
            , NO
                     1.214E-01,
                                                                     0.012
                                                    1.472E+02,,
                     1.734E+00,
                                    8.859E+01,
            , NO
C, MO-99
                                                    3.501E+00,,
                                                                     0.207
                                    2.086E+00,
                     7.250E-01,
            , NO
C, RU-103
                                     1.753E+01,
                                                    2.781E+01,,
                                                                    -0.324
                    -9.000E+00,
C, RU-106
            , NO
                                                    2.944E+00,,
                                                                    -0.196
                                     1.824E+00,
                    -5.781E-01,
            , NO
C, AG-110m
                                                                     0.243
                                                    4.148E+00,,
                                     2.503E+00,
            , NO
                     1.007E+00,
C, SN-113
                                                                     0.954
                                                    3.165E+00,,
                                     4.067E+00,
            , NO
                     3.020E+00,
C,SB-124
                                                                    -0.510
            , NO
                                     6.344E+00,
                                                    8.461E+00,,
                    -4.318E+00,
C,SB-125
                                                    3.961E+01,,
                                                                     0.150
                                     2.419E+01,
                     5.928E+00,
C, TE-129M
            , NO
                                                    5.878E+00,,
                                                                     0.440
                                     3.505E+00,
                     2.585E+00,
C, I-131
            , NO
                                                                     0.544
                                                    4.275E+00,,
                                     2.981E+00,
                     2.325E+00,
            , NO
C,BA-133
                                                    3.659E+00,,
                                                                     2.772
            ,NO
                                     3.892E+00,
                     1.014E+01,
C, CS-134
                                                                    -0.326
                    -1.377E+00,
                                     2.613E+00,
                                                    4.217E+00,,
C, CS-136
            , NO
                                                    3.250E+00,,
                                                                    -0.195
                                     2.014E+00,
            , NO
                    -6.335E-01,
C, CS-137
                                                                     0.035
                                     1.798E+00,
                                                    2.983E+00,,
                      1.044E-01,
C, CE-139
            , NO
                                                    1.603E+01,,
                                                                     0.561
                                     9.400E+00,
            ,NO
                      8.990E+00,
C,BA-140
                                                                      0.396
                                                    5.258E+00,,
                      2.085E+00,
                                     3.072E+00,
C, LA-140
            , NO
                                                                     0.529
                                                    5.649E+00,,
                                     3.906E+00,
                      2.986E+00,
 C, CE-141
             , NO
                                                    2.231E+01,,
                                                                    -0.831
            , NO
                     -1.855E+01,
                                     1.674E+01,
C, CE-144
                                                                    -0.533
                                     6.838E+00,
                                                    9.293E+00,,
                     -4.955E+00,
 C, EU-152
            , NO
                                                    6.213E+00,,
                                                                    -0.199
                                     3.852E+00,
             , NO
                     -1.234E+00,
 C, EU-154
                                                                      0.431
                                                    7.471E+01,,
                      3.220E+01,
                                     4.615E+01,
             , NO
 C, RA-226
                                                                      0.003
                                                    1.270E+01,,
             , NO
                                     9.661E+00,
                      4.437E-02,
 C, AC-228
                                                    2.259E+01,,
                                                                      0.853
                                     1.543E+01,
                      1.927E+01,
 C, U-235
             , NO
                                                                     -0.289
                                                    3.310E+02,,
                                     2.549E+02,
                     -9.553E+01,
 C, U-238
             , NO
                                                    3.611E+01,,
                                                                     -0.449
                                     2.480E+01,
                     -1.621E+01,
 C, AM-241
             , NO
```

Sec. Review:

Analyst:

LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 2-JUN-2006 04:53:49.11 TBE10 12892256 HpGe ******** Aquisition Date/Time: 1-JUN-2006 18:53:36.50

LIMS No., Customer Name, Client ID: WG L28777-14 DRESDEN

Smple Date: 25-MAY-2006 11:09:00. : 10L28777-14

Sample ID : 1035L091004 Geometry : WG Sample Type : 10BG050506MT

BKGFILE : 3.59360E+00 L Real Time : 0 10:00:06.10 Quantity Energy Tol : 1.00000 Start Channel: 80 Live time : 0 10:00:00.00 Pk Srch Sens: 5.00000

: 4090 End Channel Library Used: LIBD : 0.00 MDA Constant

Fit Cts/Sec %Err %Eff FWHM Channel Bkgnd Area Energy Pk It 6.35E-01 7.12E-03 26.8 5.95E-01 132.16 1.43 256 1208 66.35* 1.30E+00 2.36E-03 87.3 1.50E+00 1 185.04 1.69 1364 85 92.78* 1.68E+00 7.92E-03 21.8 8.42E-01 1 279.43 1.44 1100 285 1.59E+00 1.63E-03 92.1 1.24E+00 139.96 3 1.36 371.14 799 59 185.79* 1.55E+00 6.57E-03 28.1 1.05E+00 1 395.88 1.61 971 236 198.16* 1.40E+00 1.25E-03110.2 5.17E-01 5 1 1.15 476.98 45 610 238.69* 1.21E+00 1.19E-03105.4 4.24E+00 1 589.35 1.55 520 43 1.07E+00 5.25E-03 26.0 1.19E+00 294.85* 1 7 703.85 460 1.43 189 7.19E-01 5.49E-03 18.2 4.42E+01 352.07* 1 1.18 1165.42 222 198 582.73* 7.06E-01 2.11E-03 39.2 2.52E+00 9 1 1.61 1191.86 228 76 6.94E-01 7.48E-03 14.6 1.75E+00 595.94 10 1.72 1219.17 269 228 4.83E-01 5.28E-04126.9 1.64E+00 609.58* 11 1 3.86 1940.01 106 19 969.76* 4.33E-01 2.11E-03 28.8 1.17E+00 12 1 1.97 2242.20 78 76 1120.73* 3.56E-01 1.19E-03 72.7 2.32E+00 13 1 2.23 2924.79 99 43 3.13E-01 1.23E-03 44.9 1.73E+00 1461.73* 1 14 2.73 3532.23 43 44 1765.14* 1 15

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide	Type: natura	ıL			Uncorrected	Decay Corr	2-Sigma
Nuclide K-40 RA-226 TH-228	Energy 1460.81 186.21 238.63 240.98	Area 43 59 45	%Abn 10.67* 3.28* 44.60* 3.95	%Eff 3.557E-01 1.594E+00 1.400E+00 1.392E+00	Lir		%Error 145.37 184.30 220.36
TH-232	583.14 911.07 969.11	198 19	30.25 27.70* 16.60	7.187E-01 5.070E-01 4.831E-01	4.956E+00	1.899E+01 ne Not Found 4.956E+00 ne Not Found	36.31 253.86
U-235	143.76 163.35 185.71 205.31	 59	10.50* 4.70 54.00 4.70	1.683E+00 1.659E+00 1.594E+00 1.524E+00	Lii 1.421E+00	ne Not Found 1.421E+00 ne Not Found	184.30

mlace "*" - Keyline

Page: 2

Summary of Nuclide Activity

Acquisition date: 1-JUN-2006 18:53:36 Sample ID : 10L28777-14

15 Total number of lines in spectrum 10

Number of unidentified lines 5

Number of lines tentatively identified by NID 33.33%

Nuclide Type : natural

RA-226 TH-228 TH-232	Hlife 1.28E+09Y 1600.00Y 1.91Y 1.41E+10Y 7.04E+08Y	Decay 1.00 1.00 1.01 1.00	pCi/L 2.352E+01 2.339E+01 1.501E+00 1.899E+01	Decay Corr pCi/L 2.352E+01 2.339E+01 1.512E+00 1.899E+01 1.421E+00	Decay Corr 2-Sigma Error 3.420E+01 4.311E+01 3.332E+00 0.690E+01 2.619E+00	2-Sigma %Error 145.37 184.30 220.36 36.31 184.30	K
----------------------------	---	---------------------------------------	---	--	--	--	---

Total Activity: 6.883E+01 6.884E+01

6.884E+01 Grand Total Activity: 6.883E+01

"M" = Manually accepted

Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 10L28777-14

Page: Acquisition date : 1-JUN-2006 18:53:36

Samp	TE ID:	101120777	-LL								
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1 1 1	66.35 92.78 139.96 198.16 294.85 352.07 595.94 609.58 1120.73 1765.14	269 76	1208 1364 1100 971 520 460 228 228 78 43	1.43 1.69 1.44 1.61 1.55 1.43 1.61 1.72 1.97 2.73	2242.20	586 699 1188 1213 2237	10 9 11 9 11 10 12 12	7.12E-03 2.36E-03 7.92E-03 6.57E-03 1.19E-03 5.25E-03 2.11E-03 7.48E-03 2.11E-03 1.23E-03	*** 43.5 56.2 *** 52.1 78.4 29.2 57.7	6.35E-0 1.30E+0 1.68E+0 1.55E+0 1.21E+0 1.07E+0 7.06E-0 6.94E-0 4.33E-0 3.13E-0	0 0 0 0 0 0 0 0 0 0 0 0

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

15 Total number of lines in spectrum Number of unidentified lines 10 Number of lines tentatively identified by NID 5 33.33%

Nuclide Type : natural

Nuclide Type : natural	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma %Error Flags
Nuclide Hlife Decay K-40 1.28E+09Y 1.00 RA-226 1600.00Y 1.00 TH-228 1.91Y 1.01 TH-232 1.41E+10Y 1.00	2.339E+01 1.501E+00 1.575E+01	pCi/L 2.352E+01 2.339E+01 1.512E+00 1.575E+01 6.418E+01	2-Sigma Error 3.420E+01 4.311E+01 3.332E+00 0.605E+01	145.37 184.30 220.36 38.40

Grand Total Activity: 6.417E+01 6.418E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	2.352E+01	3.420E+01	3.098E+01	0.000E+00	0.759
RA-226	2.339E+01	4.311E+01	8.147E+01	0.000E+00	0.287
TH-228	1.512E+00	3.332E+00	6.047E+00	0.000E+00	0.250
TH-232	1.575E+01	6.047E+00	1.198E+01	0.000E+00	1.315

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide BE-7 NA-24 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-136 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 AC-228 U-235		1.792E+01 8.855E+03 2.009E+01 2.000E+00 2.124E+00 2.124E+00 3.953E+00 1.918E+00 5.238E+00 2.782E+00 2.332E+00 2.111E+00 1.924E+00 2.028E+00 3.602E+00 9.724E+01 2.257E+00 1.893E+01 1.903E+00 2.690E+00 4.698E+00 5.701E+00 2.612E+01 3.853E+00 3.406E+00 4.487E+00 2.827E+00 2.087E+00 2.147E+00 1.014E+01 3.254E+00 4.840E+00 4.840E+00 1.897E+01 7.655E+00 4.397E+00 7.581E+00 1.971E+01	2.926E+01 1.302E+04 3.261E+01 3.222E+00 3.491E+00 3.489E+00 6.384E+00 4.592E+00 4.592E+00 4.592E+00 3.327E+00 3.178E+00 3.327E+00 3.37E+00 2.837E+01 3.113E+00 4.456E+01 3.351E+00 4.456E+00 3.351E+00 9.166E+00 4.340E+01 6.252E+00 5.315E+00 3.947E+00 4.489E+00 3.369E+00 3.477E+00 1.728E+01 5.498E+00 1.728E+01 5.498E+01 1.018E+01 7.218E+01 7.218E+01 2.764E+01	0.000E+00 0.000E+00	0.060 -1.139 -0.448 -0.186 -0.086 0.742 -0.245 -0.214 0.885 -0.160 3.835 -0.326 0.095 -0.371 0.362 0.483 -0.977 -0.117 0.244 0.493 -0.356 0.403 0.010 2.447 2.626 -0.412 -0.334 -0.392 0.517 0.251 0.320 0.210 -0.895 -0.138 -0.132 0.694 0.084
U-238 AM-241	2.921E+01 6.878E+00	2.084E+02 2.143E+01	3.467E+02 2.956E+01	0.000E+00	0.233

```
3.594E+00,WG L28777-14 D
                     ,06/02/2006 04:53,05/25/2006 11:09,
A,10L28777-14
                                             ,06/01/2006 08:22,1035L091004
                     ,LIBD
B, 10L28777-14
                                                                     0.759
                                                   3.098E+01,,
                                    3.420E+01,
            ,YES,
                     2.352E+01,
C, K-40
                                                                     0.287
                                                   8.147E+01,,
                                    4.311E+01,
                     2.339E+01,
            , YES,
C, RA-226
                                                                     0.250
                                                   6.047E+00,,
                                    3.332E+00,
                     1.512E+00,
            , YES,
C, TH-228
                                                                     1.315
                                    6.047E+00,
                                                   1.198E+01,,
                     1.575E+01,
C, TH-232
            ,YES,
                                                                     0.060
                                                   2.926E+01,,
                                    1.792E+01,
                     1.756E+00,
            , NO
C, BE-7
                                                                    -1.139
                                                   1.302E+04,,
                                    8.855E+03,
                    -1.483E+04,
            , NO
C, NA-24
                                                                    -0.448
                                                   3.261E+01,,
                                    2.009E+01,
                    -1.462E+01,
            , NO
C, CR-51
                                                                    -0.186
                                                   3.222E+00,,
                                    2.000E+00,
                    -5.980E-01,
            , NO
C, MN-54
                                                                    -0.086
                                                    3.491E+00,,
                                    2.124E+00,
                    -3.001E-01,
            , NO
C,CO-57
                                                                     0.742
                                                    3.489E+00,,
                                    2.033E+00,
                     2.589E+00,
            , NO
C, CO-58
                                                                    -0.245
                                                    6.384E+00,,
                                    3.953E+00,
                    -1.567E+00,
            , NO
C, FE-59
                                                    3.063E+00,,
                                                                    -0.214
                                     1.918E+00,
                    -6.553E-01,
            , NO
C, CO-60
                                                                     0.885
                                                    7.851E+00,,
                                     5.238E+00,
                     6.949E+00,
            , NO
C, ZN-65
                                                                    -0.160
                                                    4.592E+00,,
                                     2.782E+00,
                    -7.342E-01,
            , NO
C, SE-75
                                                                     3.835
                                                    4.504E+00,,
                                     2.332E+00,
                     1.727E+01,
            , NO
C, SR-85
                                                                    -0.326
                                                    3.327E+00,,
                                     2.111E+00,
                    -1.085E+00,
            , NO
C, Y-88
                                                    3.178E+00,,
                                                                      0.095
                                     1.924E+00,
                      3.034E-01,
            , NO
C, NB-94
                                                                    -0.073
                                                    3.304E+00,,
                                     2.028E+00,
                     -2.425E-01,
            , NO
 C, NB-95
                                                                      0.371
                                                    6.042E+00,,
                                     3.602E+00,
                      2.240E+00,
            , NO
 C, ZR-95
                                                                      0.362
                                                    1.631E+02,,
                                     9.724E+01,
                      5.907E+01,
             , NO
 C, MO-99
                                                                      0.483
                                                    3.758E+00,,
                                     2.257E+00,
                      1.815E+00,
             , NO
 C, RU-103
                                                                     -0.977
                                                    2.837E+01,,
                                     1.893E+01,
                     -2.771E+01,
             , NO
 C, RU-106
                                                    3.113E+00,,
                                                                     -0.117
                                     1.903E+00,
                     -3.635E-01,
             , NO
 C, AG-110m
                                                                      0.244
                                                    4.456E+00,,
                                     2.690E+00,
             , NO
                      1.089E+00,
 C, SN-113
                                                                      0.493
                                                    3.351E+00,,
                                     4.698E+00,
                      1.650E+00,
             , NO
 C,SB-124
                                                                     -0.356
                                                    9.166E+00,,
                                     5.701E+00,
                     -3.261E+00,
 C,SB-125
             , NO
                                                                      0.403
                                                    4.340E+01,,
                                     2.612E+01,
                      1.748E+01,
             , NO
 C, TE-129M
                                                                      0.010
                                                    6.252E+00,,
                                     3.853E+00,
                      6.275E-02,
             , NO
 C, I-131
                                                                      2.447
                                                     5.315E+00,,
                                     3.406E+00,
                      1.301E+01,
             , NO
 C, BA-133
                                                                      2.626
                                                     3.947E+00,,
                                     4.487E+00,
                      1.037E+01,
             , NO
 C, CS-134
                                                                     -0.412
                                                     4.489E+00,,
                                     2.827E+00,
                     -1.852E+00,
 C, CS-136
             , NO
                                                                     -0.334
                                                     3.369E+00,,
                                     2.087E+00,
                     -1.125E+00,
             ,NO
 C, CS-137
                                                                     -0.392
                                                     3.477E+00,,
                                     2.147E+00,
                     -1.362E+00,
             , NO
 C, CE-139
                                                                      0.517
                                                     1.728E+01,,
                                      1.014E+01,
                      8.927E+00,
             , NO
 C, BA-140
                                                                      0.251
                                                     5.498E+00,,
                                      3.254E+00,
                      1.379E+00,
             , NO
 C, LA-140
                                                                      0.320
                                                     6.777E+00,,
                       2.166E+00,
                                      4.840E+00,
             , NO
 C, CE-141
                                                     2.654E+01,,
                                                                      0.210
                                      1.897E+01,
                       5.565E+00,
             , NO
 C, CE-144
                                                                     -0.895
                                                     1.018E+01,,
                                      7.655E+00,
                      -9.108E+00,
  C, EU-152
              , NO
                                                                      -0.138
                                                     7.218E+00,,
                                      4.397E+00,
                      -9.951E-01,
             ,NO
  C, EU-154
                                                                      -0.132
                                                     1.201E+01,,
                                      7.581E+00,
                      -1.588E+00,
             ,NO
  C, AC-228
                                                                       0.694
                                                     2.764E+01,,
                                      1.971E+01,
                       1.920E+01,
  C, U-235
              , NO
                                                                       0.084
                                                     3.467E+02,,
                                      2.084E+02,
                       2.921E+01,
  C, U-238
              , NO
                                                     2.956E+01,,
                                                                       0.233
                                      2.143E+01,
                       6.878E+00,
              ,NO ,
  C, AM-241
```

LIMS: Anąly#t: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 2-JUN-2006 11:12:26.57

TBE04 P-40312B HpGe ******* Aquisition Date/Time: 2-JUN-2006 09:10:41.38 ______

LIMS No., Customer Name, Client ID: L28777-15 WG EXELON/DRES

Smple Date: 25-MAY-2006 14:45:00. : 04L28777-15

Geometry : 0435L090804 Sample ID : 04BG050506MT : WG Sample Type BKGFILE Start Channel: 90 Energy Tol: 1.00000 Real Time: 0 02:01:41.89 : 3.58990E+00 L

Pk Srch Sens: 5.00000 Live time: 0 02:01:40.55 : 4090 End Channel

Library Used: LIBD MDA Constant : 0.00

Pk :	T+	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10 11 12	3 1 1 1 1 1 1 1 1	76.87* 84.67* 139.65* 237.38 295.30* 351.95* 359.96 583.46* 595.54 609.24* 1120.98* 1460.60* 1764.22*	39 10 65 37 69 135 35 19 44 129 49	143 192 243 252 127 46 42 35 55 65 11 22	0.91 1.79 2.34 1.14 1.59 1.39 1.50 1.98 1.87 1.46 3.95 1.84 2.97	2241.74 2920.57	1.82E+00 1.53E+00 1.32E+00	1.36E-03 8.92E-03 5.03E-03 9.45E-03 1.85E-02 4.86E-03 2.59E-03 5.99E-03 1.76E-02 6.67E-03	258.9 46.9 90.8 35.0 12.7 38.3 67.1 34.6 16.1 21.5	5.18E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural 2-Sigma Uncorrected Decay Corr %Error pCi/L pCi/L %Eff %Abn 1511.43 Area Energy 3.921E-01 3.997E+00 3.997E+00 Nuclide 10.67* 2 1460.81 K-40

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity

Acquisition date : 2-JUN-2006 09:10:41 Sample ID : 04L28777-15

13 Total number of lines in spectrum 11 Number of unidentified lines Number of lines tentatively identified by NID 2 15.38%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma
Decay pCi/L pCi/L 2-Sigma Error %Error Flags 3.997E+00 60.41E+00 1511.43 Hlife Nuclide K-40 1.28E+09Y 1.00 3.997E+00 _____ _____

Total Activity: 3.997E+00 3.997E+00

3.997E+00 Grand Total Activity: 3.997E+00

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3

Unidentified Energy Lines Sample ID: 04L28777-15

Acquisition date : 2-JUN-2006 09:10:41

Danie	.10 11							/	0.T7=070	%Eff	Flags
Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Ρw	Cts/Sec	4ELT	91111	11050
3 1 1 1 1 1 1 1	76.87 84.67 139.65 237.38 295.30 351.95 359.96 583.46 595.54 609.24 1120.98 1764.22	39 10 65 37 69 135 35 19 44 129 49	143 192 243 252 127 46 42 35 55 65 11	0.91 1.79 2.34 1.14 1.59 1.39 1.50 1.98 1.87 1.46 3.95 2.97	154.20 169.79 279.75 475.18 590.99 704.25 720.27 1167.17 1191.30 1218.70 2241.74	166 275 472 585 697 1164 1189 1213	8 10 13 11 39 39 11 13 15	1.85E-02 4.86E-03 2.59E-03 5.99E-03 1.76E-02	**** 93.7 *** 69.9 25.3 76.5 *** 69.3 32.2 42.9	9.83E-01 1.20E+00 1.82E+00 1.53E+00 1.32E+00 1.17E+00 7.99E-00 7.87E-00 7.73E-00 4.81E-0 3.43E-0)))))) T 1 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

13 Total number of lines in spectrum Number of unidentified lines 11
Number of lines tentatively identified by NID 2 15.38%

Nuclide Type : natural

Nuclide	Type : natural	Wtd Mean	Wtd Mean	Decay Corr 2-Sigma
Nuclide K-40	нlife Decay	Uncorrected pCi/L 3.997E+00 3.997E+00	pCi/L 3.997E+00 3.997E+00	2-Sigma Error %Error Flags 60.41E+00 1511.43

Grand Total Activity: 3.997E+00 3.997E+00

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Identi	iled Nuclides				70 J. / 10 / 10 / 10 / 10	
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA	
NUCLIUC	VE /		- 000F 01	0.000E+00	0.066	
K-40	3.997E+00	6.041E+01	6.029E+01	0.0001	0.001	
Non-Id	dentified Nuclide	es				

---- Non-Identified Nuclides ----

	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide	(PCI/II)	1000				

		o 202E.01	5.633E+01	0.000E+00	0.270
BE-7	1.519E+01	3.303E+01	Half-Life too	short	
NA-24	-2.455E-02	1.305E-02	6.117E+01	0.000E+00	-0.165
CR-51	-1.011E+01	3.771E+01	5.083E+00	0.000E+00	-0.259
MN-54	-1.316E+00	3.263E+00	5.083E+00 5.880E+00	0.000E+00	-0.310
CO-57	-1.824E+00	3.579E+00		0.000E+00	-0.659
CO-58	-4.038E+00	4.128E+00	6.131E+00	0.000E+00	0.476
FE-59	6.793E+00	8.021E+00	1.427E+01	0.000E+00	0.458
CO-60	3.846E+00	4.497E+00	8.399E+00	0.000E+00	0.633
	1.057E+01	1.070E+01	1.671E+01	0.000E+00	-0.089
ZN-65	-7.344E-01	5.002E+00	8.265E+00	0.000E+00	1.750
SE-75	1.561E+01	4.627E+00	8.920E+00	0.000E+00	-0.397
SR-85	-2.598E+00	4.414E+00	6.545E+00	• • • •	0.427
Y-88	2.930E+00	3.937E+00	6.855E+00	0.000E+00	0.597
NB-94	4.244E+00	3.975E+00	7.113E+00	0.000E+00	-0.849
NB-95	-8.401E+00	6.831E+00	9.893E+00	0.000E+00	0.171
ZR-95		2.002E+02	3.377E+02	0.000E+00	-0.155
MO-99	5.774E+01	4.241E+00	6.870E+00	0.000E+00	
RU-103	-1.067E+00	3.647E+01	5.637E+01	0.000E+00	-0.248
RU-106	-1.400E+01	3.645E+00	6.219E+00	0.000E+00	0.204
AG-110m	1.270E+00	5.236E+00	8.722E+00	0.000E+00	0.245
SN-113	2.134E+00	1.072E+01	6.233E+00	0.000E+00	-1.167
SB-124	-7.276E+00	1.072E+01 1.065E+01	1.731E+01	0.000E+00	-0.231
SB-125	-3.995E+00	4.714E+01	7.946E+01	0.000E+00	0.153
TE-129M	1.216E+01	8.361E+00	1.152E+01	0.000E+00	-0.027
I-131	-3.072E-01	5.688E+00	1.030E+01	0.000E+00	1.171
BA-133	1.207E+01		8.582E+00	0.000E+00	1.102
CS-134	9.460E+00	9.639E+00	9.370E+00	0.000E+00	0.543
CS-136	5.090E+00	5.253E+00	6.698E+00	0.000E+00	0.269
CS-137	1.801E+00	3.890E+00	6.571E+00	0.000E+00	0.523
CE-139	3.438E+00	3.852E+00	3.520E+01	0.000E+00	0.457
BA-140	1.609E+01	2.031E+01	1.104E+01	0.000E+00	0.069
LA-140	7.644E-01	6.572E+00	1.224E+01	0.000E+00	0.190
CE-141	2.329E+00	8.488E+00	4.502E+01	0.000E+00	-0.391
CE-144	-1.762E+01	3.251E+01		0.000E+00	0.206
EU-152	3.938E+00	1.339E+01	1.907E+01	0.000E+00	-0.101
EU-154	-1.249E+00	7.430E+00	1.236E+01	0.000E+00	0.066
RA-226	1.020E+01	9.216E+01	1.544E+02	0.000E+00	0.019
-	4.756E-01	1.429E+01	2.488E+01	0.000E+00	0.506
AC-228	6.656E+00	7.613E+00	1.317E+01		0.019
TH-228	4.744E-01	1.425E+01	2.481E+01	0.000E+00	0.162
TH-232	7.791E+00	3.341E+01	4.809E+01	0.000E+00	-0.142
U-235	-8.973E+01	3.922E+02	6.303E+02	0.000E+00	-0.712
U-238	-8.973E+01 -3.742E+01	3.316E+01	5.255E+01	0.000E+00	-0.712
AM-241	-3./420.01				

```
3.590E+00,L28777-15 WG E
                     ,06/02/2006 11:12,05/25/2006 14:45,
A,04L28777-15
                                             ,06/02/2006 09:04,0435L090804
                     ,LIBD
B,04L28777-15
                                                                    0.066
                                                   6.029E+01,,
                                    6.041E+01,
           , YES,
                     3.997E+00,
C, K-40
                                                                    0.270
                                                   5.633E+01,,
                                    3.303E+01,
                     1.519E+01,
            , NO
C, BE-7
                                                                    -0.165
                                                   6.117E+01,,
                                    3.771E+01,
                    -1.011E+01,
            , NO
C, CR-51
                                                                    -0.259
                                                   5.083E+00,,
                                    3.263E+00,
                    -1.316E+00,
            ,NO
C, MN-54
                                                                    -0.310
                                                   5.880E+00,,
                                    3.579E+00,
                    -1.824E+00,
            , NO
C, CO-57
                                                                    -0.659
                                                   6.131E+00,,
                                    4.128E+00,
                    -4.038E+00,
            , NO
C, CO-58
                                                                     0.476
                                                   1.427E+01,,
                                    8.021E+00,
                     6.793E+00,
            , NO
C, FE-59
                                                                     0.458
                                                   8.399E+00,,
                                    4.497E+00,
                     3.846E+00,
            , NO
C, CO-60
                                                                     0.633
                                                   1.671E+01,,
                                    1.070E+01,
                     1.057E+01,
C, ZN-65
            , NO
                                                                    -0.089
                                                   8.265E+00,,
                                    5.002E+00,
                    -7.344E-01,
            , NO
C,SE-75
                                                                     1.750
                                                   8.920E+00,,
                                    4.627E+00,
                     1.561E+01,
C, SR-85
            , NO
                                                                    -0.397
                                                   6.545E+00,,
                                    4.414E+00,
                    -2.598E+00,
C, Y-88
            , NO
                                                                     0.427
                                                    6.855E+00,,
                                    3.937E+00,
                     2.930E+00,
            , NO
C, NB-94
                                                                     0.597
                                                    7.113E+00,,
                                    3.975E+00,
                     4.244E+00,
            , NO
C, NB-95
                                                                    -0.849
                                                    9.893E+00,,
                                     6.831E+00,
                    -8.401E+00,
            , NO
C, ZR-95
                                                                     0.171
                                                    3.377E+02,,
                                     2.002E+02,
                     5.774E+01,
            , NO
C, MO-99
                                                                    -0.155
                                                    6.870E+00,,
                                     4.241E+00,
                    -1.067E+00,
            , NO
C, RU-103
                                                                    -0.248
                                                    5.637E+01,,
                                     3.647E+01,
                    -1.400E+01,
            , NO
C, RU-106
                                                                     0.204
                                                    6.219E+00,,
                                     3.645E+00,
                     1.270E+00,
            , NO
C, AG-110m
                                                    8.722E+00,,
                                                                     0.245
                                     5.236E+00,
                     2.134E+00,
            , NO
C, SN-113
                                                                    -1.167
                                                    6.233E+00,,
                                     1.072E+01,
                     -7.276E+00,
            , NO
 C,SB-124
                                                                    -0.231
                                                    1.731E+01,,
                     -3.995E+00,
                                     1.065E+01,
            , NO
 C,SB-125
                                                                     0.153
                                                    7.946E+01,,
                                     4.714E+01,
                      1.216E+01,
            , NO
 C, TE-129M
                                                    1.152E+01,,
                                                                    -0.027
                                     8.361E+00,
                     -3.072E-01,
 C, I-131
            , NO
                                                                     1.171
                                                    1.030E+01,,
                                     5.688E+00,
                      1.207E+01,
             , NO
 C, BA-133
                                                                     1.102
                                                    8.582E+00,,
                                     9.639E+00,
                      9.460E+00,
             , NO
 C, CS-134
                                                                      0.543
                                                    9.370E+00,,
                                     5.253E+00,
             , NO
                      5.090E+00,
 C, CS-136
                                                                      0.269
                                                    6.698E+00,,
                                     3.890E+00,
                      1.801E+00,
             , NO
 C, CS-137
                                                                      0.523
                                                    6.571E+00,,
                                     3.852E+00,
             , NO
                      3.438E+00,
 C, CE-139
                                                                      0.457
                                                    3.520E+01,,
                                     2.031E+01,
                      1.609E+01,
             , NO
 C, BA-140
                                                                      0.069
                                                    1.104E+01,,
                                     6.572E+00,
             , NO
                      7.644E-01,
 C, LA-140
                                                                      0.190
                                                    1.224E+01,,
                                     8.488E+00,
                      2.329E+00,
             , NO
 C, CE-141
                                                                     -0.391
                                                    4.502E+01,,
                                     3.251E+01,
                     -1.762E+01,
             , NO
 C, CE-144
                                                                      0.206
                                                    1.907E+01,,
                      3.938E+00,
                                     1.339E+01,
             , NO
 C, EU-152
                                                                     -0.101
                                                    1.236E+01,,
                                     7.430E+00,
                     -1.249E+00,
             , NO
 C, EU-154
                                                     1.544E+02,,
                                                                      0.066
                                     9.216E+01,
                      1.020E+01,
             ,NO
 C, RA-226
                                                                      0.019
                                                     2.488E+01,,
                                     1.429E+01,
                      4.756E-01,
             , NO
 C, AC-228
                                                                      0.506
                                                     1.317E+01,,
                                      7.613E+00,
                      6.656E+00,
             , NO
 C, TH-228
                                                                      0.019
                                                     2.481E+01,,
                                      1.425E+01,
                      4.744E-01,
             , NO
 C, TH-232
                                                                      0.162
                                                     4.809E+01,,
                                      3.341E+01,
                      7.791E+00,
             , NO
 C, U-235
                                                                     -0.142
                                                     6.303E+02,,
                                      3.922E+02,
                     -8.973E+01,
             , NO
  C, U-238
                                                     5.255E+01,,
                                                                     -0.712
                                      3.316E+01,
```

-3.742E+01,

, NO

C, AM-241

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L28851
Exelon - Dresden
June 21, 2006

2508 Quality Lane
Knoxville, TN 37931-3133

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

Case Narrative - L28851 EX001-3ESPDRES-06

06/21/2006 11:18

Sample Receipt

The following samples were received on June 7, 2006 in good condition, unless otherwise noted.

Cross Reference Table

	Cross Rejerence 1	aoie
Client ID	Laboratory ID	Station ID(if applicable)
WG-DN-DSP-149R-053106-JH-019	L28851-1	
WG-DN-DSP-149R-053106-JH-020	L28851-2	
WS-DN-SW-103-053106-JH-021	L28851-3	
WG-DN-DSP-159S-053106-JH-022	L28851-4	
WS-DN-SW-101-053106-JH-023	L28851-5	
WS-DN-SW-102-053106-JH-024	L28851-6	
WS-DN-SW-105-060106-JH-025	L28851-7	
WS-DN-SW-104-060106-JH-026	L28851-8	
WS-DN-SW-106-060106-JH-027	L28851-9	
WS-DN-SW-106-060106-JH-028	L28851-10	
WG-DN-MW-DN-110S-053006-JL-067	L28851-11	
WG-DN-MW-DN-110I-053006-JL-068	L28851-12	
WG-DN-MW-DN-104S-053006-JL-069	L28851-13	
WG-DN-MW-DN-109I-053106-JL-070	L28851-14	
WG-DN-MW-DN-109I-053106-JL-071	L28851-15	
WG-DN-MW-DN-109S-053106-JL-072	L28851-16	
WG-DN-MW-DN-111S-053106-JL-073	L28851-17	
WG-DN-MW-DN-107S-053106-JL-074	L28851-18	

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3	TBE-2010	EPA 906.0
TOTAL SR	TBE-2018	EPA 905.0

2508 Quality Lane Knoxville, TN 37931-3133

Case Narrative - L28851 EX001-3ESPDRES-06

06/21/2006 11:18

Gamma Spectroscopy

Quality Control

Quality control samples were analyzed as WG4124.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-DN-DSP-149R-	L28851-1	WG4124-1
053106-JH-019		

H-3

Quality Control

Quality control samples were analyzed as WG4115,WG4122.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

<u>Client ID</u> WG-TMI-1D-060106-	<u>Laboratory ID</u> L28841-3	QC Sample # WG4115-3
JC-021		
WG-DN-MW-DN-110S- 053006-JL-067	L28851-11	WG4122-3

2508 Quality Lane Knoxville, TN 37931-3133

Case Narrative - L28851 EX001-3ESPDRES-06

06/21/2006 11:18

TOTAL SR

Quality Control

Ouality control samples were analyzed as WG4161.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

 Client ID
 Laboratory ID
 QC Sample #

 WG-DN-DSP-149R L28851-1
 WG4161-3

 053106-JH-019
 WG4161-3

Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

Sample Receipt Summary

06/07/06 12:32

Teledyne Brown Engineering Sample Receipt Verification/Variance Report

SR #: SR08746

Client: Exelon

Project #: EX001-3ESPDRES-06 LIMS #: L28853

<pre>Initiated By: BWILKERSON Init Date: 06/07/06 Receive Date: 06/07/06</pre>	/06	
Notificati	on of Var	riance
Person Notified:	Contacte	
Notify Date:		
Notify Method:		
Notify Comment:		
-		
Client Resp	onse	
Person Responding:		
Response Date:		
Response Method:		
Response Comment		
	Yes No NA	Comment
Criteria		
1 Shipping container custody seals presen and intact.	t NA	
2 Sample container custody seals present and intact.	NA	
3 Sample containers received in good condition	Y	
4 Chain of custody received with samples	Y	
5 All samples listed on chain of custody received	Y	
6 Sample container labels present and legible.	Y	
7 Information on container labels correspond with chain of custody	Y	
8 Sample(s) properly preserved and in appropriate container(s)	Y	Ph at or below 2
9 Other (Describe)	NA	

CONESTOGA-ROVERS & ASSOCIATES 8615 W. Bryn Mawr Avenue Chicago, Illinois 60631 (773)380-9933 phone							Tele	20	lyn	e	B	10U	~~					
				9933 phone 6421 fax	REFERENCE NUM	IBER:		PROJECT NAME: Exelon - Dresden										
CHAIN-OF-CUSTODW/RECORD 45/36						23			1	EX	elc	nc	ك -	リル	es c	NEN	<u>, </u>	
SAM	PLER	'S E:	Dohn	PRINTED NAME:	ohn hottoma	nn	No. OF CONTAINERS	PA	RAN	/	RS (1/			//		REMAR	KS
SEQ. No.		TE	TIME	SAMPLE IDENTIFIC		SAMPL MATRI)	E NOS	>		5/ C	Charles.	//			//			
1	5/3	106	1000	WG-DN-DSP-149R-	053106-	WATER	2	X	X	X								
	<i>b</i>	'			JH-019	1		1	\Box	-					_			
2			1040	WG-DN-DSP-149R.				\Box		+							7.0	
		i.,			J#-020		_	11		+		-						
3			1140	WS-DN-看SW-103	3-053106-			╫	+									
			42 D	W & - DN - DSP - 15	JH-021	 	+ $+$	$+\!\!\!\!+$									Mary Manager	
4	ļ		1550	WA-DN- DSP-13	53106-24-6	777		$+\!$										
955				C	SBIDE JIL	122		+										20,00
5	<u> </u>		1430	WS-DN-SW-101	TH-023	-		\parallel			,						40-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
6	1	/	15-70	WS-DN-SW-102-	1115 0 6 5			#	,									
19	-	<u> </u>	1200	M2-DW - 2M - 605	TH-024	 	-IV	W	V	V								
								1										
ļ	-																	
<u></u>																		
<u> </u>	<u> </u>		<u></u>	TOTAL NUMBER OF CONTA	AINERS ,		12											
DELI	יייטוי	SHED	н у	1 1120	DATE: 5/9	31/06 F	RECEIVE	D BY	·: /	11.	_ /	/ 1					DATE:	
(1)_	4001	J: 16D	<u> </u>	he Hotman	TIME: / 60:		<u>2</u>			WV	ew (w	<u>م</u>					(e56
	NQUI	SHED	BY: <	20.1	DATE: 6 -6		RECEIVE	D BY	' :								DATE:	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2				KYX	TIME: /3		<u>3</u>										TIME:	
RELI	NQUI	SHED	BY:		DATE:		RECEIVE	D BY	' :								DATE:	
3.					TIME:		<u>4</u>										TIME.	
ME.	гно	D OF	SHIP	MENT:			AIR	BILL	L No.									
Whi	te		-Fully l	Executed Copy	SAMPLE TEAM:	3			1		ED, FC				ORY	BY:		
Yell				ving Laboratory Copy	john hoff	man	n				lpe						1276	Ũ
Pini		od		er Copy	Kendall R	ann a	019		DAT	E: <u>6</u>	- 7-	06	TIME	E: <u>B</u>	An	7		
GOI	Goldenrod -Sampler Copy (

CHAIN OF CUSTODY RECORD

CF	D (A)			SHIPPED TO (Lo	borator	y Na	me):			REFER	RENCE	NUM	BER:		
		DOV.	ERS & ASSOCIATES		10.0	R	~~1	. 100			10	-12	6-	.) ?)
	Colby		INS & ASSOCIATES	Teledo	1915	וטו		<i>/</i> //(1				0	_)
14/ 1	l	-4 NI	2V /1C2, /(5/19/)884-0510	•			5.5		FERG	(a D)			, , ,		
SAM SIGN	PLER'S ATURE:		PRINTED NAME	John hoffin	1aun_	OF	PAR	(AME	LERSO,	Z/ Z/		///	///	PEI	MARKS
SEQ.		TIME	SAMPLE No		NAMPLE TYPE WATER	No. CONTA	×	XX 5	C. Continu		//			1161	WANTO
1	6/1/06	0900	WS-DN-SW-105-C	60106-	WATER	2	X	$X \mid X$							
	1		3	H-025			1	111							
2		0940	WS-DN-SW-104-	060106-					4			-			
			J	M-026				111		_					
3		1120	M3-DN-2M-106.	<u>-060106-</u>				1-1-1	++						
		A 2		#-027	1				++	-					
4	<u> </u>	11.45	WS-DN-SW-106	4-028	 ₩	╁₩	$\sqrt{ \cdot }$	\mathbb{W}	A +						
			J.	WE O S		- V	V *:	At 1	1 200						
			A STATE OF THE STA												
				1400000											
				2,00											
															
							$\langle \ \rangle$								
	J		TOTAL NUMBER OF	CONTAINERS	, //	8	HI	EALT	H/CH	EMICAI	L HAZ	ARDS			
REL	INQUISH	BD B	Y: // //	DATE: 6/1	10€ RI 32 €	ECEIV	ED E	B y ; ()	1 11/11/11	-1.1.					TE: 6-1-06
1		8/n		TIME: /6.	37	Ž		Vy	NOON	UWILL					1E: <u>(633 </u>
REL	INQUISH	IED B	Y: 2) 014	DATE: 💪		ECEIV	ED I	BY:						DAT TIM	
2		(2392	TIME: /3				DV.						DAT	
REL	.INQUISH	IED B	Y: (DATE: TIME:	R	ECEIV	בט ו	ы:						TIN	
3															
ME	THOD O	F SHI	PMENT:			WAY									
Wh	ite	—Fu	lly Executed Copy	SAMPLE, TEAM: /	\						ABORA	TORY	BY:	Nº	17699
	low	-Re	ceiving Laboratory Copy	John hot	tmann		_ [BU	ilko	1000	<u> </u>	·		T A -	11000
Pin		-Sh	ipper Copy	Kendall Ro	<u>\nao\6</u>		D	ATE:	6-7-	OlaT	'IME: <u>-</u> 9	An			
Go	denrod	-20	mpler Copy	Heunest 11							**			28/93(W) REV.O (F-

CONE	861	5 W. E	OVERS & ASSOCIATES Bryn Mawr Avenue	SHIPPED TO (Laboratory Name):	- ,	
			Illinois 60631		1	elec	dyne Brawn
(Girya)	/ (77	3)380-	9933 phone 6421 fax	REFERENCE NUM			PROJECT NAME:
	•			45136-	೧೩		Dresolen Generating Station
			CUSTODY RECORD			S	PARAMETERS
SAMPLI SIGNATU	ER'S JRE	rlie	PRINTED NAME:	Julia Lazura	: K	No. OF CONTAINERS	PARAMETERS REMARKS REMARKS Description
SEQ. No.	DATE	TIME	SAMPLE IDENTIFI	CATION No.	SAMPLE MATRIX		
57	120/1/2	1055_	- 181 MG 486 MG BW	853006-Jt-0646	W	a	
5	12/1/2	NIP	Mr. DKI-MA-DKI-1105.	-053006-JL 069		a	
	4	1516	WG. DN-MW-DN-110I-	053006-576-069	\ \ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	12	
		1700	WG-DN-MW-DN-1045	3-053006-Jb-06	\$ W	8	X X X X X X X X X X X X X X X X X X X
		,,,,,	The second secon				
	7:						
				and the same of th			
				Aug. Aug. Aug.			
	<u></u>						
			TOTAL NUMBER OF CON			Co	DATE: Y 20 Db
REI ING	ызнег	BY: (DATE:53	0/06 R	ECEIVE	(ED BY: TIME: 1752
1	DISHED	Q C	Coluck	TIME: \子	v		DATE
	ZUIŞHED		501	DATE: 6	J		/ED BY: TIME:
2	$\overline{}$		YT			<u>3</u>	(ED DY)
	QUISHED) BY	7	DATE: TIME:		4	/ED BY: TIME:
3_				TIIVI⊑.			
METH	HOD OI	SHIP	MENT:			AIR	R BILL No.
White	,	-Fully	Executed Copy	SAMPLE TEAM:			RECEIVED FOR LABORATORY BY:
Yello		-Rece	iving Laboratory Copy	Jiyzw	- X		Builherson 12768
Pink		-Ship	oer Copy	N. Hill			DATE: 6-7-06 TIME: 8 Am
Golde	enrod	-Sami	pler Copy	1 No Han			

COI	86 Ch (77	15 W. E icago, '3)380-	OVERS & ASSOCIATES Bryn Mawr Avenue Illinois 60631 9933 phone 6421 fax	(Laborato	NCE NUM	DER:	edu	/NQ PROJ	ECT	NAME	Ξ:	-					1
	СНА	IN-OF-	CUSTODY RECORD	4513	6-23	<u> </u>		De	<u>`@</u>	<u>de</u>	0	LÉ	30E	TQ=	HOG	Sta	+(W)
	PLER'S ATURE:	ful	PRINTED NAME:	Julie 1	UZW	ics_	No. OF CONTAINERS	PARA	MET S	ERS X						REM#	ARKS
SEQ. No.	DATE ,	TIME	SAMPLE IDENTIF			SAMPLE MATRIX		/		\$0	5 0'						
	5/31/06	1015	NG-DN-MW-188DN-1	09I-05300	10 JE-04	ω	a		XX	X				_			
	<u> </u>	1625	NC-DN-MN-100-1091	I-053106	50 JC 07	1 W	2		XX	X		1				-10-VIII	
		1145	MC - DN-MM - DN - 1099	3-053)dc	5-2FQ	8 W	á	1	VΧ	X							
		1400	WG-DN-HW-DN-IIIS	<u>5 - 058101</u>	6-56-0	める	0		< X	X	-						
	2	1530	MC-DN- MM-DN-1078.	05310b-	<u> 50 - 12</u>	4 2	2		YX.	$X \perp$							
			A STATE OF THE STA				<u> </u>						-				
							<u> </u>					-					78.
														_			
			A CONTRACTOR OF THE CONTRACTOR											_			······································
				ALL MANUAL CONTRACTOR OF THE PARTY OF THE PA			-	-	-					-			
					- Alexander		 	\vdash	-			-	+				
			And the second s				1									1,0,0	
																* ,	
			A A A A A A A A A A A A A A A A A A A		1000												
	<u></u>		TOTAL NUMBER OF CONT	TAINEPS		<u> </u>	10						<u></u>				
			IOIAL MUMBER OF COM		TE.Z. O	1015 55		D PV:/ 1		2	D					DATE:	5-31-06
RELI	NOUISHED	BY:	und	TIM	TE:5/31	$\frac{10\varphi}{2}$	CEIVE	D BY	van	W	ole					TIME:	1625
(1)	/				TE: 6-5		CEIVE	D RY:								DATE:	- ())
RELI 2	(QU)SHED	BY:	7914	TIM		45		, .				.,				TIME:	.,,
	NQUISHED	RY) / (DA [*]			CEIVE	D BY:								DATE:	
3	14GOIOI IED	J1	(1	1E:											TIME:	
	THOD OF	SHIPN	MENT:			·. 3.		BILL N	o.								
Whi Yell Pinl	ow	-Recei	Executed Copy ving Laboratory Copy er Copy ler Copy	SAMPLE TI		4		_	3 W	U.	er	DO	27_	PRY B		1277	7.2

Internal Chain of Custody

Teledyne Brown Engineering
Internal Chain of Custody

Internal Chain of Custody ************************* Containernum 1 Sample # L28851-1 Analyst Prod DWGELI so H-3 LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/07/2006 00:00 029709 Susan Ogletree Sample Custodian 099999 06/09/2006 11:34 *********************** Containernum 2 Sample # L28851-1 Analyst Prod DW GELI SO H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/07/2006 00:00 ******************* Containernum 1 Sample # L28851-2 Analyst Prod DWGELI SO H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/07/2006 00:00 Susan Ogletree Sample Custodian 029709 06/09/2006 11:34 099999 ************************ Containernum 2 Sample # L28851-2 Analyst Prod DW GELI SO H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/07/2006 00:00 ******************** Sample # L28851-3 Containernum 1 Analyst Prod DW GELI ΕJ H-3 SR-90 (FAST) LCB Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/07/2006 00:00 Susan Ogletree 029709 Sample Custodian 06/09/2006 11:34 099999 ************************ Containernum 2 Sample # L28851-3 Analyst Prod

DW

EJ

GELI

H-3

L28851 13 of 145 Page: 2 of 7

06/21/06 11:18

Teledyne Brown Engineering Internal Chain of Custody

Containernum 2 Sample # L28851-3

SR-90 (FAST) LCB

Received By Relinquish Date Relinquish By

099999 Sample Custodian 06/07/2006 00:00

Containernum 1 Sample # L28851-4

Analyst Prod

GELI DW

H-3ЕJ

LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By

099999 Sample Custodian 06/07/2006 00:00

029709 Susan Ogletree Sample Custodian 099999 06/09/2006 11:34

Containernum 2 Sample # L28851-4

Analyst Prod

GELI DW

ΕJ H-3

LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By

Sample Custodian 099999 06/07/2006 00:00

Containernum 1 Sample # L28851-5

Analyst Prod

GELI DW

H-3 ΕJ

LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By

Sample Custodian 099999 06/07/2006 00:00

029709 Susan Ogletree Sample Custodian 099999 06/09/2006 11:34

Containernum 2 Sample # L28851-5

Analyst Prod

DW **GELI**

EJ

H-3

LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By

099999 Sample Custodian 06/07/2006 00:00

Sample # L28851-6 Containernum 1

Analyst Prod

DW GELI

ΕJ H-3

LCB SR-90 (FAST)

Relinquish Date Relinquish By Received By

099999 Sample Custodian 06/07/2006 00:00

06/21/06 11:18

Teledyne Brown Engineering

Internal Chain of Custody ************************* Containernum 1 Sample # L28851-6 Received By Relinquish Date 029709 Susan Ogletree Sample Custodian 099999 06/09/2006 11:34 *********************** Containernum Sample # L28851-6 Analyst Prod DW GELI ЕJ H-3 LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/07/2006 00:00 ************************ Containernum 1 Sample # L28851-7 Analyst Prod DW GELI ΕJ H-3SR-90 (FAST) LCB Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/07/2006 00:00 029709 Susan Ogletree Sample Custodian 06/09/2006 11:34 099999 ************************ Containernum 2 Sample # L28851-7 Analyst Prod DWGELI ΕJ H-3 LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/07/2006 00:00 ********************* Containernum 1 Sample # L28851-8 Analyst Prod DW GELI EJ H-3SR-90 (FAST) LCB Received By Relinquish Date Relinquish By Sample Custodian 099999 06/07/2006 00:00 029709 Susan Ogletree Sample Custodian 099999 06/09/2006 11:34 *********************** Containernum 2 Sample # L28851-8 Analyst Prod DW GELI ΕJ H-3LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By 099999

Sample Custodian 06/07/2006 00:00

Containernum Sample # L28851-9

Analyst Prod

Teledyne Brown Engineering

Internal Chain of Custody ********************* Sample # L28851-9 Containernum 1 GELI DW H-3ΕJ SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/07/2006 00:00 099999 Sample Custodian 06/09/2006 11:34 Sample Custodian 099999 029709 Susan Ogletree ******************* Sample # L28851-9 Containernum 2 Prod Analyst GELI DW H-3 ΕJ SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/07/2006 00:00 099999 Sample Custodian ******************* Sample # L28851-10 Containernum 1 Prod Analyst GELI DW H-3 E.T SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/07/2006 00:00 099999 Sample Custodian 06/09/2006 11:34 099999 Sample Custodian 029709 Susan Ogletree ************************ Sample # L28851-10 Containernum 2 Prod Analyst GELI DWH-3 ЕJ SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 06/07/2006 00:00 099999 Sample Custodian ******************* Sample # L28851-11 Containernum 1 Prod Analyst GELI DW H-3 ΕJ SR-90 (FAST) Relinquish Date Relinquish By Received By 06/07/2006 00:00 099999 Sample Custodian 06/09/2006 11:34 Sample Custodian 099999 029709 Susan Ogletree ************************ Sample # L28851-11 Containernum 2

Prod Analyst GELI DW H-3ЕJ

L28851 16 of 145 e: 5 of 7 Page:

06/21/06 11:18

Teledyne Brown Engineering Internal Chain of Custody

Sample # L28851-11

Containernum 2

SR-90 (FAST)

LCB

Relinquish Date Relinquish By

06/07/2006 00:00

Received By

099999

Sample Custodian

*********************** Containernum 1 Sample # L28851-12

Prod GELI

DW

Analyst

H-3

ЕJ

SR-90 (FAST)

LCB

Relinquish Date Relinquish By

06/07/2006 00:00

Sample Custodian

099999

Received By

Sample Custodian

Susan Ogletree

029709 099999 06/09/2006 11:34 *************************

Sample # L28851-12

Containernum 2

Prod

Analyst

GELI H-3

DW EJ

SR-90 (FAST)

LCB

Relinquish Date Relinquish By

Received By

06/07/2006 00:00

Sample Custodian 099999

*********************** Containernum 1

Sample # L28851-13

Analyst

Prod GELI

DW

H-3

EJ

SR-90 (FAST)

LCB

Relinquish Date Relinquish By

06/07/2006 00:00

Received By

099999

Sample Custodian

06/09/2006 11:34

099999

Sample Custodian

029709

Susan Ogletree

*********************** Containernum 2

Sample # L28851-13

Analyst

Prod **GELI**

DW

H-3

ΕJ

SR-90 (FAST)

06/07/2006 00:00

LCB

Relinquish Date Relinquish By

Received By

099999

Sample Custodian

Sample # L28851-14

Containernum 1

Prod

Analyst

GELI

DW

H-3

ΕJ

SR-90 (FAST)

LCB

Relinquish Date Relinquish By

06/07/2006 00:00

Received By

099999

Sample Custodian

06/21/06 11:18

H-3

GELI

Internal Chain of Custody

6 of 7 Page: Teledyne Brown Engineering

Containernum 1 Sample # L28851-14

Received By Relinquish Date

029709 Susan Ogletree Sample Custodian 06/09/2006 11:34 099999

Containernum 2 Sample # L28851-14

EJ

DW

ЕJ

Analyst Prod DW

GELI ΕJ H-3

LCB SR-90 (FAST) Received By

Relinquish Date Relinquish By 099999 Sample Custodian 06/07/2006 00:00

Containernum 1 Sample # L28851-15

Analyst Prod

DW **GELI**

LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By

Sample Custodian 099999 06/07/2006 00:00

Sample Custodian 029709 Susan Ogletree

099999 06/09/2006 11:34

Containernum 2 Sample # L28851-15

Analyst Prod DW GELI

ΕJ H-3

LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By

Sample Custodian 099999 06/07/2006 00:00

Containernum 1 Sample # L28851-16

Analyst Prod

ΕJ H-3

LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By

Sample Custodian 099999 06/07/2006 00:00

Susan Ogletree 029709 Sample Custodian 099999 06/09/2006 11:34

Containernum 2

Sample # L28851-16

Analyst Prod

DW GELI

H-3LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By

Sample Custodian 099999 06/07/2006 00:00

Containernum 1 Sample # L28851-17

Analyst Prod

L28851 18 of 145 Page: 7 of 7

06/21/06 11:18

H-3

Teledyne Brown Engineering
Internal Chain of Custody

Sample # L28851-17 Containernum 1

GELI DW

H-3 EJ

SR-90 (FAST) LCB

Relinquish Date Relinquish By Received By

06/07/2006 00:00 099999 Sample Custodian

06/09/2006 11:34 099999 Sample Custodian 029709 Susan Ogletree

Sample # L28851-17 Containernum 2

Prod Analyst

GELI DW

SR-90 (FAST) LCB

SK-90 (FASI)

ΕJ

Relinquish Date Relinquish By Received By

06/07/2006 00:00 099999 Sample Custodian

Sample # L28851-18 Containernum 1

Prod Analyst

GELI DW

Н-3 ЕЈ

SR-90 (FAST) LCB

Relinquish Date Relinquish By Received By

06/07/2006 00:00 099999 Sample Custodian

06/09/2006 11:34 099999 Sample Custodian 029709 Susan Ogletree

Sample # L28851-18 Containernum 2

Prod Analyst

GELI DW

н-3 ЕЈ

SR-90 (FAST) LCB

Relinquish Date Relinquish By Received By

06/07/2006 00:00 099999 Sample Custodian

06/21/06

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

*******	*****	***********	*****	******
L28851-1	WG	WG-DN-DSP-149R-05310		
Process step	Prod	MG DIN DEL 14511 00010	Analyst	Date
Login	1100		BWILKERSON	06/07/06
Aliquot	H-3		SO	06/09/06
Aliquot	GELI		DW	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KOJ	06/12/06
Count Room	H-3		KOJ	06/12/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
*****	*****	******	*****	*****
L28851-2	WG	WG-DN-DSP-149R-05310	6-ЈН-020	
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	06/07/06
Aliquot	Н-3		SO	06/09/06
Aliquot	GELI		DW	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KOJ	06/12/06
Count Room	H-3		KOJ	06/12/06
Count Room		(FAST)	KOJ	06/20/06
*****	*****	*****	******	********
L28851-3	WG	WS-DN-SW-103-053106-	-JH-021	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KOJ	06/12/06
Count Room	H-3		KOJ	06/12/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
*****	*****			******
L28851-4	WG	WG-DN-DSP-159S-05310		
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KOJ	06/12/06
Count Room	H-3		KOJ	06/12/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
******	*****			*******
L28851-5	WG	WS-DN-SW-101-053106		
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KOJ	06/12/06

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

Page 2 of 4

Count Room R-9 FAST KOJ 06/12/06
No. No.
Note
Process step
Rogin
Aliquot
Aliquot H-3 EJ 06/10/06 Aliquot SR-90 (FAST) LCB 06/14/06 Count Room GELI KOJ 06/12/06 Count Room H-3 KOJ 06/12/06 Count Room SR-90 (FAST) KOJ 06/20/06 **********************************
Aliquot SR-90 (FAST) LCB 06/14/06 Count Room GELI KOJ 06/12/06 Count Room H-3 KOJ 06/20/06 **********************************
Count Room GELI KOJ 06/12/06 Count Room H-3 KOJ 06/20/06 Count Room SR-90 (FAST) KOJ 06/20/06 ***********************************
Count Room H-3 KOJ 06/12/06 Count Room SR-90 (FAST) KOJ 06/20/06 **********************************
Count Room SR-90 (FAST) KOJ 06/20/06 ***********************************

L28851-7 WG WS-DN-SW-105-060106-JH-025 Process step Prod Analyst Date Login BWILKERSON 06/07/06 Aliquot GELI DW 06/10/06 Aliquot SR-90 (FAST) LCB 06/14/06 Count Room GELI KOJ 06/12/06 Count Room SR-90 (FAST) KOJ 06/21/06 Count Room SR-90 (FAST) KOJ 06/21/06 ************************************
Process step Prod Analyst Date Login BWILKERSON 06/07/06 Aliquot GELI DW 06/10/06 Aliquot H-3 EJ 06/10/06 Aliquot SR-90 (FAST) LCB 06/12/06 Count Room GELI KOJ 06/12/06 Count Room SR-90 (FAST) KOJ 06/21/06 ************************************
Login
Aliquot GELI DW 06/10/06 Aliquot H-3 EJ 06/10/06 Aliquot SR-90 (FAST) LCB 06/14/06 Count Room GELI KOJ 06/12/06 Count Room SR-90 (FAST) KOJ 06/12/06 Count Room SR-90 (FAST) KOJ 06/21/06 ***********************************
Aliquot H-3 EJ 06/10/06 Aliquot SR-90 (FAST) LCB 06/14/06 Count Room GELI KOJ 06/12/06 Count Room SR-90 (FAST) KOJ 06/12/06 ***********************************
Aliquot SR-90 (FAST) LCB 06/14/06 Count Room GELI KOJ 06/12/06 Count Room H-3 KOJ 06/12/06 Count Room SR-90 (FAST) KOJ 06/21/06 ***********************************
Count Room GELI KOJ 06/12/06 Count Room H-3 KOJ 06/12/06 Count Room SR-90 (FAST) KOJ 06/21/06 ***********************************
Count Room H-3 KOJ 06/12/06 Count Room SR-90 (FAST) KOJ 06/21/06 ***********************************
Count Room SR-90 (FAST) KOJ 06/21/06 ***********************************

L28851-8 WG WS-DN-SW-104-060106-JH-026 Process step Prod Analyst Date Login BWILKERSON 06/07/06 Aliquot GELI DW 06/10/06 Aliquot H-3 EJ 06/10/06 Aliquot SR-90 (FAST) LCB 06/14/06
Process step Prod Analyst Date Login BWILKERSON 06/07/06 Aliquot GELI DW 06/10/06 Aliquot H-3 EJ 06/10/06 Aliquot SR-90 (FAST) LCB 06/14/06
Login BWILKERSON 06/07/06 Aliquot GELI DW 06/10/06 Aliquot H-3 EJ 06/10/06 Aliquot SR-90 (FAST) LCB 06/14/06
Aliquot GELI DW 06/10/06 Aliquot H-3 EJ 06/10/06 Aliquot SR-90 (FAST) LCB 06/14/06
Aliquot H-3 EJ 06/10/06 Aliquot SR-90 (FAST) LCB 06/14/06
Aliquot SR-90 (FAST) LCB 06/14/06
11114400
Count Room GELI ILL 06/13/06
Count Room H-3 KOJ 06/12/06
Count Room SR-90 (FAST) KOJ 06/20/06

L28851-9 WG WS-DN-SW-106-060106-JH-027
Process step Prod Analyst Date
Login BWILKERSON 06/07/06
Aliquot GELI DW 06/10/06
Aliquot H-3 EJ 06/10/06
Aliquot SR-90 (FAST) LCB 06/14/06
Count Room GELI ILL 06/13/06
Count Room H-3 KOJ 06/12/06
Count Room SR-90 (FAST) KOJ 06/20/06

L28851-10 WG WS-DN-SW-106-060106-JH-028

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L28851-10	WG	WS-DN-SW-106-060106-	лн−028	
Aliquot	GELI	ND DI DI 100 000100		06/10/06
Aliquot	H-3			06/10/06
Aliquot		(FAST)		06/14/06
Count Room	GELI	(1101)		06/13/06
Count Room	H-3			06/12/06
Count Room		(FAST)		06/20/06

L28851-11	WG	WG-DN-MW-DN-110S-053		
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		ILL	06/13/06
Count Room	H-3		KOJ	06/12/06
Count Room		(FAST)	KOJ	06/20/06
			******	******
L28851-12	WG	WG-DN-MW-DN-110I-053	8006-JL-068	
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		ILL	06/13/06
Count Room	н-3		KOJ	06/13/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
*****	*****	*******	*****	*******
L28851-13	WG	WG-DN-MW-DN-104S-05		
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	н-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		ILL	06/13/06
Count Room	H-3		KOJ	06/13/06
Count Room		(FAST)	KOJ	06/20/06
*****	****	*******	*****	*******
L28851-14	WG	WG-DN-MW-DN-109I-05		
Process step	Prod		Analyst	Date Control of the C
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	DIC 50			
	GELI		ILL	06/13/06
Count Room			ILL KOJ	06/13/06
	GELI			

06/21/06

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

*****	****	******	*****	*******
L28851-15	WG	WG-DN-MW-DN-109I-053	106-JL-071	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KPW	06/13/06
Count Room	H-3		KOJ	06/13/06
Count Room	SR-90		KOJ	06/20/06
*****	*****	******	*****	******
L28851-16	WG	WG-DN-MW-DN-109S-053	3106-JL-072	
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			BWILKERSON	06/07/06
Aliquot	GELI		DM	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KPW	06/13/06
Count Room	H-3		KOJ	06/13/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
*****	*****	******	*****	*******
L28851-17	WG	WG-DN-MW-DN-111S-053	3106-JL-073	
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot Aliquot	GELI H-3		DW EJ	06/10/06 06/10/06
_		(FAST)		06/10/06 06/14/06
Aliquot	н-3	(FAST)	EJ	06/10/06 06/14/06 06/13/06
Aliquot Aliquot	H-3 SR-90	(FAST)	EJ LCB	06/10/06 06/14/06 06/13/06 06/13/06
Aliquot Aliquot Count Room Count Room Count Room	H-3 SR-90 GELI H-3 SR-90	(FAST)	EJ LCB KOJ KOJ KOJ	06/10/06 06/14/06 06/13/06 06/13/06 06/20/06
Aliquot Aliquot Count Room Count Room Count Room	H-3 SR-90 GELI H-3 SR-90	(FAST)	EJ LCB KOJ KOJ KOJ	06/10/06 06/14/06 06/13/06 06/13/06
Aliquot Aliquot Count Room Count Room Count Room	H-3 SR-90 GELI H-3 SR-90	(FAST)	EJ LCB KOJ KOJ KOJ	06/10/06 06/14/06 06/13/06 06/13/06 06/20/06
Aliquot Aliquot Count Room Count Room Count Room ***********************************	H-3 SR-90 GELI H-3 SR-90	(FAST)	EJ LCB KOJ KOJ KOJ	06/10/06 06/14/06 06/13/06 06/13/06 06/20/06 ***********************************
Aliquot Aliquot Count Room Count Room Count Room ***********************************	H-3 SR-90 GELI H-3 SR-90 ******	(FAST)	EJ LCB KOJ KOJ *******************************	06/10/06 06/14/06 06/13/06 06/13/06 06/20/06 ************************************
Aliquot Aliquot Count Room Count Room Count Room ************ L28851-18 Process step	H-3 SR-90 GELI H-3 SR-90 ******	(FAST)	EJ LCB KOJ KOJ *******************************	06/10/06 06/14/06 06/13/06 06/13/06 06/20/06 ************************************
Aliquot Aliquot Count Room Count Room ********* L28851-18 Process step Login	H-3 SR-90 GELI H-3 SR-90 ******* WG Prod	(FAST)	EJ LCB KOJ KOJ ************************************	06/10/06 06/14/06 06/13/06 06/13/06 06/20/06 ************************************
Aliquot Aliquot Count Room Count Room ********* ******** ******* ******** ****	H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI	(FAST) ************************************	EJ LCB KOJ KOJ *******************************	06/10/06 06/13/06 06/13/06 06/20/06 ************************************
Aliquot Aliquot Count Room Count Room ********* L28851-18 Process step Login Aliquot Aliquot	H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3	(FAST) ************************************	EJ LCB KOJ KOJ *******************************	06/10/06 06/14/06 06/13/06 06/20/06 ************************************
Aliquot Aliquot Count Room Count Room Count Room ********* ******* ****** ****** ***** ****	H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3 SR-90	(FAST) ************************************	EJ LCB KOJ KOJ *******************************	06/10/06 06/14/06 06/13/06 06/20/06 ************************************
Aliquot Aliquot Count Room Count Room ******** *** ****** **** **** *** **	H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3 SR-90 GELI	(FAST) ***********************************	EJ LCB KOJ KOJ *******************************	06/10/06 06/14/06 06/13/06 06/20/06 ************************************

Analytical Results Summary

Report of Analysis

06/21/06 11:17

(WG)

L28851

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: WG-DN-DSP-149R-053106-JH-019

Collect Start: 05/31/2006 10:00

Collect Stop:

Receive Date: 06/07/2006

Matrix: Ground Water

Volume:

% Moisture:

LIMS Number: L28851-1

Station:

Description:

LIMS Number: L28	8851-1 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	Values
			1.445.100	1.72E+02	pCi/L	1	10	ml		06/12/06	60	M	+	
H-3	2010	6.68E+02	1.44E+02				450	ml	05/31/06 10:00	06/20/06	120	M	U	
TOTAL SR	2018	3.50E-01	7.55E-01	1.48E+00	pCi/L	-	3096.73	ml	05/31/06 10:00	06/12/06	21600	Sec	U	No
MN-54	2007	6.31E-01	2.18E+00	3.64E+00	pCi/L	1	3096.73	ml	05/31/06 10:00	06/12/06	21600	Sec	U	No
CO-58	2007	-2.54E+00	2.49E+00	3.86E+00	pCi/L		3096.73	ml	05/31/06 10:00	06/12/06	21600	Sec	U	No
FE-59	2007	4.80E+00	5.09E+00	8.85E+00	pCi/L			ml	05/31/06 10:00	06/12/06	21600	Sec	U	No
CO-60	2007	6.03E-01	2.75E+00	4.31E+00	pCi/L		3096.73		05/31/06 10:00	06/12/06	21600	Sec	U	No
ZN-65	2007	2.23E+00	4.78E+00	8.08E+00	pCi/L		3096.73	ml	05/31/06 10:00	06/12/06	21600	Sec	U	No
NB-95	2007	3.02E-01	2.28E+00	3.79E+00	pCi/L		3096.73	ml		06/12/06	21600	Sec	U	No
ZR-95	2007	6.97E-01	4.18E+00	6.97E+00	pCi/L		3096.73	ml	05/31/06 10:00		21600	Sec	U	No
CS-134	2007	-1.13E+00	4.10E+00	3.91E+00	pCi/L		3096.73	ml	05/31/06 10:00	06/12/06		Sec	U	No
	2007	9.09E-01	2.35E+00	3.90E+00	pCi/L		3096.73	ml	05/31/06 10:00	06/12/06	21600		111	No
CS-137	2007	7.75E+00		2.38E+01	pCi/L		3096.73	ml	05/31/06 10:00	06/12/06	21600	Sec	TT	No
BA-140 LA-140	2007	-7.56E-01		7.75E+00	pCi/L		3096.73	ml	05/31/06 10:00	06/12/06	21600	Sec	U	190

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

Spec = Low recovery

High recovery

Page 1 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

Report of Analysis

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-149R-053106-JH-020

Collect Start: 05/31/2006 10:40

Matrix: Ground Water

(WG)

Station:

Volume:

Description:

Collect Stop: Receive Date: 06/07/2006

% Moisture:

LIMS Number: 1.28851-2

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Value	es .
TT 2	2010	6.94E+02	1.43E+02	1.70E+02	pCi/L		10	ml		06/12/06	60	M	+	
H-3	2018	1.26E+00	9.74E-01	1.78E+00	pCi/L		450	ml	05/31/06 10:40	06/20/06	120	M	U	
TOTAL SR	2017	1.33E+00	1.96E+00	3.34E+00	pCi/L	T	3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec		No
MN-54	2007	-9.97E-01	2.09E+00	3.38E+00	pCi/L		3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec		No
CO-58	2007	5.92E-01	4,22E+00	7.04E+00	pCi/L		3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec		No
FE-59	2007	-4.38E-02	1.95E+00	3.18E+00	pCi/L		3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec		No
CO-60	2007	3.28E+00	3.94E+00	6.83E+00	pCi/L		3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec		No
ZN-65	2007	-5.84E-01	2.03E+00	3.33E+00	pCi/L		3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec		No
NB-95	2007	-1.17E-01	3.63E+00	5.88E+00	pCi/L		3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec		No
ZR-95	2007	-1.64E+00		3.46E+00	pCi/L		3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec	1 1	No
CS-134	1	8.70E-01	2.02E+00	3.38E+00	pCi/L		3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec	, - ,	No
CS-137	2007	6.82E+00	1.31E+01	2.22E+01	pCi/L		3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec		No
BA-140 LA-140	2007	-1.33E+00		6.85E+00	pCi/L		3131.8	ml	05/31/06 10:40	06/12/06	21600	Sec	U 1	No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery High recovery Page 2 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis

MDC - Minimum Detectable Concentration

unless otherwise noted

L28851

25

0

н

45

Report of Analysis

06/21/06 11:17

(WG)

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WS-DN-SW-103-053106-JH-021

Collect Start: 05/31/2006 11:40

Station:

Collect Stop:

Matrix: Ground Water

Volume:

Description:

Receive Date: 06/07/2006

% Moisture:

LIMS Number: L28851-3

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H-3	2010	-1.73E+01	1.03E+02	1.71E+02	pCi/L		10	ml		06/12/06	60	M	U
TOTAL SR	2018	6.53E-01	6.07E-01	1.12E+00	pCi/L		450	ml	05/31/06 11:40	06/20/06	120	M	U
MN-54	2007	3.82E-01	2.18E+00	3.63E+00	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No
CO-58	2007	-5.49E-01	2.43E+00	3.97E+00	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No
FE-59	2007	1.49E+00	5.10E+00	8.59E+00	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No
CO-60	2007	7.63E-01	2.21E+00	3.71E+00	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No
ZN-65	2007	-7.34E-01	5.78E+00	7.97E+00	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No
NB-95	2007	3.76E-01	2.36E+00	3.95E+00	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No
ZR-95	2007	-1.88E-01	4.16E+00	6.89E+00	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No
CS-134	2007	-7.66E-01	5.63E+00	3.84E+00	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No
CS-137	2007	4.16E-01	2.39E+00	3.92E+00	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No
BA-140	2007	4.19E+00	1.53E+01	2.56E+01	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No
LA-140	2007	5.80E+00	5.07E+00	9.02E+00	pCi/L		3013.9	ml	05/31/06 11:40	06/12/06	28800	Sec	U No

Flag Values

U Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High =

= MDC exceeds customer technical specification Spec Low recovery

Н High recovery Page 3 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-159S-053106-JH-022

Collect Start: 05/31/2006 13:30

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Description:

Receive Date: 06/07/2006

% Moisture:

LIMS Number: L28 Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Val	ues
	2010	0.150:00	1.03E+02	1.70E+02	pCi/L		10	ml		06/12/06	60	M	U	
H-3	2010	-2.15E+00		9.79E-01	pCi/L	1	450	ml	05/31/06 13:30	06/20/06	120	M	U _	
TOTAL SR	2018	8.99E-01	5.54E-01		pCi/L		3420.15	ml	05/31/06 13:30	06/12/06	28800	Sec	U _	No
MN-54	2007	-3.03E-01	2.12E+00	3.44E+00		1	3420.15	ml	05/31/06 13:30	06/12/06	28800	Sec	U	No
CO-58	2007	-8.80E-01	2.34E+00	3.76E+00	pCi/L		3420.15	ml	05/31/06 13:30	06/12/06	28800	Sec	U	No
FE-59	2007	4.29E+00	4.76E+00	8.26E+00	pCi/L		1		05/31/06 13:30	06/12/06	28800	Sec	U	No
CO-60	2007	6.50E-01	2.16E+00	3.61E+00	pCi/L		3420.15	ml	05/31/06 13:30	06/12/06	28800	Sec	U	No
ZN-65	2007	1.10E+00	4.64E+00	7.78E+00	pCi/L		3420.15	ml		06/12/06	28800	Sec	U	No
NB-95	2007	2.86E+00	2.35E+00	4.08E+00	pCi/L		3420.15	ml	05/31/06 13:30			Sec	11	No
ZR-95	2007	1.14E-01	4.22E+00	6.94E+00	pCi/L		3420.15	ml	05/31/06 13:30	06/12/06	28800		III	No
	2007	1.79E+00		3.86E+00	pCi/L		3420.15	ml	05/31/06 13:30	06/12/06	28800	Sec	U	
CS-134		1.63E+00		3.96E+00	pCi/L		3420.15	ml	05/31/06 13:30	06/12/06	28800	Sec	U	No
CS-137	2007	,	1	2.45E+01	pCi/L	<u> </u>	3420.15	ml	05/31/06 13:30	06/12/06	28800	Sec	U	No
BA-140	2007	5.83E+00			<u> </u>	1	3420.15	ml	05/31/06 13:30	06/12/06	28800	Sec	U	No
LA-140	2007	4.21E-01	4.72E+00	7.89E+00	pCi/L	i	3720.13	, ,,,,,	,					

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec Low recovery

High recovery

Page 4 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

06/21/06 11:17

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WS-DN-SW-101-053106-JH-023

Collect Start: 05/31/2006 14:30

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Description:

Receive Date: 06/07/2006

% Moisture:

LIMS Number: L28851-5

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H-3	2010	-8.58E+01	9.69E+01	1.70E+02	pCi/L		10	ml		06/12/06	60	M	U
TOTAL SR	2018	1.32E+00		1.48E+00	pCi/L		450	ml	05/31/06 14:30	06/20/06	120	M	U
MN-54	2007	1.23E+00	2.10E+00	3.56E+00	pCi/L		3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No
CO-58	2007	1.58E+00	2.20E+00	3.76E+00	pCi/L		3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No
FE-59	2007	4.99E+00	4.80E+00	8.34E+00	pCi/L		3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No
	2007	-1.26E+00		3.51E+00	pCi/L		3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No
CO-60	2007	-9.86E-01	4.43E+00	7.19E+00	pCi/L		3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No
ZN-65	2007	1.75E+00	2.10E+00	3.63E+00	pCi/L		3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No
NB-95	2007	-4.16E-01	3.92E+00	6.47E+00	pCi/L		3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No
ZR-95		3.43E+00		3.42E+00	pCi/L		3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No
CS-134	2007	2.39E+00		3.88E+00	pCi/L		3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No
CS-137	2007	4.87E+00		2.27E+01	pCi/L	:	3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No
BA-140 LA-140	2007	4.87E+00 3.51E+00		7.63E+00	pCi/L		3190.64	ml	05/31/06 14:30	06/12/06	21600	Sec	U No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery

High recovery

Page 5 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

06/21/06 11:17

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WS-DN-SW-102-053106-JH-024

Collect Start: 05/31/2006 15:20

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Description:

Receive Date: 06/07/2006

% Moisture:

LIMS Number: L28851-6

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Va	ilues
H-3	2010	-3.66E+01	1.01E+02	1.71E+02	pCi/L		10	ml		06/12/06	60	М	U	
TOTAL SR	2018	1.02E+00	8.81E-01	1.61E+00	pCi/L		450	ml	05/31/06 15:20	06/20/06	120	M	U	
MN-54	2007	1.92E+00	2.37E+00	3.98E+00	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No
CO-58	2007	-1.86E+00	2.37E+00	3.73E+00	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No
FE-59	2007	1.53E+00	5.02E+00	8.33E+00	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No
CO-60	2007	3.12E-01	2.35E+00	3.89E+00	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No
ZN-65	2007	7.27E+00	5.88E+00	8.76E+00	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No
NB-95	2007	1.25E+00	2.49E+00	4.17E+00	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No
ZR-95	2007	-3.68E+00	4.40E+00	6.98E+00	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No
CS-134	2007	1.59E+00	5.36E+00	3.84E+00	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No
CS-137	2007	1.78E+00	2.41E+00	4.09E+00	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No
BA-140	2007	-1.04E+01	1.51E+01	2.41E+01	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No
LA-140	2007	1.83E+00	4.62E+00	7.84E+00	pCi/L		3090.05	ml	05/31/06 15:20	06/12/06	28800	Sec	U	No

Flag Values

U = Compound/Analyte not detected or less than 3 sigma

+ = Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

U* = Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

High = Activity concentration exceeds customer reporting value

Spec = MDC exceeds customer technical specification L = Low recovery

H = High recovery

Page 6 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WS-DN-SW-105-060106-JH-025

Collect Start: 06/01/2006 09:00

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Receive Date: 06/07/2006

% Moisture:

Description:

1 28851-7

Radionuclide	8851-7 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	S
II	2010	3.13E+01	1.02E+02	1.65E+02	pCi/L		10	ml		06/12/06	60	M	U	-
H-3	2018	6.92E-01	7.52E-01	1.43E+00	pCi/L		450	ml	06/01/06 09:00	06/21/06	100	M	U	
TOTAL SR	2018	8.43E+01	4.29E+01	3.87E+01	pCi/L	1	3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		es
K-40	2007	9.74E-02	2.49E+00	4.10E+00	pCi/L		3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		40
MN-54	2007	-8.67E-01	2.58E+00	4.19E+00	pCi/L		3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		40
CO-58	2007	5.97E+00	-	9.12E+00	pCi/L		3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		No
FE-59	2007	-4.20E-01	2.63E+00	4.24E+00	pCi/L		3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		No
CO-60	2007	2.35E+00		8.55E+00	pCi/L		3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		No
ZN-65	2007	8.42E-01	2.62E+00	4.40E+00	pCi/L		3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		4o
NB-95	2007	3.41E-01	4.79E+00	7.97E+00	pCi/L		3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		No
ZR-95	2007	4.86E+00		4.32E+00	pCi/L		3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		No
CS-134	2007	1.85E+00	2.67E+00	4.49E+00	pCi/L		3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		No
CS-137	2007	-4.24E+00	,	2.61E+01	pCi/L		3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec		No
BA-140 LA-140	2007	-4.24E+00		8.37E+00	pCi/L	İ	3088.11	ml	06/01/06 09:00	06/12/06	28800	Sec	U N	No

F	oπ	Va	bie
1.	127	va	1115

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma U*

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery High recovery Page 7 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

(WG)

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WS-DN-SW-104-060106-JH-026

Collect Start: 06/01/2006 09:40

Matrix: Ground Water

Station:

Collect Stop:

Volume: % Moisture:

Description:

Receive Date: 06/07/2006

1 28851-8

LIMS Number: L2 Radionuclide	8851-8 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units		Values
11.0	2010	-4.88E+01	9.84E+01	1.68E+02	pCi/L		10	ml		06/12/06	60	M	U	
H-3	2010	1.66E+00	9.69E-01	1.69E+00	pCi/L		450	ml	06/01/06 09:40	06/20/06	120	M	U	
TOTAL SR		-1.32E+00		4.76E+00	pCi/L		3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	No
MN-54	2007	5.46E-01	3.22E+00	5.31E+00	pCi/L		3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	No
CO-58	2007	1.79E+00		1.12E+01	pCi/L	1	3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	No
FE-59		2.95E+00		5.65E+00	pCi/L		3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	Yes
CO-60	2007			1.06E+01	pCi/L		3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	No
ZN-65	2007	3.47E+00	3.14E+00	5.14E+00	pCi/L		3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	No
NB-95	2007	3.16E-02	1	9.34E+00	pCi/L pCi/L		3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	No
ZR-95	2007	9.65E-01	5.63E+00		pCi/L		3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	No
CS-134	2007	7.74E-01	3.68E+00	5.42E+00		1	3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	No
CS-137	2007	4.62E-01	3.16E+00	5.29E+00	pCi/L		3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	No
BA-140	2007	-2.26E+00		3.07E+01	pCi/L	!	3121.66	ml	06/01/06 09:40	06/13/06	11782	Sec	U	No
LA-140	2007	1.66E-01	7.19E+00	1.18E+01	pCi/L	1	3121.00	} 1111	100/01/00 07.40	1 00/10/00				

Flag Values

Compound/Analyte not detected or less than 3 sigma U

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery High recovery Page 8 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WS-DN-SW-106-060106-JH-027 Collect Start: 06/01/2006 11:20

Station:

Collect Stop:

Volume:

Matrix: Ground Water

(WG)

Receive Date: 06/07/2006

% Moisture:

Description:

LIMS Number: 1 28851-9

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H-3	2010	-5.31E+01	9.83E+01	1.68E+02	pCi/L		10	ml		06/12/06	60	M	U
TOTAL SR	2018	8.99E-01	8.92E-01	1.68E+00	pCi/L	"	450	ml	06/01/06 11:20	06/20/06	120	M	U
MN-54	2007	9.51E-01	2.72E+00	4.60E+00	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No
CO-58	2007	4.46E-01	2.96E+00	4.94E+00	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No
FE-59	2007	-2.12E-01	6.40E+00	1.06E+01	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No
CO-60	2007	-5.56E-01	2.90E+00	4.65E+00	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No
ZN-65	2007	9.89E-01	6.00E+00	1.01E+01	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No
NB-95	2007	-2.84E-01	2.95E+00	4.88E+00	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No
ZR-95	2007	-2.64E+00	5.21E+00	8.17E+00	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No
CS-134	2007	4.59E+00	5.49E+00	5.26E+00	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No
CS-137	2007	-5.40E-01	2.94E+00	4.76E+00	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No
BA-140	2007	-3.14E+00		3.01E+01	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No
LA-140	2007	4.92E-01	5.97E+00	9.89E+00	pCi/L		3297.96	ml	06/01/06 11:20	06/13/06	11822	Sec	U No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery

High recovery

Page 9 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WS-DN-SW-106-060106-JH-028

Collect Start: 06/01/2006 11:45

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Receive Date: 06/07/2006

% Moisture:

Description:

1 20051 10

LIMS Number: L2	28851-10					Run	Aliquot	Aliquot	Reference	Count	Count	Count	
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values
H-3	2010	5.38E+01	1.07E+02	1.70E+02	pCi/L		10	ml		06/12/06	60	M	U
TOTAL SR	2018	1.25E+00	9.60E-01	1.75E+00	pCi/L		450	ml	06/01/06 11:45	06/20/06	120	M	U
MN-54	2007	1.35E+00	2.74E+00	4.88E+00	pCi/L		3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No
CO-58	2007	1.18E+00	2.94E+00	5.22E+00	pCi/L		3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No
FE-59	2007	-1.52E+00	5.86E+00	1.01E+01	pCi/L		3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No
CO-60	2007	8.01E-01	2.69E+00	4.86E+00	pCi/L		3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No
ZN-65	2007	3.32E+00	5.87E+00	1.07E+01	pCi/L		3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No
NB-95	2007	2.50E+00		5.40E+00	pCi/L		3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No
ZR-95	2007	-3.78E+00	5.33E+00	8.82E+00	pCi/L	İ	3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No
	2007	-1.66E+00	3.64E+00	5.14E+00	pCi/L	i ·	3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No
CS-134	2007	3.02E+00		5.42E+00	pCi/L	Ì	3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No
CS-137	2007	1.08E+01	1.83E+01	3.19E+01	pCi/L	i	3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No
BA-140 LA-140	2007	2.50E+00		9.74E+00	pCi/L		3216.63	ml	06/01/06 11:45	06/13/06	12902	Sec	U No

F	nel	Va	lue
м	1812	v a	ше

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

Spec Low recovery

High recovery

Page 10 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

(WG)

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-MW-DN-110S-053006-JL-067

Collect Start: 05/30/2006 14:10

Matrix: Ground Water

Station:

Collect Stop:

Volume:

Description:

Receive Date: 06/07/2006

% Moisture:

LIMS Number: L28851-11

LIMS Number: L2 Radionuclide	8851-11 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units		Values
	2010	9.55E+01	1.11E+02	1.72E+02	pCi/L		10	ml		06/12/06	60	M	U	
I-3	2010		7.15E-01	1.25E+00	pCi/L	Ì	450	ml	05/30/06 14:10	06/20/06	120	M	U	
OTAL SR	2018	1.20E+00		5.34E+00	pCi/L	1	3253.44	ml	05/30/06 14:10	06/13/06	9361	Sec	U	No
1N-54	2007	1.67E+00		5.39E+00	pCi/L	1	3253.44	ml	05/30/06 14:10	06/13/06	9361	Sec	U	No
O-58	2007	-2.07E+00	3.43E+00	,	<u> </u>	 	3253.44	ml	05/30/06 14:10	06/13/06	9361	Sec	U	No
E-59	2007	8.71E+00		1.25E+01	pCi/L		3253.44	ml	05/30/06 14:10	06/13/06	9361	Sec	U	No
CO-60	2007	7.05E-01	3.32E+00	5.61E+00	pCi/L	-		ml	05/30/06 14:10	06/13/06	9361	Sec	U	No
N-65	2007	5.20E+00		1.18E+01	pCi/L	-	3253.44		05/30/06 14:10	06/13/06	9361	Sec	U	No
IB-95	2007	2.06E+00	3.60E+00	6.18E+00	pCi/L	-	3253.44	ml	05/30/06 14:10	06/13/06	9361	Sec	U	No
R-95	2007	-2.85E+00	6.06E+00	9.69E+00	pCi/L		3253.44	ml	,	06/13/06	9361	Sec	U	No
CS-134	2007	1.86E+00	6.05E+00	6.22E+00	pCi/L		3253.44	ml	05/30/06 14:10			Sec	U	No
S-137	2007	1.31E+00	3.25E+00	5.33E+00	pCi/L		3253.44	ml	05/30/06 14:10	06/13/06	9361	1		No
A-140	2007	5.58E+00		3.72E+01	pCi/L		3253.44	ml	05/30/06 14:10	06/13/06	9361	Sec	U	
A-140	2007	4.73E+00		1.36E+01	pCi/L		3253.44	ml	05/30/06 14:10	06/13/06	9361	Sec	U	No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery

H High recovery Page 11 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-MW-DN-110I-053006-JL-068

Collect Start: 05/30/2006 15:15

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Description:

LIMS Number: L28851-12

Receive Date: 06/07/2006

% Moisture:

rence	Count	Count	Count	
ite	Date	Time	Units	Flag Value

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Val	ues
H-3	2010	5.16E+02	1.34E+02	1.70E+02	pCi/L		10	ml		06/13/06	60	М	+	
TOTAL SR	2018	4.61E-01	7.46E-01	1.44E+00	pCi/L	ļ	450	ml	05/30/06 15:15	06/20/06	120	M	U	
MN-54	2007	-2.06E+00	3.10E+00	4.74E+00	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No
CO-58	2007	1.54E+00	3.57E+00	6.01E+00	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No
FE-59	2007	3.90E+00	7.97E+00	1.35E+01	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No
CO-60	2007	1.05E+00	3.76E+00	6.27E+00	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No
ZN-65	2007	3.02E+00	7.05E+00	1.21E+01	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No
NB-95	2007	1.32E+00	3.26E+00	5.51E+00	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No
ZR-95	2007	-1.66E+00	6.08E+00	9.74E+00	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No
CS-134	2007	1.89E+00	5.61E+00	5.75E+00	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No
CS-137	2007	1.48E+00	3.38E+00	5.76E+00	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No
BA-140	2007	-1.99E+00	2.25E+01	3.67E+01	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No
LA-140	2007	-1.03E+01	7.90E+00	1.08E+01	pCi/L		3074.72	ml	05/30/06 15:15	06/13/06	10800	Sec	U	No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value =

Spec = MDC exceeds customer technical specification = Low recovery

High recovery

Page 12 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

06/21/06 11:17

L28851

Conestoga-Rovers & Associates EX001-3ESPDRES-06

Kathy Shaw

Collect Start: 05/30/2006 17:20

Matrix: Ground Water

(WG)

Station:

Sample ID: WG-DN-MW-DN-104S-053006-JL-069

Collect Stop:

Volume:

Description:

Receive Date: 06/07/2006

% Moisture:

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Va	lues
	2010	1.13E+02	1.12E+02	1.73E+02	pCi/L		10	ml		06/13/06	60	M	U	
H-3	2010	-2.64E-01	5.63E-01	1.73E+02	pCi/L		450	ml	05/30/06 17:20	06/20/06	120	M	U	
TOTAL SR	2018		2.88E+00	5.17E+00	pCi/L	1	3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
MN-54	2007	3.25E+00		4.82E+00	pCi/L	1	3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
CO-58	2007	-3.26E+00		1.11E+01	pCi/L		3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
FE-59	2007	-1.04E-01		4.82E+00	pCi/L		3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
CO-60	2007	-1.83E+00		1.15E+01	pCi/L	1	3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
ZN-65	2007	3.50E+00			pCi/L	1	3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
NB-95	2007	-6.58E-01	3.45E+00	5.66E+00	pCi/L	1	3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
ZR-95	2007	-1.32E+00		9.81E+00			3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
CS-134	2007	-9.95E-01	3.31E+00	5.36E+00	pCi/L	-	3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
CS-137	2007	3.02E+00		5.36E+00	pCi/L		3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
BA-140	2007	-1.49E+00		3.54E+01	pCi/L	-	3200.42	ml	05/30/06 17:20	06/13/06	8716	Sec	U	No
LA-140	2007	1.06E+00	7.16E+00	1.20E+01	pCi/L	1	3200.42	1111	103/30/00 17.20	1 00, 13,001		1		

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) =

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec ---

Low recovery

High recovery Н

Page 13 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

(WG)

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-MW-DN-109I-053106-JL-070

Collect Start: 05/31/2006 10:15

Matrix: Ground Water

Volume:

Station:

Collect Stop:

% Moisture:

Description:

1 20051-14

Receive Date: 06/07/2006

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Va	
H-3	2010	3.62E+03	4.13E+02	2.91E+02	pCi/L		10	ml		06/13/06	21.07	M	+ High	
TOTAL SR	2018	8.21E-01	7.95E-01	1.49E+00	pCi/L		450	ml	05/31/06 10:15	06/20/06	120	M	U	
MN-54	2007	2.07E+00	1	4.53E+00	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U	No
CO-58	2007	-6.36E-01	2.77E+00	4.70E+00	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U	No
FE-59	2007	1.68E+00		9.42E+00	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U	No
CO-60	2007	1.82E+00		4.52E+00	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U	No
ZN-65	2007	2.22E+00		9.28E+00	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U	No
NB-95	2007	3.30E+00		5.25E+00	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U	No
ZR-95	2007	-1.23E+00		8.55E+00	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U	No
	2007	5.85E+00		5.01E+00	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U*	No
CS-134	2007	-2.30E-01	2.72E+00	4.69E+00	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U	No
CS-137	2007	8.46E+00		3.10E+01	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U	No
BA-140 LA-140	2007	2.73E+00		1.01E+01	pCi/L		3158.8	ml	05/31/06 10:15	06/13/06	15269	Sec	U	No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery High recovery Page 14 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

06/21/06 11:17

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-MW-DN-109I-053106-JL-071

Collect Start: 05/31/2006 10:25

Matrix: Ground Water

(WG)

Station: Description:

Collect Stop:

Volume:

Receive Date: 06/07/2006

% Moisture:

LIMS Number: 1.28851-15

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	F	lag Valı	ues
H-3	2010	3.75E+03	4.24E+02	2.90E+02	pCi/L		10	ml		06/13/06	19.8	M	+	High	
TOTAL SR	2018	2.27E-01	6.80E-01	1.35E+00	pCi/L		450	ml	05/31/06 10:25	06/20/06	120	M	U		
MN-54	2007	2.72E-02	2.57E+00	4.23E+00	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No
CO-58	2007	-2.31E+00	2.94E+00	4.65E+00	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No
FE-59	2007	4.03E-01	5.84E+00	9.69E+00	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No
CO-60	2007	4.31E-01	2.82E+00	4.65E+00	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No
ZN-65	2007	8.65E+00	5.70E+00	1.02E+01	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No
NB-95	2007	9.66E-01	2.93E+00	4.93E+00	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No
ZR-95	2007	8.03E-01	5.31E+00	8.87E+00	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No
CS-134	2007	3.56E+00	3.99E+00	4.66E+00	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No
CS-137	2007	-3.05E+00	2.94E+00	4.55E+00	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No
BA-140	2007	-5.91E+00	1.84E+01	3.00E+01	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No
LA-140	2007	-4.15E+00	6.36E+00	9.91E+00	PCI/WG		3317.72	ml	05/31/06 10:25	06/13/06	26734	Sec	U		No

Flag	Va	11e

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

Spec MDC exceeds customer technical specification

Low recovery

High recovery

Page 15 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

L28851

BROWN ENGINEERING, INC. A Teledyne Technologies Company

Conestoga-Rovers & Associates EX001-3ESPDRES-06

Kathy Shaw

WG-DN-MW-DN-109S-053106-JL-072

Collect Start: 05/31/2006 11:45

Matrix: Ground Water (WG)

Sample ID: Station:

Collect Stop:

Volume:

Description:

LIMS Number: L28851-16

Receive Date: 06/07/2006

% Moisture:

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	F	lag Values
H-3	2010	2.51E+02	1.20E+02	1.71E+02	pCi/L	<u> </u>	10	ml		06/13/06	60	M	+	
TOTAL SR	2018	4.04E-01	6.87E-01	1.33E+00	pCi/L		450	ml	05/31/06 11:45	06/20/06	120	M	U	
MN-54	2007	5.46E-01	2.39E+00	4.15E+00	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U	No
CO-58	2007	-1.68E+00	2.52E+00	4.17E+00	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U	No
FE-59	2007	-6.47E-01	6.43E+00	9.35E+00	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U	No
CO-60	2007	-1.36E+00	2.22E+00	3.70E+00	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U	No
ZN-65	2007	9.42E+00	4.89E+00	9.30E+00	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U*	No
NB-95	2007	1.20E+00	2.51E+00	4.43E+00	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U	No
ZR-95	2007	-1.47E+00	4.58E+00	7.74E+00	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U	No
CS-134	2007	2.60E+00	2.66E+00	4.23E+00	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U	No
CS-137	2007	1.14E+00	2.53E+00	4.45E+00	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U	No
BA-140	2007	6.47E+00	1.64E+01	2.82E+01	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U	No
LA-140	2007	-1.66E+00	5.31E+00	9.19E+00	pCi/L		3238.78	ml	05/31/06 11:45	06/13/06	16889	Sec	U	No l

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Spec

Low recovery

Page 16 of 18 High recovery

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

BROWN ENGINEERING, INC. A Teledyne Technologies Company

(WG)

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-MW-DN-111S-053106-JL-073

Collect Start: 05/31/2006 14:00

Matrix: Ground Water

Volume:

Collect Stop: Receive Date: 06/07/2006

% Moisture:

Description:

Station:

LIMS Number: L2 Radionuclide	8851-17 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	Values
TT 2	2010	6.38E+02	1,40E+02	1.69E+02	pCi/L		10	ml		06/13/06	60	M	+	
H-3	2018	2.35E-01	7.14E-01	1.42E+00	pCi/L		450	ml	05/31/06 14:00	06/20/06	120	M	U	
TOTAL SR	2017	-1.19E+00	2.36E+00	3.73E+00	pCi/L	1	2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No
MN-54 CO-58	2007	-1.52E+00	2.68E+00	4.23E+00	pCi/L	i	2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No
	2007	4.61E+00	5.26E+00	9.04E+00	pCi/L		2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No
FE-59 CO-60	2007	1.15E+00	3.04E+00	4.82E+00	pCi/L		2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No
ZN-65	2007	3.33E+00	,	8.38E+00	pCi/L		2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No
NB-95	2007	9.56E-01	2.59E+00	4.32E+00	pCi/L		2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No
ZR-95	2007	-5.12E+00		7.00E+00	pCi/L		2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No
	2007	2.71E+00		4.14E+00	pCi/L	1	2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No
CS-134	2007	1.61E+00		4.21E+00	pCi/L		2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No
CS-137	2007	5.14E+00	1.58E+01	2.63E+01	pCi/L	i	2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No
BA-140 LA-140	2007	-1.79E+00		9.54E+00	pCi/L		2985.79	ml	05/31/06 14:00	06/13/06	21600	Sec	U	No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery

High recovery

Page 17 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

06/21/06 11:17

L28851

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-MW-DN-107S-053106-JL-074

Collect Start: 05/31/2006 15:30

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Description:

LIMS Number: L28851-18

Receive Date: 06/07/2006

% Moisture:

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	F	lag Values
H-3	2010	1.04E+03	1.65E+02	1.77E+02	pCi/L		10	ml		06/13/06	54.4	M	+	
TOTAL SR	2018	1.16E+00	1.00E+00	1.83E+00	pCi/L		450	ml	05/31/06 15:30	06/20/06	120	M	U	
MN-54	2007	1.33E+00	2.02E+00	3.43E+00	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No
CO-58	2007	9.81E-02	2.17E+00	3.59E+00	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No
FE-59	2007	9.11E-01	4.47E+00	7.48E+00	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No
CO-60	2007	-8.53E-01	2.15E+00	3.43E+00	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No
ZN-65	2007	4.57E+00	4.45E+00	7.75E+00	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No
NB-95	2007	4.99E-01	2.21E+00	3.71E+00	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No
ZR-95	2007	-2.79E+00	4.05E+00	6.35E+00	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No
CS-134	2007	3.59E+00	3.48E+00	3.68E+00	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No
CS-137	2007	1.35E+00	2.08E+00	3.51E+00	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No
BA-140	2007	-9.69E-01	1.40E+01	2.32E+01	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No
LA-140	2007	-1.08E-01	4.65E+00	7.62E+00	pCi/L		3063.42	ml	05/31/06 15:30	06/13/06	21600	Sec	U	No

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

= Activity concentration exceeds customer reporting value High

Spec = MDC exceeds customer technical specification Low recovery

High recovery

Page 18 of 18

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

QC Results Summary

QC Summary Report

for L28851

6/21/2006

12:18:55PM

H_3

				H-3					4,,,,,,	
***************************************		100		Method Blan	k Summary					
TBE Sample ID WG4115-1	Radionuclide H-3	<u>Matrix</u> WO	Count Date/Time 06/11/2006 18:14		Blank Result < 1.640E+00	<u>Units</u> pCi/Total		<u>(</u>)ualifier U	<u>P/F</u> P
WG4122-1		WO	06/13/2006 20:30		< 1.790E-02	pCi/Total			U	P
				LCS Sample	Summary					
TBE Sample ID WG4115-2	Radionuclide H-3	<u>Matrix</u> WO	Count Date/Time 06/11/2006 19:17	Spike Value 5.05E+002	LCS Result 5.380E+02	<u>Units</u> pCi/Total	Spike Recovery 106.6	Range 9	Qualifier +	P/F P
Spike ID: 3H-04 Spike conc: 5.05E Spike Vol: 1.00E WG4122-2	E+002	WO	06/13/2006 21:33	5.05E+002	4.950E+02	pCi/Total	98.1	70-130	+	P
Spike ID: 3H-04 Spike conc: 5.05E Spike Vol: 1.00E	E+002		<u>.</u>							
				Duplicate	Summary					
TBE Sample ID WG4115-3 L28841-3	Radionuclide H-3	<u>Matrix</u> WG	Count Date/Time 06/11/2006 19:35	<u>Origina</u> 4.400	DUP Result E+02 3.140E+02	<u>Units</u> pCi/L	<u>RPD</u>	<u>Range</u> <30	Qualifie *	P/F NE
WG4122-3 L28851-11		WG	06/13/2006 0:34	< 1.720	0E+02 < 1.710E+02	pCi/L		<30	**	NE

+	Positive Resu

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

Spiking level < 5 times activity ***

Pass F Fail

Not evaluated NE

QC Summary Report

L28851 for

6/21/2006

12:18:55PM

L28851 H-3

Associated Samples for	WG4115
SAMPLENUM	CLIENTID
L28851-1	WG-DN-DSP-149R-053106-JH-019
L28851-2	WG-DN-DSP-149R-053106-JH-020
L28851-3	WS-DN-SW-103-053106-JH-021
L28851-4	WG-DN-DSP-159S-053106-JH-022
L28851-5	WS-DN-SW-101-053106-JH-023
L28851-6	WS-DN-SW-102-053106-JH-024
L28851-7	WS-DN-SW-105-060106-JH-025
L28851-8	WS-DN-SW-104-060106-JH-026
L28851-9	WS-DN-SW-106-060106-JH-027
L28851-10	WS-DN-SW-106-060106-JH-028
L20031-10	W 2-DIA-2 W-100-000100-311-020

Associated Samples for WG4122

Associated Samples for	W G +122
SAMPLENUM	CLIENTID
L28851-11	WG-DN-MW-DN-110S-053006-JL-067
L28851-12	WG-DN-MW-DN-110I-053006-JL-068
L28851-13	WG-DN-MW-DN-104S-053006-JL-069
L28851-14	WG-DN-MW-DN-109I-053106-JL-070
L28851-15	WG-DN-MW-DN-109I-053106-JL-071
L28851-16	WG-DN-MW-DN-109S-053106-JL-072
L28851-17	WG-DN-MW-DN-111S-053106-JL-073
L28851-18	WG-DN-MW-DN-107S-053106-JL-074

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

Spiking level < 5 times activity ***

Pass Fail

F

NE Not evaluated

Page: 2

QC Summary Report

L28851 for

6/21/2006

12:18:55PM

TOTAL SR

							
		A. P		Method Blank Summa	ary		
TBE Sample ID WG4161-1	<u>Radionuclide</u> TOTAL SR	<u>Matrix</u> WO	Count Date/Time 06/20/2006 18:09		Blank Result < 6.990E-01	<u>Units</u> pCi/Total	Qualifier P/F U P
				LCS Sample Summa	ry		
TBE Sample ID WG4161-2	Radionuclide TOTAL SR	<u>Matrix</u> WO	Count Date/Time 06/20/2006 18:09	Spike Value 5.84E+001	LCS Result 6.340E+01	Units pCi/TotalSpike Recovery108.6	Range Qualifier P/F 70-130 + P
Spike ID: 90SR-Spike conc: 2.34E Spike Vol: 2.50E	C+002						
			3000	Duplicate Summary	y		
TBE Sample ID WG4161-3	<u>Radionuclide</u> TOTAL SR	<u>Matrix</u> WG	Count Date/Time 06/20/2006 18:09	Original Result < 1.480E+00	<u>DUP Result</u> < 1.610E+00	Units RPD pCi/L	Range Qualifier P/F <30 ** NE

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

Spiking level < 5 times activity

Pass Fail F

L28851-1

Not evaluated NE

Raw Data

Customer: Exelon Work Order: <u>L28851</u>

Page: 1

Nuclide: H-3	Project : <u>EX001-3</u>	BESPDRES-06	<u>.</u>									Decay &	
				• • • • • • • • • • • • • • • • • • • •	Count	Counter	Total	Sample	Bkq	Bka	Eff.	Ingrowth	Analyst
Sample ID Run Analysis Reference		Scavenge		Mount	Recovery Date/time	ID	counts	dt (min)		dt (min)		Factor	
Client ID # Date/time	e Aliquot	Date/time	Date/time	0 Weight	12-jun-06		288	60	1.73	60	.207		so
L28851-1 H-3				U	12:49	20,	200						
WG-DN-DSP-149R-053106-	10 ml				12.13								
Activity: 6.68E+02 * Error: 1.44E+02	MDC: 1.72E+02			0	12-jun-06	LS7	298	60	1.73	60	.211		so
L28851-2 H-3				U	13:53	дь,	250						
WG-DN-DSP-149R-053106-	10 ml				13:33								
Activity: 6.94E+02 * Error: 1.43E+02	MDC: 1.7E+02				12-jun-06	LS7	99	60	1.73	60	.209		ЕJ
L28851-3 H-3				0	12-jun-06 14:57	TP /	33	00	11/5		•		
WS-DN-SW-103-053106-JH	10 ml				14:57								
Activity: -1.73E+01 Error: 1.03E+02	MDC: 1.71E+02	*			12-jun-06	LS7	103	60	1.73	60	.21		EJ
L28851-4 H-3				0		LS /	103	30	1.75	•			
WG-DN-DSP-159S-053106-	10 ml				16:01								
Activity: -2.15E+00 Error: 1.03E+02	MDC: 1.7E+02	*					80	60	1.73	60	.21		EJ
L28851-5 H-3				0	12-jun-06	LS7	80	80	1.73	00		•	
WS-DN-SW-101-053106-JH	10 ml				17:05								
Activity: -8.58E+01 Error: 9.69E+01	MDC: 1.7E+02	*							1 72	60	.209		EJ
L28851-6 H-3				0	12-jun-06	LS7	94	60	1.73	80	.203	•	20
WS-DN-SW-102-053106-JH	10 ml				18:09								
Activity: -3.66E+01 Error: 1.01E+02	MDC: 1.71E+02	*								60	.216		EJ
L28851-7 H-3				0	12-jun-06	LS7	113	60	1.73	60	.210	•	20
WS-DN-SW-105-060106-JH	10 ml				19:13								
Activity: 3.13E+01 Error: 1.02E+02	MDC: 1.65E+02_	*									.213		EJ
L28851-8 H-3				0	12-jun-06	LS7	90	60	1.73	60	.21:)	EO
WS-DN-SW-104-060106-JH	10 ml				20:17								
Activity: -4.88E+01 Error: 9.84E+01	MDC: 1.68E+02	*											T 7
L28851-9 H-3				0	12-jun-06	LS7	89	60	1.73	60	.212	2	EJ
WS-DN-SW-106-060106-JH	10 ml				21:21								
Activity: -5.31E+01 Error: 9.83E+01	MDC: 1.68E+02	*											
T.28851-10 H-3				0	12-jun-06	LS7	119	60	1.73	60	. 2	L	EJ
WS-DN-SW-106-060106-JH	10 ml				22:25								
Activity: 5.38E+01 Error: 1.07E+02	MDC: 1.7E+02	*											
L28851-11 H-3		- Townson Bellinson		0	12-jun-06	LS7	130	60	1.73	60	.20	3	EJ
WG-DN-MW-DN-110S-05300	10 ml				23:30								
Activity: 9.55E+01 Error: 1.11E+02	MDC: 1.72E+02	*									***************************************		
L28851-12 H-3		***************************************		0	13-jun-06	LS7	248	60	1.73	60	.21	L	EJ
WG-DN-MW-DN-110I-05300	10 ml				01:38								
Activity: 5.16E+02 * Error: 1.34E+02	MDC: 1.7E+02												-
L28851-13 H-3	1201 21, 21,			0	13-jun-06	LS7	135	60	1.73	60	.20	7	EJ
	10 ml				02:42								
WG-DN-MW-DN-104S-05300	MDC: 1.73E+02	*											
Activity: 1.13E+02 Error: 1.12E+02	MDC: 1.73B+02			0	13-jun-06	LS7	387	21.07	1.73	60	.20	7	EJ
220032 22	10 ml			•	03:46								
WG-DN-MW-DN-109I-05310	MDC: 2.91E+02												
Activity: 3.62E+03 * Error: 4.13E+02	MUC: 2.315+02			0	13-jun-06	LS7	387	19.8	1.73	60	.21	5	EJ 📙
L28851-15 H-3	10 7			•	04:11								Ň
WG-DN-MW-DN-109I-05310	10 ml MDC: 2.9E+02				4-4-m								
Activity: 3.75E+03 * Error: 4.24E+02	MDC: 2.9E+02			0	13-jun-06	LS7	173	60	1.73	60	.20	9	EJ ထ
L28851-16 H-3	70 -7			U	04:34	,	-·-						EJ 80 11
WG-DN-MW-DN-109S-05310	10 ml				51.51								
Activity: 2.51E+02 * Error: 1.2E+02	MDC: 1.71E+02												4

47 of. 145

Raw Data Sheet (rawdata) Jun 21 2006, 11:31 am

Work Order: L28851 Customer: Exelon Page: 2

Nuclide: <u>H-3</u> Project : <u>EX001-3ESPDRES-06</u>

																Decay &	
Sample ID	Run A	Analysis	Reference	Volume/	Scavenge	Milking	Mount		Count	Counter	Total	Sample	Bkg	Bkg	Eff.	Ingrowth	Analyst
Client ID	#		Date/time	Aliquot	Date/time	Date/time	Weight	Recovery	Date/time	ID	counts	dt (min)	counts	dt (min)		Factor	
L28851-17		H-3					0		13-jun-06	LS7	283	60	1.73	60	.21	Ļ	EJ
WG-DN-MW-DN-	111s-0	05310		10 ml					05:38								
Activity: 6.	38E+02	2 * Error:	1.4E+02	MDC: 1.69E+02													
L28851-18		н-3					0		13-jun-06	LS7	359	54.4	1.73	60	.212	2	EJ
WG-DN-MW-DN-	107S-0	05310		10 ml					06:43								
Activity: 1.	04E+03	* Error:	1.65E+02	MDC: 1.77E+02													

Work Order: L28851 Customer: Exelon

Nuclide: SR-90 (FAST) Project : EX001-3ESPDRES-06

Nuclide: SR-90 (FAST)	Pı	oject : <u>EX001-3</u>	ESPDRES-06										:	Decay &	
								Counter	Total	Sample	Bkg	Bkg		Ingrowth	Analyst
Sample ID Run Analysis	Reference	Volume/	Scavenge		Mount	_	Count		counts	dt (min)	-			Factor	
Client ID #	Date/time	Aliquot		Date/time		Recovery	Date/time	ID	103	120	308	400		.999	LCB
L28851-1 TOTAL SR	31-may-06		20-jun-0		0		20-jun-06	X1A	103	120	300	400	.510		
WG-DN-DSP-149R-053106-	10:00	450 ml	13:00)		73.12	18:05								
Activity: 3.5E-01 Error: 7	.55E-01	MDC: 1.48E+00 *								120	342	400	.343	.999	LCB
L28851-2 TOTAL SR	31-may-06	5	20-jun-0)6	0		20-jun-06	X1B	136	120	342	400	.545	. 333	1100
WG-DN-DSP-149R-053106-	10:40	450 ml	13:00)		64.52	18:05								
Activity: 1.26E+00 Error: 9	.74E-01	MDC: 1.78E+00 *								100	289	400	.354	.999	LCB
L28851-3 TOTAL SR		5	20-jun-0		0		20-jun-06	X1C	112	120	209	400		. 333	100
WS-DN-SW-103-053106-JH	11:40	450 ml	13:00)		91.40	18:05								
Activity: 6.53E-01 Error: 6	.07E-01	MDC: 1.12E+00 *										400	244	.999	LCB
L28851-4 TOTAL SR		5	20-jun-0)6	0		20-jun-06	X1D	135	120	312	400	.344	.999	LCB
WG-DN-DSP-159S-053106-	13:30	450 ml	13:00)		111.83	18:05								
Activity: 8.99E-01 Error: 5	.54E-01	MDC: 9.79E-01 *													LCB
L28851-5 TOTAL SR		6	20-jun-0	06	0		20-jun-06	X2A	116	120	264	400	.354	.999	TCB
WS-DN-SW-101-053106-JH	14:30	450 ml	13:00)		65.86	18:05								
Activity: 1.32E+00 Error: 8		MDC: 1.48E+00 *													
	31-may-0	6	20-jun-0)6	0		20-jun-06	X2B	114	120	289	400	.345	.999	LCB
WS-DN-SW-102-053106-JH	15:20	450 ml	13:00)		65.05	18:05								
Activity: 1.02E+00 Error: 8		MDC: 1.61E+00 *													
L28851-7 TOTAL SR			20-jun-(06	0		21-jun-06	Y1D	96	100	305	400	.362	.999	LCB
WS-DN-SW-105-060106-JH	09:00	450 ml	13:00			79.03	00:37								
Activity: 6.92E-01 Error: 7		MDC: 1.43E+00 *							211110		*******				
L28851-8 TOTAL SR			20-jun-0	06	0		20-jun-06	X2D	136	120	307	400	.343	.999	LCB
WS-DN-SW-104-060106-JH	09:40	450 ml	13:00			64.25	18:05								
Activity: 1.66E+00 Error: 9		MDC: 1.69E+00 *		•							*********				
L28851-9 TOTAL SR			20-jun-0	06	0	AHVHUT	20-jun-06	ХЗA	135	120	363	400	.335	.999	LCB
WS-DN-SW-106-060106-JH	11:20	450 ml	13:00			72.31	18:05								
Activity: 8.99E-01 Error: 8		MDC: 1.68E+00 *		-											
L28851-10 TOTAL SR			20-jun-0	0.6	0	- IIII	20-jun-06	хзв	129	120	321	400	.343	.999	LCB
WS-DN-SW-106-060106-JH	11:45	450 ml	13:00			63.71	18:05								
Activity: 1.25E+00 Error: 9		MDC: 1.75E+00 *		•											
L28851-11 TOTAL SR			20-jun-	0.6	0		20-jun-06	хзс	130	120	294	400	.345	.999	LCB
	14:10	450 ml	13:0		•	84.68	18:05								
WG-DN-MW-DN-110S-05300 Activity: 1.2E+00 Error: 7		MDC: 1.25E+00 *		•											
			20-jun-	0.6	0		20-jun-06	X4A	99	120	284	400	.358	.999	LCB
	15:15	450 ml	13:0		•	69.89	18:05								
WG-DN-MW-DN-110I-05300		MDC: 1.44E+00 *		•											
Activity: 4.61E-01 Error: 7	30-may-0		20-jun-	n.e	0		20-jun-06	X4C	80	120	299	400	.35	.999	LCB
		450 ml	13:0		Ū	87.63	18:05								
WG-DN-MW-DN-104S-05300	17:20			U		07.03	20.00								
Activity: -2.64E-01 Error: 5		MDC: 1.2E+00 '	20-jun-	06	0		20-jun-06	X4D	128	120	340	400	.353	.999	LCB
L28851-14 TOTAL SR			20-jun- 13:0		U	75.00	18:05								
WG-DN-MW-DN-109I-05310	10:15	450 ml		U		,5.00	20.00								
Activity: 8.21E-01 Error: 7	.95E-U1	MDC: 1.49E+00		0.6	0		20-jun-06	Y1D	99	120	305	400	.362	.999	LC ∄
	31-may-0		20-jun-		U	76.34	18:09			220					2
WG-DN-MW-DN-109I-05310	10:25	450 ml	13:0	U		10.34	10:03								m
Activity: 2.27E-01 Error: 6	.8E-01	MDC: 1.35E+00		0.0	0		20-jun-06	Y2A	97	120	280	400	.349	.999	10.00 10.00
L28851-16 TOTAL SE	-		20-jun-		υ	77.15	18:09	122	٠.						Ω
WG-DN-MW-DN-1095-05310	11:45	450 ml	13:0	U		//.13	10:03								-
Activity: 4.04E-01 Error: 6	.87E-01	MDC: 1.33E+00	π										***************************************		4

Page: 3

Raw Data Sheet (rawdata) Jun 21 2006, 11:31 am

Work Order: <u>L28851</u>

Customer: Exelon

Page: 4

Nuclide: SR-90 (FAST)

Project : EX001-3ESPDRES-06

Nuclide: <u>SR-90 (FAST)</u>	Project : Expor-	JEGI DILLO VV									1	Decay &	
Sample ID Run Analysis Reference		Scavenge Milking Date/time Date/time	Mount Weight	Recovery	Count Date/time	Counter ID	Total counts	Sample dt(min)	Bkg counts	Bkg dt(min)		Factor	Analyst
Client ID # Date/time L28851-17 TOTAL SR 31-may-		20-jun-06	0		20-jun-06		102	120	315	400	.356	.999	LCB
WG-DN-MW-DN-111S-05310 14:00	450 ml	13:00		75.00	18:09								
Activity: 2.35E-01 Error: 7.14E-01	MDC: 1.42E+00	Amino-	^		20-jun-06	Y2C	107	120	268	400	.35	.999	LCB
L28851-18 TOTAL SR 31-may	-06 450 ml	20-jun-06 13:00	U	54.57	18:09								
WG-DN-MW-DN-107S-05310 15:30 Activity: 1.16E+00 Error: 1E+00	MDC: 1.83E+00												

Sec. Review:

Analyst: LIMS: _

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 13:19:01.23

TBE13 P-10727B HpGe ******** Aquisition Date/Time: 13-JUN-2006 10:02:15.18

LIMS No., Customer Name, Client ID: WG WG4124-1 DRESDEN

Smple Date: 31-MAY-2006 10:00:00. Sample ID : 13WG4124-1

Geometry : 133L082404 Sample Type : WG BKGFILE : 13BG060306MT : 3.09670E+00 L Quantity Start Channel: 25 Energy Tol: 1.50000 Real Time: 0 03:16:34.34 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 03:16:31.01 MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9	2 1 1 1 1 1 1	139.84* 143.54* 185.88* 198.13* 238.33* 583.19* 596.85 608.98* 1000.14* 1461.27*	76 51 32 130 16 2 51 39 77	319 302 394 360 283 95 132 99 16 56	1.50 1.48	279.65 287.04 371.74 396.23 476.64 1166.52 1193.84 1218.12 2000.84 2923.84	2.28E+00 2.18E+00 2.13E+00 1.94E+00 1.04E+00 1.02E+00 1.01E+00 6.84E-01 5.14E-01	2.70E-033 1.10E-02 1.34E-033 2.07E-049 4.35E-03 3.35E-03 6.57E-03 4.49E-05	64.4 133.4 31.6 212.4 916.9 49.5 58.1 15.3	2.28E+00 3.46E+00 1.12E+00 6.96E+00 1.90E+00 1.12E+01 4.41E-01
11	1	1765.79	41	27	5.38	3533.53	4.55E-01	3.49E-03	36.3	2.29E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

	1 -				Uncorrected	Decay Corr	2-Sigma	
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error	
K-40	1460.81	1	10.67*	5.142E-01	7.147E-01	7.147E-01	8160.85	
RA-226	186.21	32	3.28*	2.178E+00	3.293E+01	3.293E+01	266.90	
TH-228	238.63	16	44.60*	1.939E+00	1.355E+00	1.373E+00	424.82	
	240.98		3.95	1.927E+00	Li			
U-235	143.76	51	10.50*	2.277E+00		1.587E+01	128.80	
	163.35		4.70	2.256E+00		ne Not Found		
	185.71	32	54.00	2.178E+00		2.000E+00	266.90	
	205.31		4.70	2.093E+00		ne Not Found		
U-238	766.41		0.21	8.425E-01	Li:	ne Not Found		
	1001.03	77	0.92*	6.843E-01	9.106E+02	9.106E+02	30.69	

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Acquisition date: 13-JUN-2006 10:02:15 Sample ID : 13WG4124-1

11 Total number of lines in spectrum 5 Number of unidentified lines

Number of lines tentatively identified by NID 6 54.55%

Nuclide Type : natural

Nuclide K-40 RA-226 TH-228 U-235 U-238	Hlife 1.28E+09Y 1600.00Y 1.91Y 7.04E+08Y 4.47E+09Y	Decay 1.00 1.00 1.01 1.00	1.587E+01	Decay Corr pCi/L 7.147E-01 3.293E+01 1.373E+00 1.587E+01 9.106E+02	Decay Corr 2-Sigma Error 583.3E-01 8.789E+01 5.833E+00 2.044E+01 2.795E+02	2-Sigma %Error 8160.85 266.90 424.82 128.80 30.69	Flags

Total Activity: 9.614E+02 9.615E+02

Grand Total Activity: 9.614E+02 9.615E+02

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 13WG4124-1

Page: 3 Acquisition date : 13-JUN-2006 10:02:15

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
2 1 1 1 1	139.84 198.13 583.19 596.85 608.98 1765.79	76 130 2 51 39 41	360 95 132	1.50 1.48	396.23 1166.52 1193.84 1218.12	391 1161 1185 1214	12 12 14 11	1.10E-02 2.07E-04 4.35E-03 3.35E-03	63.1 **** 98.9 ****	1.02E+00	Т

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

11 Total number of lines in spectrum Number of unidentified lines 5
Number of lines tentatively identified by NID 6 54.55%

Nuclide Type : natural

	71		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr		7
Nuclide K-40 TH-228 U-235 U-238	Hlife 1.28E+09Y 1.91Y 7.04E+08Y 4.47E+09Y	Decay 1.00 1.01 1.00 1.00	7.147E-01 1.355E+00 2.886E+00	pCi/L 7.147E-01 1.373E+00 2.886E+00 9.106E+02 9.155E+02	2-Sigma Erro 583.3E-01 5.833E+00 5.165E+00 2.795E+02	r %Error F 8160.85 424.82 179.00 30.69	Lags

Grand Total Activity: 9.155E+02 9.155E+02

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

Interfe	ring	Interfered					
Nuclide	Line	Nuclide	Line				
U-235	185.71	RA-226	186.21				

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	7.147E-01	5.833E+01	4.838E+01	0.000E+00	0.015
TH-228	1.373E+00	5.833E+00	8.109E+00	0.000E+00	0.169
U-235	2.886E+00	5.165E+00	3.308E+01	0.000E+00	0.087
U-238	9.106E+02	2.795E+02	5.049E+02	0.000E+00	1.803

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K. (pCi/L) Id	L. Act error ed	MDA (pCi/L)	MDA error	Act/MDA
BE-7	-8.524E+00	2.877E+01	4.589E+01	0.000E+00	-0.186
NA-24	1.352E-01	2.941E+00	Half-Life to		0 040
CR-51	-1.751E+01	3.159E+01	5.145E+01	0.000E+00	-0.340
MN-54	6.632E-01	2.842E+00	4.742E+00	0.000E+00	0.140
CO-57	4.402E-01	2.684E+00	4.421E+00	0.000E+00	0.100
CO-58	6.167E-01	3.142E+00	5.239E+00	0.000E+00	0.118
FE-59	3.487E+00	6.687E+00	1.142E+01	0.000E+00	0.305
CO-60	-2.442E-01	2.867E+00	4.703E+00	0.000E+00	-0.052
ZN-65	-1.126E+00	6.537E+00	1.060E+01	0.000E+00	-0.106
SE-75	3.717E+00	3.876E+00	6.552E+00	0.000E+00	0.567
SR-85	2.063E+01	3.752E+00	7.429E+00	0.000E+00	2.777
Y-88	-1.492E+00	3.444E+00	5.379E+00	0.000E+00	-0.277
NB-94	-2.182E-01	2.781E+00	4.609E+00	0.000E+00	-0.047
NB-95	3.567E+00	3.238E+00	5.704E+00	0.000E+00	0.625
ZR-95	-5.423E+00	5.646E+00	8.767E+00	0.000E+00	-0.619
MO-99	-1.903E+02	5.301E+02	8.580E+02	0.000E+00	-0.222
RU-103	2.147E+00	3.418E+00	5.862E+00	0.000E+00	0.366
RU-106	-8.968E+00	2.721E+01	4.367E+01	0.000E+00	-0.205
AG-110m	1.459E-01	2.808E+00	4.591E+00	0.000E+00	0.032
SN-113	-2.430E+00	3.739E+00	5.952E+00	0.000E+00	-0.408
SB-124	-2.300E+00	7.545E+00	5.164E+00	0.000E+00	-0.445
SB-125	3.036E+00	7.922E+00	1.318E+01	0.000E+00	0.230
TE-129M	8.661E+00	4.068E+01	6.682E+01	0.000E+00	0.130
I-131	-7.996E+00	8.263E+00	1.303E+01	0.000E+00	-0.614
BA-133	3.422E-01	3.859E+00	6.406E+00	0.000E+00	0.053
CS-134	2.045E+00	6.703E+00	5.207E+00	0.000E+00	0.393
CS-136	-5.413E-01	5.328E+00	8.704E+00	0.000E+00	-0.062
CS-137	3.677E-01	3.297E+00	5.268E+00	0.000E+00	0.070
CE-139	1.251E+00	2.876E+00	4.702E+00	0.000E+00	0.266
BA-140	-2.318E+00	1.947E+01	3.201E+01	0.000E+00	-0.072
LA-140	8.192E+00	7.018E+00	1.264E+01	0.000E+00	0.648
CE-141	4.531E+00	6.833E+00	9.783E+00	0.000E+00	0.463
CE-144	-1.475E+01	2.345E+01	3.326E+01	0.000E+00	-0.444
EU-152	-1.401E+01	9.006E+00	1.398E+01	0.000E+00	-1.002
EU-154	3.040E+00	5.502E+00	9.164E+00	0.000E+00	0.332
RA-226	3.293E+01	8.789E+01	1.238E+02	0.000E+00	0.266
AC-228	-7.090E+00	1.229E+01	1.890E+01	0.000E+00	-0.375
TH-232	-7.060E+00	1.224E+01	1.882E+01	0.000E+00	-0.375
AM-241	-3.275E+01	2.429E+01	3.752E+01	0.000E+00	-0.873

```
3.097E+00,WG WG4124-1 DR
                     ,06/13/2006 13:19,05/31/2006 10:00,
A,13WG4124-1
                                             ,06/13/2006 09:43,133L082404
                     ,LIBD
B, 13WG4124-1
                                                                     0.015
                                                   4.838E+01,,
                                    5.833E+01,
           , YES,
                     7.147E-01,
C, K-40
                                                                     0.169
                                                   8.109E+00,,
                                    5.833E+00,
                     1.373E+00,
C, TH-228
            , YES,
                                                                     0.087
                                                   3.308E+01,,
                                    5.165E+00,
                     2.886E+00,
           , YES,
C, U-235
                                                   5.049E+02,,
                                                                     1.803
                                    2.795E+02,
                     9.106E+02,
C, U-238
            ,YES,
                                                                    -0.186
                                                   4.589E+01,,
                                    2.877E+01,
                    -8.524E+00,
C,BE-7
            , NO
                                                                    -0.340
                                                   5.145E+01,,
                                    3.159E+01,
            , NO
                    -1.751E+01,
C, CR-51
                                                                     0.140
                                    2.842E+00,
                                                   4.742E+00,,
                     6.632E-01,
            , NO
C, MN-54
                                                                     0.100
                                                   4.421E+00,,
                                    2.684E+00,
                     4.402E-01,
            , NO
C, CO-57
                                                   5.239E+00,,
                                                                     0.118
                     6.167E-01,
                                    3.142E+00,
C, CO-58
            , NO
                                                                     0.305
                                    6.687E+00,
                                                   1.142E+01,,
            ,NO
                     3.487E+00,
C, FE-59
                                                   4.703E+00,,
                                                                    -0.052
                    -2.442E-01,
                                    2.867E+00,
            , NO
C,CO-60
                                                                    -0.106
                                                   1.060E+01,,
                                    6.537E+00,
                    -1.126E+00,
C, ZN-65
            , NO
                                                                     0.567
                                                   6.552E+00,,
                                    3.876E+00,
                     3.717E+00,
C, SE-75
            , NO
                                                                     2.777
                                                   7.429E+00,,
                                    3.752E+00,
C, SR-85
            , NO
                     2.063E+01,
                                                                    -0.277
                                                   5.379E+00,,
                                    3.444E+00,
            , NO
                    -1.492E+00,
C, Y-88
                                                                    -0.047
                                                   4.609E+00,,
                                    2.781E+00,
                    -2.182E-01,
            , NO
C, NB-94
                                                                     0.625
                                                   5.704E+00,,
                                    3.238E+00,
                     3.567E+00,
            , NO
C, NB-95
                                                                    -0.619
                                                    8.767E+00,,
                                    5.646E+00,
                    -5.423E+00,
C, ZR-95
            , NO
                                                                    -0.222
                                                    8.580E+02,,
                                     5.301E+02,
                    -1.903E+02,
C,MO-99
            , NO
                                                                     0.366
                                                    5.862E+00,,
                                     3.418E+00,
                     2.147E+00,
            , NO
C, RU-103
                                                    4.367E+01,,
                                                                    -0.205
                                     2.721E+01,
            , NO
                    -8.968E+00,
C, RU-106
                                                                     0.032
                                                    4.591E+00,,
                                     2.808E+00,
                     1.459E-01,
            , NO
C, AG-110m
                                                                    -0.408
                                                    5.952E+00,,
                                     3.739E+00,
            , NO
                    -2.430E+00,
C, SN-113
                                                    5.164E+00,,
                                                                    -0.445
                                     7.545E+00,
                    -2.300E+00,
C,SB-124
            , NO
                                                                     0.230
                                     7.922E+00,
                                                    1.318E+01,
                      3.036E+00,
 C,SB-125
            , NO
                                                                     0.130
                                                    6.682E+01,,
                      8.661E+00,
                                     4.068E+01,
            , NO
 C, TE-129M
                                                                    -0.614
                                                    1.303E+01,,
                                     8.263E+00,
                     -7.996E+00,
 C, I-131
            , NO
                                                                     0.053
                                                    6.406E+00,,
                                     3.859E+00,
                      3.422E-01,
 C, BA-133
            , NO
                                                    5.207E+00,,
                                                                     0.393
                                     6.703E+00,
                      2.045E+00,
            , NO
 C, CS-134
                                                                    -0.062
                                     5.328E+00,
                                                    8.704E+00,,
            , NO
                     -5.413E-01,
 C, CS-136
                                                    5.268E+00,,
                                                                     0.070
                      3.677E-01,
                                     3.297E+00,
             , NO
 C, CS-137
                                                                     0.266
                                                    4.702E+00,,
                                     2.876E+00,
             , NO
                      1.251E+00,
 C, CE-139
                                                                    -0.072
                                                    3.201E+01,,
                                     1.947E+01,
                     -2.318E+00,
 C, BA-140
             , NO
                                                                      0.648
                                                    1.264E+01,
                                     7.018E+00,
             , NO
                      8.192E+00,
 C, LA-140
                                                                     0.463
                                                    9.783E+00,,
                                     6.833E+00,
                      4.531E+00,
             ,NO
 C, CE-141
                                                                     -0.444
                                     2.345E+01,
                                                    3.326E+01,,
             , NO
                     -1.475E+01,
 C, CE-144
                                                                     -1.002
                                                    1.398E+01,,
                     -1.401E+01,
                                     9.006E+00,
             , NO
 C, EU-152
                                                                      0.332
                                                    9.164E+00,,
                                     5.502E+00,
             , NO
                      3.040E+00,
 C, EU-154
                                                    1.238E+02,,
                                                                      0.266
                                     8.789E+01,
             , NO
 C, RA-226
                      3.293E+01,
                                                                     -0.375
                                                    1.890E+01,,
                                     1.229E+01,
             , NO
                     -7.090E+00,
 C, AC-228
                                                                     -0.375
                                                    1.882E+01,,
                                     1.224E+01,
             ,NO
                     -7.060E+00,
 C, TH-232
```

2.429E+01,

-3.275E+01,

C,AM-241

, NO

3.752E+01,,

-0.873

LIMS: Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 05:24:55.47 TBE04 P-40312B HpGe ******** Aquisition Date/Time: 12-JUN-2006 23:24:47.95 ______

LIMS No., Customer Name, Client ID: WG L28851-1 EX DRES

Smple Date: 31-MAY-2006 10:00:00. : 04L28851-1 Sample ID

Geometry : 043L082004 : WG Sample Type BKGFILE : 04BG060306MT : 3.09670E+00 L Quantity

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1	66.52* 93.21* 139.76 185.76* 198.55* 351.41* 582.80* 595.54 609.21* 910.95* 1459.94*	219 68 149 62 88 3 1 83 2 10 23	601 474 484 426 377 261 113 118 176 75 27	1.42 1.31 3.46		1.55E+00 2.04E+00 1.92E+00 1.86E+00 1.28E+00 8.78E-01 8.63E-01 8.49E-01 6.21E-01 4.30E-01	6.90E-03 2.87E-03 4.07E-03 1.25E-04 3.04E-05 3.85E-03 7.35E-05 4.59E-04 1.08E-03	67.2 26.9 69.5 48.2 **** 25.4 **** 209.4 87.9	3.87E+00 2.66E+00 9.31E-01 2.49E+00 2.12E+00 5.71E-01 3.51E+00 2.59E+00 1.86E+00 1.10E+00
12 13	1	1984.38 1990.64	27 65	0 12	2.46	3970.36 3982.87	3.52E-01 3.52E-01	1.25E-03 3.03E-03		2.32E-01 4.94E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

	1				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	23	10.67*	4.298E-01	2.057E+01	2.057E+01	175.76
RA-226	186.21	62	3.28*	1.922E+00	3.975E+01	3.975E+01	139.05
AC-228	835.50		1.75	6.649E-01	Li	ne Not Found	
	911.07	10	27.70*	6.212E-01	2.328E+00	2.338E+00	418.78
TH-232	583.14	1	30.25	8.776E-01	1.000E-01	1.000E-01	7251.24
	911.07	10	27.70*	6.212E-01	2.328E+00	2.328E+00	418.78
	969.11		16.60	5.916E-01	Li	ne Not Found	
U-235	143.76		10.50*	2.041E+00	Li:	ne Not Found	
	163.35		4.70	2.007E+00	Li:	ne Not Found	
	185.71	62	54.00	1.922E+00	2.414E+00	2.414E+00	139.05
	205.31		4.70	1.833E+00	Li:	ne Not Found	

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Sample ID: 04L28851-1 Acquisition date: 12-JUN-2006 23:24:47

Total number of lines in spectrum 13

Number of unidentified lines 9

Number of lines tentatively identified by NID 4 30.77%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	2.057E+01	2.057E+01	3.615E+01	175.76	
RA-226	1600.00Y	1.00	3.975E+01	3.975E+01	5.527E+01	139.05	
AC-228	5.75Y	1.00	2.328E+00	2.338E+00	9.791E+00	418.78	
TH-232	1.41E+10Y	1.00	2.328E+00	2.328E+00	9.750E+00	418.78	
U-235	7.04E+08Y	1.00	2.414E+00	2.414E+00	3.357E+00	139.05	K

Total Activity: 6.738E+01 6.740E+01

Grand Total Activity: 6.738E+01 6.740E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID : 04L28851-1

Acquisition date : 12-JUN-2006 23:24:47

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1 1	66.52 93.21 139.76 198.55 351.41 595.54 609.21 1984.38 1990.64	219 68 149 88 3 2 27 65	601 474 484 377 261 118 176 0	1.22 1.92 1.17 1.76 1.77 1.54 1.42 2.46 5.95	3970.36	1189 1212 3966	9 8 9 12 9 12	1.01E-02 3.16E-03 6.90E-03 4.07E-03 1.25E-04 3.85E-03 7.35E-05 1.25E-03 3.03E-03	**** 53.7 96.3 *** 50.8 *** 37.0	6.71E-01 1.55E+00 2.04E+00 1.86E+00 1.28E+00 8.63E-03 8.49E-03 3.52E-03	0 0 0 0 1 1 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

13 Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified by NID 4 30.77%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Error	· %Error	Flags
K-40	1.28E+09Y	1.00	2.057E+01	2.057E+01	3.615E+01	175.76	
RA-226	1600.00Y	1.00	3.975E+01	3.975E+01	5.527E+01	139.05	
AC-228	5.75Y	1.00	2.228E+00	2.238E+00	12.20E+00	545.38	
TH-232	1.41E+10Y	1.00	1.000E-01	1.000E-01	72.53E-01	7251.24	
	Total Act	ivity :	6.264E+01	6.265E+01			

6.265E+01 Grand Total Activity: 6.264E+01

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

Interfe	ring	Interfered				
Nuclide	Line	Nuclide	Line			
TH-232	911.07	AC-228	911.07			

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	2.057E+01	3.615E+01	3.617E+01	0.000E+00	0.569
RA-226	3.975E+01	5.527E+01	7.773E+01	0.000E+00	0.511
AC-228	2.238E+00	1.220E+01	1.332E+01	0.000E+00	0.168
TH-232	1.000E-01	7.253E+00	1.476E+01	0.000E+00	0.007

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided		MDA (pCi/L)	MDA error	Act/MDA
BE-7	1.209E+01	2.025E+01	3.453E+01	0.000E+00	0.350
NA-24	-1.914E+00	1.462E+00	Half-Life to	o short	
CR-51	-3.453E+00	2.442E+01	4.032E+01	0.000E+00	-0.086
MN-54	6.310E-01	2.181E+00	3.635E+00	0.000E+00	0.174
CO-57	-1.041E+00	1.977E+00	3.176E+00	0.000E+00	-0.328
CO-58	-2.544E+00	2.490E+00	3.858E+00	0.000E+00	-0.660
FE-59	4.804E+00	5.086E+00	8.848E+00	0.000E+00	0.543
CO-60	6.034E-01	2.745E+00	4.312E+00	0.000E+00	0.140
ZN-65	2.227E+00	4.780E+00	8.080E+00	0.000E+00	0.276
SE-75	-2.050E+00	3.041E+00	4.828E+00	0.000E+00	-0.425
SR-85	1.808E+01	2.952E+00	5.762E+00	0.000E+00	3.138
Y-88	-6.529E-01	2.701E+00	4.332E+00	0.000E+00	-0.151
NB-94	8.291E-01	2.080E+00	3.523E+00	0.000E+00	0.235
NB-94 NB-95	3.017E-01	2.280E+00	3.791E+00	0.000E+00	0.080
ZR-95	6.969E-01	4.177E+00	6.965E+00	0.000E+00	0.100
MO-99	-3.021E+02	3.768E+02	5.957E+02	0.000E+00	-0.507
RU-103	1.776E+00	2.622E+00	4.473E+00	0.000E+00	0.397
RU-105	-2.104E+01	2.088E+01	3.235E+01	0.000E+00	-0.650
AG-110m	1.192E+00	2.162E+00	3.617E+00	0.000E+00	0.329
SN-113	-4.186E-01	2.927E+00	4.766E+00	0.000E+00	-0.088
SB-124	-7.331E+00	6.863E+00	4.133E+00	0.000E+00	-1.774
SB-124 SB-125	-3.768E+00	6.327E+00	1.004E+01	0.000E+00	-0.375
TE-129M	3.209E+01	3.014E+01	5.114E+01	0.000E+00	0.628
I-131	-2.707E+00	6.093E+00	9.852E+00	0.000E+00	-0.275
BA-133	3.011E+00	3.269E+00	4.810E+00	0.000E+00	0.626
CS-134	-1.128E+00	4.098E+00	3.909E+00	0.000E+00	-0.289
CS-134 CS-136	1.400E+00	4.010E+00	6.718E+00	0.000E+00	0.208
CS-130	9.091E-01	2.354E+00	3.904E+00	0.000E+00	0.233
CE-139	-3.787E-01	2.021E+00	3.353E+00	0.000E+00	-0.113
BA-140	7.754E+00	1.403E+01	2.377E+01	0.000E+00	0.326
LA-140	-7.562E-01	4.735E+00	7.751E+00	0.000E+00	-0.098
CE-141	2.456E+00	4.977E+00	6.998E+00	0.000E+00	0.351
CE-141 CE-144	-7.593E+00	1.740E+01	2.478E+01	0.000E+00	-0.306
EU-152	-7.108E+00	7.590E+00	1.049E+01	0.000E+00	-0.677
EU-154	-1.729E+00	4.055E+00	6.530E+00	0.000E+00	-0.265
TH-228	2.055E+00	4.226E+00	6.798E+00	0.000E+00	0.302
U-235	7.242E+00	1.746E+01	2.449E+01	0.000E+00	0.296
U-235 U-238	6.968E+01	2.404E+02	4.050E+02	0.000E+00	0.172
AM-241	-7.655E+00	2.163E+01	3.337E+01	0.000E+00	-0.229
WM-74T	, , , , , , , , , , , , , , , , , , , ,				

```
3.097E+00,WG L28851-1 EX
                    ,06/13/2006 05:24,05/31/2006 10:00,
A,04L28851-1
                                             ,06/12/2006 10:58,043L082004
                     ,LIBD
B,04L28851-1
                                                                    0.569
                                                   3.617E+01,,
           ,YES,
                                    3.615E+01,
                     2.057E+01,
C, K-40
                                                                    0.511
                                    5.527E+01,
                                                   7.773E+01,,
                     3.975E+01,
           , YES,
C, RA-226
                                                                    0.168
                                                   1.332E+01,,
                                    1.220E+01,
            ,YES,
                     2.238E+00,
C, AC-228
                                                                    0.007
                                                   1.476E+01,,
                     1.000E-01,
                                    7.253E+00,
            ,YES,
C, TH-232
                                                                    0.350
                                                   3.453E+01,,
                                    2.025E+01,
            , NO
                     1.209E+01,
C, BE-7
                                                                   -0.086
                                                   4.032E+01,,
                                    2.442E+01,
                    -3.453E+00,
            , NO
C, CR-51
                                                                    0.174
                                                   3.635E+00,,
                                    2.181E+00,
                     6.310E-01,
            , NO
C, MN-54
                                                                   -0.328
                                                   3.176E+00,,
                                    1.977E+00,
                    -1.041E+00,
C, CO-57
            , NO
                                                                   -0.660
                                                   3.858E+00,,
                                    2.490E+00,
            , NO
                    -2.544E+00,
C, CO-58
                                                                     0.543
                                                   8.848E+00,,
                     4.804E+00,
                                    5.086E+00,
C, FE-59
            , NO
                                                                     0.140
                                                   4.312E+00,,
                                    2.745E+00,
                     6.034E-01,
            , NO
C,CO-60
                                                                     0.276
                                                   8.080E+00,,
                                    4.780E+00,
                     2.227E+00,
            , NO
C, ZN-65
                                                                    -0.425
                                                   4.828E+00,,
                                    3.041E+00,
                    -2.050E+00,
            , NO
C, SE-75
                                                   5.762E+00,,
                                                                     3.138
                     1.808E+01,
                                    2.952E+00,
            , NO
C, SR-85
                                                                    -0.151
                                                   4.332E+00,,
                                    2.701E+00,
                    -6.529E-01,
            , NO
C, Y-88
                                                                     0.235
                                                   3.523E+00,,
                                    2.080E+00,
                     8.291E-01,
C, NB-94
            , NO
                                                                     0.080
                                                   3.791E+00,,
                                    2.280E+00,
                     3.017E-01,
            ,NO
C, NB-95
                                                                     0.100
                                                   6.965E+00,,
                                    4.177E+00,
                     6.969E-01,
            , NO
C, ZR-95
                                                                    -0.507
                                                   5.957E+02,,
                                    3.768E+02,
                    -3.021E+02,
C, MO-99
            , NO
                                                    4.473E+00,,
                                                                     0.397
                                     2.622E+00,
                     1.776E+00,
            , NO
C, RU-103
                                                                    -0.650
                                                    3.235E+01,,
                                     2.088E+01,
                    -2.104E+01,
            , NO
C, RU-106
                                                                     0.329
                                     2.162E+00,
                                                    3.617E+00,,
                     1.192E+00,
            , NO
 C, AG-110m
                                                                    -0.088
                                                    4.766E+00,,
                                     2.927E+00,
                    -4.186E-01,
            , NO
 C,SN-113
                                                                    -1.774
                                                    4.133E+00,,
                                     6.863E+00,
                    -7.331E+00,
            ,NO
 C,SB-124
                                                    1.004E+01,,
                                                                    -0.375
                                     6.327E+00,
                     -3.768E+00,
             , NO
 C,SB-125
                                                                     0.628
                                                    5.114E+01,,
                                     3.014E+01,
 C, TE-129M , NO
                      3.209E+01,
                                                    9.852E+00,,
                                                                    -0.275
                     -2.707E+00,
                                     6.093E+00,
 C, I-131
             , NO
                                                                     0.626
                                                    4.810E+00,,
                                     3.269E+00,
                      3.011E+00,
             , NO
 C,BA-133
                                                    3.909E+00,,
                                                                    -0.289
                                     4.098E+00,
                     -1.128E+00,
 C, CS-134
             , NO
                                                    6.718E+00,,
                                                                     0.208
                                     4.010E+00,
                      1.400E+00,
 C, CS-136
             , NO
                                                                     0.233
                                                    3.904E+00,,
                                     2.354E+00,
                      9.091E-01,
 C, CS-137
             , NO
                                                                    -0.113
                                                    3.353E+00,,
                                     2.021E+00,
                     -3.787E-01,
 C, CE-139
             ,NO
                                                                     0.326
                                                    2.377E+01,,
                                     1.403E+01,
                      7.754E+00,
             , NO
 C, BA-140
                                                                    -0.098
                                                    7.751E+00,,
                                     4.735E+00,
             , NO
                     -7.562E-01,
 C, LA-140
                                                                     0.351
                                                    6.998E+00,,
                                     4.977E+00,
                      2.456E+00,
             , NO
 C, CE-141
                                                                    -0.306
                                                    2.478E+01,,
                                     1.740E+01,
                     -7.593E+00,
             , NO
 C, CE-144
                                                                     -0.677
                                                    1.049E+01,,
                                     7.590E+00,
                     -7.108E+00,
 C, EU-152
             , NO
                                                    6.530E+00,,
                                                                     -0.265
                                     4.055E+00,
                     -1.729E+00,
             , NO
 C, EU-154
                                                                      0.302
                                                    6.798E+00,,
                                     4.226E+00,
                      2.055E+00,
             , NO
 C, TH-228
                                                                      0.296
                                                    2.449E+01,,
                                     1.746E+01,
                      7.242E+00,
 C, U-235
             , NO
                                                                      0.172
                                                    4.050E+02,,
                                     2.404E+02,
                      6.968E+01,
 C, U-238
             , NO
                                                                     -0.229
                                                    3.337E+01,,
```

2.163E+01,

-7.655E+00,

, NO

C, AM-241

Sec. Review: Analyst:

LIMS:

_______ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 05:25:02.23 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 12-JUN-2006 23:24:51.25

_____ LIMS No., Customer Name, Client ID: WG L28851-2 EX DRES

Smple Date: 31-MAY-2006 10:40:00. : 07L28851-2 Sample ID

Geometry : 073L082504 : WG Sample Type BKGFILE : 07BG060306MT : 3.13180E+00 L Quantity Start Channel: 40 Energy Tol: 1.00000 Real Time: 0 06:00:04.13 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 06:00:00.00 MDA Constant : 0.00 Library Used: LIBD

Pk It	Energy	Area	Bkgnd	FWHM Channel	%Eff	Cts/Sec	%Err	Fit
1 1 2 1 3 1 4 1	66.32* 175.25 198.38* 596.31	215 100 176 82	354 474	1.18 133.20 1.33 351.25 0.95 397.53 1.74 1193.80	2.33E+00 2.25E+00	4.62E-03 8.15E-03	32.8 26.3	1.04E+00 7.53E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID: 07L28851-2

Acquisition date: 12-JUN-2006 23:24:51

Total number of lines in spectrum

4 4

Number of unidentified lines

0.00%

Number of lines tentatively identified by NID 0

**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found

"M" = Manually accepted

"E" = Manually edited

"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 07L28851-2

Page: 3 Acquisition date : 12-JUN-2006 23:24:51

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1	66.32 175.25 198.38 596.31	215 100 176 82	354 474	1.18 1.33 0.95 1.74	351.25 397.53	348 394	7 9	9.97E-03 4.62E-03 8.15E-03 3.78E-03	65.7 52.6	2.33E+00 2.25E+00)

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum Number of unidentified lines 4 Number of lines tentatively identified by NID 0 0.00% **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted

"A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125	1.119E+01 -2.209E+00 8.035E+00 -3.653E+01 1.328E+00 -6.868E-01 -9.974E-01 5.916E-01 -4.378E-02 3.283E+00 -1.044E+00 2.076E+01 -1.413E+00 -1.255E-01 -5.844E-01 -1.174E-01 -2.787E+01 2.558E+00 -1.337E+00 -3.266E-02 -8.878E-01 -4.221E+00 6.717E-01	1.859E+01 1.188E+00 2.896E+01 2.152E+01 1.961E+00 1.843E+00 2.087E+00 4.220E+00 1.951E+00 3.942E+00 2.764E+00 2.671E+00 2.671E+00 2.332E+00 1.970E+00 3.627E+00 3.627E+00 3.435E+02 2.399E+00 1.805E+01 1.865E+01 2.570E+00 2.917E+00 5.652E+00	3.097E+01 Half-Life too 4.905E+01 3.403E+01 3.343E+00 2.986E+00 3.375E+00 7.044E+00 3.181E+00 6.826E+00 4.466E+00 5.289E+00 3.686E+00 3.206E+00 3.328E+00 5.564E+02 4.055E+00 2.959E+01 3.054E+00 4.181E+00 3.728E+00 9.301E+00	0.000E+00 0 short 0.000E+00	0.361 0.164 -1.074 0.397 -0.230 -0.296 0.084 -0.014 0.481 -0.234 3.924 -0.383 -0.039 -0.176 -0.020 -0.050 0.631 -0.045 -0.011 -0.212 -1.132 0.072
TE-129M	1.404E+01	2.808E+01	4.667E+01	0.000E+00	0.301

I-131	3.688E+00	5.627E+00 2.657E+00	9.500E+00 4.505E+00	0.000E+00 0.000E+00	0.388 0.468
BA-133 CS-134	2.110E+00 -1.640E+00	2.158E+00	3.461E+00	0.000E+00	-0.474
CS-136	-1.031E+00	3.440E+00	5.605E+00	0.000E+00	-0.184
CS-137	8.700E-01	2.021E+00	3.376E+00	0.000E+00	0.258 0.040
CE-139	1.272E-01	1.928E+00	3.171E+00	0.000E+00 0.000E+00	0.308
BA-140	6.818E+00	1.308E+01	2.215E+01 6.850E+00	0.000E+00	-0.194
LA-140	-1.327E+00	4.264E+00 4.211E+00	6.576E+00	0.000E+00	-1.038
CE-141 CE-144	-6.823E+00 -1.330E+01	1.521E+01	2.428E+01	0.000E+00	-0.548
EU-152	-1.667E+01	6.086E+00	9.247E+00	0.000E+00	-1.803
EU-154	-1.419E+00	3.769E+00	6.103E+00	0.000E+00	-0.233
RA-226	5.691E-01	4.908E+01	7.915E+01	0.000E+00	0.007 -0.434
AC-228	-5.452E+00	8.368E+00	1.257E+01	0.000E+00 0.000E+00	0.819
TH-228	5.233E+00	3.885E+00	6.386E+00 1.252E+01	0.000E+00	-0.434
TH-232	-5.429E+00	8.333E+00 1.483E+01	2.372E+01	0.000E+00	-0.397
U-235	-9.411E+00 4.282E+01	2.025E+02	3.344E+02	0.000E+00	0.128
U-238 AM-241	-3.597E+01	1.963E+01	2.755E+01	0.000E+00	-1.305

```
3.132E+00,WG L28851-2 EX
                    ,06/13/2006 05:25,05/31/2006 10:40,
A,07L28851-2
                                             ,06/07/2006 09:32,073L082504
                     ,LIBD
B,07L28851-2
                                                   3.097E+01,,
                                                                    0.361
                                    1.859E+01,
           , NO
                    1.119E+01,
C, BE-7
                                                                    0.164
                                                   4.905E+01,,
                                    2.896E+01,
           ,NO
                     8.035E+00,
C, K-40
                                                                   -1.074
                                                   3.403E+01,,
                   -3.653E+01,
                                    2.152E+01,
C, CR-51
           , NO
                                                   3.343E+00,,
                                                                    0.397
                                    1.961E+00,
                     1.328E+00,
           , NO
C, MN-54
                                                                   -0.230
                                    1.843E+00,
                                                   2.986E+00,,
                    -6.868E-01,
C, CO-57
           , NO
                                                   3.375E+00,,
                                                                   -0.296
                                    2.087E+00,
                    -9.974E-01,
C, CO-58
            , NO
                                                   7.044E+00,,
                                                                    0.084
                                    4.220E+00,
                     5.916E-01,
C, FE-59
            , NO
                                                                   -0.014
                                                   3.181E+00,,
                                    1.951E+00,
            , NO
C, CO-60
                    -4.378E-02,
                                                   6.826E+00,,
                                                                    0.481
                                    3.942E+00,
                     3.283E+00,
            , NO
C, ZN-65
                                                                   -0.234
                                    2.764E+00,
                                                   4.466E+00,,
            ,NO
                    -1.044E+00,
C, SE-75
                                                   5.289E+00,,
                                                                    3.924
                                    2.671E+00,
                     2.076E+01,
            , NO
C,SR-85
                                                   3.686E+00,,
                                                                   -0.383
                                    2.332E+00,
C, Y-88
                    -1.413E+00,
            , NO
                                                                   -0.039
                                                   3.206E+00,,
                                    1.970E+00,
                    -1.255E-01,
C, NB-94
            , NO
                                                                   -0.176
                                                   3.328E+00,,
                                    2.031E+00,
                    -5.844E-01,
            , NO
C, NB-95
                                                                   -0.020
                                                   5.880E+00,,
                    -1.174E-01,
                                    3.627E+00,
            , NO
C, ZR-95
                                                                   -0.050
                                                   5.564E+02,,
                                    3.435E+02,
                    -2.787E+01,
C, MO-99
            , NO
                                                   4.055E+00,,
                                                                    0.631
                                    2.399E+00,
                     2.558E+00,
            , NO
C,RU-103
                                                                   -0.045
                                                   2.959E+01,,
                                    1.805E+01,
            , NO
                    -1.337E+00,
C, RU-106
                                                                   -0.011
                                                   3.054E+00,,
                                    1.865E+00,
                    -3.266E-02,
C, AG-110m , NO
                                                                   -0.212
                                    2.570E+00,
                                                   4.181E+00,,
                    -8.878E-01,
            ,NO
C, SN-113
                                                                   -1.132
                                                   3.728E+00,,
                                    2.917E+00,
                    -4.221E+00,
C,SB-124
            , NO
                                                   9.301E+00,,
                                                                     0.072
                                    5.652E+00,
            , NO
                     6.717E-01,
C,SB-125
                                                                     0.301
                                                   4.667E+01,,
                                    2.808E+01,
                     1.404E+01,
            , NO
C, TE-129M
                                                                     0.388
                                                   9.500E+00,,
                                    5.627E+00,
            , NO
                     3.688E+00,
C, I-131
                                                                     0.468
                                    2.657E+00,
                                                   4.505E+00,,
                     2.110E+00,
C, BA-133
            , NO
                                                                    -0.474
                                                   3.461E+00,,
                    -1.640E+00,
                                    2.158E+00,
C, CS-134
            ,NO
                                                                    -0.184
                                                    5.605E+00,,
                                    3.440E+00,
            , NO
                    -1.031E+00,
C, CS-136
                                                                     0.258
                                                    3.376E+00,,
                                    2.021E+00,
                     8.700E-01,
C, CS-137
            , NO
                                                                     0.040
                                                    3.171E+00,,
                                    1.928E+00,
                     1.272E-01,
 C, CE-139
            , NO
                                                                     0.308
                                                    2.215E+01,,
                                    1.308E+01,
            ,NO
                     6.818E+00,
 C, BA-140
                                                    6.850E+00,,
                                                                    -0.194
                    -1.327E+00,
                                    4.264E+00,
            , NO
 C, LA-140
                                                                    -1.038
                                                    6.576E+00,,
                                    4.211E+00,
            , NO
                    -6.823E+00,
 C, CE-141
                                                                    -0.548
                                                    2.428E+01,,
                                    1.521E+01,
                    -1.330E+01,
             , NO
 C, CE-144
                                                                    -1.803
                                                    9.247E+00,,
             , NO
                                     6.086E+00,
                    -1.667E+01,
 C, EU-152
                                                                    -0.233
                                                    6.103E+00,,
                                     3.769E+00,
                    -1.419E+00,
 C, EU-154
            , NO
                                                                     0.007
                                                    7.915E+01,,
                                     4.908E+01,
                      5.691E-01,
 C, RA-226
             , NO
                                                    1.257E+01,,
                                                                    -0.434
                     -5.452E+00,
                                     8.368E+00,
             , NO
 C, AC-228
                                                    6.386E+00,,
                                                                     0.819
                                     3.885E+00,
             , NO
                      5.233E+00,
 C, TH-228
                                                    1.252E+01,,
                                                                    -0.434
                                     8.333E+00,
                     -5.429E+00,
             , NO
 C, TH-232
                                                                    -0.397
                                                    2.372E+01,,
                                     1.483E+01,
                     -9.411E+00,
 C, U-235
             , NO
                                                                     0.128
                                                    3.344E+02,,
                                     2.025E+02,
             , NO
                      4.282E+01,
 C, U-238
                                                                    -1.305
                                                    2.755E+01,,
```

1.963E+01,

-3.597E+01,

C, AM-241

, NO

Sec. Review:

LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 07:25:06.52 TBE10 12892256 HpGe ******* Aquisition Date/Time: 12-JUN-2006 23:24:56.75

LIMS No., Customer Name, Client ID: WG L28851-3 EX DRES

Smple Date: 31-MAY-2006 11:40:00. Sample ID : 10L28851-3

Geometry : 103L083004 Sample Type : WG BKGFILE : 10BG060306MT Quantity : 3.01390E+00 L

End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 08:00:00.00 MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.29*	225	975	1.51	131.70	7.26E-01	7.80E-03	27.1	3.72E+00
2	1	140.05	253	744	1.45	279.28	1.91E+00	8.78E-03	19.5	1.97E+00
3	1	185.89*	35	800	1.59	370.99	1.77E+00	1.23E-031	74.6	1.36E+00
4	1	198.60*	210	837	1.49	396.44	1.71E+00	7.30E-03	31.0	1.98E+00
5	1	583.02*	36	156	2.00	1165.71	7.99E-01	1.25E-03	87.4	1.35E+00
6	1	595.63	141	172	2.24	1190.94	7.86E-01	4.90E-03	20.4	3.33E+00
7	1	609.58*	36	148	1.89	1218.85	7.72E-01	1.25E-03	81.7	1.78E+00
8	1	1121.52	51	122	4.96	2243.54	4.78E-01	1.77E-03	51.6	4.18E+00
9	1	1461.35*	15	93	1.91	2923.85	3.88E-01	5.19E-041	.93.3	1.89E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

	-71				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	15	10.67*	3.885E-01	1.122E+01	1.122E+01	386.62
RA-226	186.21	35	3.28*	1.770E+00	1.897E+01	1.897E+01	349.12
U-235	143.76		10.50*	1.905E+00	Li	ic ivoc i ouiiu	
	163.35		4.70	1.860E+00	Li:	ne Not Found	
	185.71	35	54.00	1.770E+00	1.152E+00	1.152E+00	349.12
	205.31		4.70	1.684E+00	Li:	ne Not Found	

Page : 2 Summary of Nuclide Activity

Acquisition date: 12-JUN-2006 23:24:56 Sample ID : 10L28851-3

Total number of lines in spectrum Number of unidentified lines 9 6

Number of lines tentatively identified by NID 33.33% 3

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	_
Nuclide	Hlife	Decay	pCi/L		2-Sigma Error		Flags
K-40	1.28E+09Y	1.00	1.122E+01	1.122E+01	4.339E+01	386.62	
RA-226	1600.00Y	1.00	1.897E+01	1.897E+01	6.623E+01	349.12	
	7.04E+08Y	1.00	1.152E+00	1.152E+00	4.023E+00	349.12	K
				2 1255.01			

Total Activity : 3.135E+01 3.135E+01

Grand Total Activity: 3.135E+01 3.135E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 10L28851-3 Page: 3
Acquisition date: 12-JUN-2006 23:24:56

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1	66.29 140.05	225 253	975 744	1.51 1.45	131.70 279.28	276	8	7.80E-03 8.78E-03	39.1	7.26E-01 1.91E+00	
1	198.60	210	837	1.49	396.44	391	12	7.30E-03	62.0	1.71E+00	
1	583.02	36	156	2.00	1165.71	1159	13	1.25E-03	****	7.99E-01	${f T}$
1	595.63	141	172	2.24	1190.94	1186	12	4.90E-03	40.7	7.86E-01	
1	609.58	36	148	1.89	1218.85	1214	10	1.25E-03	* * * *	7.72E-01	
1	1121.52	51	122	4.96	2243.54	2235	17	1.77E-03	***	4.78E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 9
Number of unidentified lines 6
Number of lines tentatively identified by NID 3

Number of lines tentatively identified by NID 3 33.33%

Nuclide Type : natural

 Wtd Mean
 Wtd Mean

 Uncorrected
 Decay Corr
 Decay Corr
 2-Sigma

 Nuclide
 Hlife
 Decay
 pCi/L
 2-Sigma Error %Error Flags

 K-40
 1.28E+09Y
 1.00
 1.122E+01
 4.339E+01
 386.62

 RA-226
 1600.00Y
 1.00
 1.897E+01
 1.897E+01
 6.623E+01
 349.12

 Total Activity:
 3.019E+01
 3.019E+01

Grand Total Activity: 3.019E+01 3.019E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226	1.122E+01 1.897E+01	4.339E+01 6.623E+01	3.587E+01 8.887E+01	0.000E+00 0.000E+00	0.313 0.213

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
BE-7	8.698E+00	2.175E+01	3.657E+01	0.000E+00	0.238
NA-24	-1.137E+00	1.459E+00	Half-Life toc	short	

~~~ ~~ ~	0 2075.01	2.646E+01	4.250E+01	0.000E+00	-0.564
CR-51	-2.397E+01	2.184E+00	3.634E+00	0.000E+00	0.105
MN-54	3.815E-01	2.104E+00 2.274E+00	3.759E+00	0.000E+00	-0.028
CO-57	-1.060E-01	2.428E+00	3.971E+00	0.000E+00	-0.138
CO-58	-5.490E-01	5.101E+00	8.593E+00	0.000E+00	0.174
FE-59	1.494E+00	2.211E+00	3.709E+00	0.000E+00	0.206
CO-60	7.630E-01	5.778E+00	7.966E+00	0.000E+00	-0.092
ZN-65	-7.344E-01	3.197E+00	5.310E+00	0.000E+00	0.045
SE-75	2.367E-01	3.197E+00 2.923E+00	5.626E+00	0.000E+00	3.381
SR-85	1.902E+01	2.518E+00	4.034E+00	0.000E+00	-0.161
Y-88	-6.488E-01		3.522E+00	0.000E+00	0.317
NB-94	1.117E+00	2.116E+00	3.946E+00	0.000E+00	0.095
NB-95	3.759E-01	2.363E+00	6.886E+00	0.000E+00	-0.027
ZR-95	-1.884E-01	4.159E+00	6.087E+02	0.000E+00	-0.041
MO-99	-2.474E+01	3.676E+02	4.688E+00	0.000E+00	0.170
RU-103	7.955E-01	2.805E+00	4.688E+00 3.340E+01	0.000E+00	-0.503
RU-106	-1.681E+01	2.140E+01	3.612E+00	0.000E+00	0.091
AG-110m	3.296E-01	2.198E+00		0.000E+00	-0.329
SN-113	-1.665E+00	3.156E+00	5.061E+00	0.000E+00	-0.928
SB-124	-3.733E+00	6.352E+00	4.022E+00	0.000E+00	-0.165
SB-125	-1.763E+00	6.629E+00	1.067E+01	0.000E+00	0.237
TE-129M	1.236E+01	3.100E+01	5.222E+01	0.000E+00	0.314
I-131	3.480E+00	6.678E+00	1.110E+01	0.000E+00	0.514
BA-133	2.732E+00	3.188E+00	5.348E+00		-0.199
CS-134	-7.660E-01	5.625E+00	3.844E+00	0.000E+00	-0.194
CS-136	-1.275E+00	4.030E+00	6.555E+00	0.000E+00	0.106
CS-137	4.159E-01	2.385E+00	3.922E+00	0.000E+00	0.106
CE-139	1.200E+00	2.337E+00	3.866E+00	0.000E+00	
BA-140	4.188E+00	1.534E+01	2.555E+01	0.000E+00	0.164
LA-140	5.800E+00	5.070E+00	9.017E+00	0.000E+00	0.643
CE-141	4.707E+00	5.669E+00	8.095E+00	0.000E+00	0.581
CE-144	1.186E+00	2.054E+01	2.882E+01	0.000E+00	0.041
EU-152	-1.158E+01	7.397E+00	1.161E+01	0.000E+00	-0.998
EU-154	2.093E+00	4.623E+00	7.705E+00	0.000E+00	0.272
AC-228	2.972E+00	9.315E+00	1.423E+01	0.000E+00	0.209
TH-228	-1.949E+00	4.679E+00	7.184E+00	0.000E+00	-0.271
TH-232	2.960E+00	9.277E+00	1.417E+01	0.000E+00	0.209
U-235	3.737E+01	2.042E+01	2.989E+01	0.000E+00	1.250
U-238	1.948E+02	2.310E+02	3.950E+02	0.000E+00	0.493
AM-241	-2.865E+01	2.160E+01	2.998E+01	0.000E+00	-0.955

```
3.014E+00,WG L28851-3 EX
                     ,06/13/2006 07:25,05/31/2006 11:40,
A,10L28851-3
                                             ,06/07/2006 09:32,103L083004
                     ,LIBD
B,10L28851-3
                                                                    0.313
                                                   3.587E+01,,
                                    4.339E+01,
           ,YES,
                    1.122E+01,
C, K-40
                                                                    0.213
                                                   8.887E+01,,
                    1.897E+01,
                                    6.623E+01,
            ,YES,
C, RA-226
                                                   3.657E+01,,
                                                                    0.238
                                    2.175E+01,
            , NO
                     8.698E+00,
C, BE-7
                                                   4.250E+01,,
                                                                   -0.564
                                    2.646E+01,
                   -2.397E+01,
            ,NO
C, CR-51
                                                   3.634E+00,,
                                                                    0.105
                     3.815E-01,
                                    2.184E+00,
            , NO
C, MN-54
                                                                   -0.028
                                                   3.759E+00,,
                                    2.274E+00,
C, CO-57
            , NO
                    -1.060E-01,
                                                                   -0.138
                                                   3.971E+00,,
            , NO
                    -5.490E-01,
                                    2.428E+00,
C, CO-58
                                                                    0.174
                     1.494E+00,
                                    5.101E+00,
                                                   8.593E+00,,
            , NO
C, FE-59
                                                   3.709E+00,,
                                                                    0.206
                                    2.211E+00,
                     7.630E-01,
C, CO-60
            , NO
                                                                   -0.092
                                                   7.966E+00,,
                                    5.778E+00,
                    -7.344E-01,
C, ZN-65
            , NO
                                                                    0.045
                                                   5.310E+00,,
                                    3.197E+00,
C, SE-75
            , NO
                     2.367E-01,
                                                                    3.381
                                                   5.626E+00,,
                     1.902E+01,
                                    2.923E+00,
C, SR-85
            , NO
                                                                   -0.161
                                                   4.034E+00,,
                    -6.488E-01,
                                    2.518E+00,
C, Y-88
            ,NO
                                    2.116E+00,
                                                   3.522E+00,,
                                                                    0.317
                     1.117E+00,
            ,NO
C, NB-94
                                                   3.946E+00,,
                                                                    0.095
                                    2.363E+00,
                     3.759E-01,
            , NO
C, NB-95
                                                                   -0.027
                                                   6.886E+00,,
                                    4.159E+00,
                    -1.884E-01,
C, ZR-95
            ,NO
                                                                   -0.041
                                                   6.087E+02,,
            , NO
                    -2.474E+01,
                                    3.676E+02,
C, MO-99
                                                                    0.170
                                                   4.688E+00,,
                     7.955E-01,
                                    2.805E+00,
C, RU-103
            , NO
                                                                   -0.503
                                    2.140E+01,
                                                   3.340E+01,,
                    -1.681E+01,
            ,NO
C, RU-106
                                                   3.612E+00,,
                                                                     0.091
                                    2.198E+00,
                     3.296E-01,
C, AG-110m , NO
                                                                   -0.329
                                                   5.061E+00,,
                                    3.156E+00,
                    -1.665E+00,
            , NO
C,SN-113
                                                                   -0.928
                                                   4.022E+00,,
                                    6.352E+00,
                    -3.733E+00,
C,SB-124
            , NO
                                                                   -0.165
                    -1.763E+00,
                                    6.629E+00,
                                                   1.067E+01,,
            , NO
C,SB-125
                                                                     0.237
                                    3.100E+01,
                                                   5.222E+01,,
                     1.236E+01,
            , NO
C, TE-129M
                                                   1.110E+01,,
                                                                     0.314
                                    6.678E+00,
C, I-131
            , NO
                     3.480E+00,
                                                                     0.511
                                                   5.348E+00,,
                                    3.188E+00,
C, BA-133
            , NO
                     2.732E+00,
                                                                    -0.199
                                                   3.844E+00,,
                                    5.625E+00,
            , NO
                    -7.660E-01,
C, CS-134
                                                                    -0.194
                                                   6.555E+00,,
                                    4.030E+00,
            , NO
                    -1.275E+00,
C, CS-136
                                                   3.922E+00,,
                                                                     0.106
            , NO
                                    2.385E+00,
                     4.159E-01,
C, CS-137
                                                                     0.310
                                    2.337E+00,
                                                   3.866E+00,,
                     1.200E+00,
            , NO
C, CE-139
                                                   2.555E+01,,
                                                                     0.164
                                    1.534E+01,
C, BA-140
            , NO
                     4.188E+00,
                                                                     0.643
                                                   9.017E+00,,
                                    5.070E+00,
                     5.800E+00,
C, LA-140
            , NO
                                                                     0.581
                                                   8.095E+00,,
            , NO
                                    5.669E+00,
                     4.707E+00,
C, CE-141
                                                   2.882E+01,
                                                                     0.041
                                    2.054E+01,
            , NO
                     1.186E+00,
C, CE-144
                                                   1.161E+01,,
                                                                    -0.998
                    -1.158E+01,
                                    7.397E+00,
            , NO
 C, EU-152
                                                    7.705E+00,,
                                                                     0.272
                                    4.623E+00,
            , NO
                      2.093E+00,
 C, EU-154
                                                                     0.209
                                                    1.423E+01,,
            , NO
                     2.972E+00,
                                    9.315E+00,
 C,AC-228
                                                    7.184E+00,,
                                                                    -0.271
                                    4.679E+00,
            , NO
                    -1.949E+00,
 C, TH-228
                                                                     0.209
                                                    1.417E+01,,
                                     9.277E+00,
 C, TH-232
                      2.960E+00,
            , NO
                                                    2.989E+01,,
                                                                     1.250
                                     2.042E+01,
                      3.737E+01,
 C, U-235
            ,NO
                                                                     0.493
                                     2.310E+02,
                                                    3.950E+02,,
                      1.948E+02,
            , NO
 C, U-238
                                                                    -0.955
                                                    2.998E+01,,
                                     2.160E+01,
```

-2.865E+01,

C, AM-241

, NO

LIMS: Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 07:25:23.22 TBE11 P-20610B HpGe ******** Aquisition Date/Time: 12-JUN-2006 23:25:00.29

LIMS No., Customer Name, Client ID: WG L28851-4 EX DRES

Smple Date: 31-MAY-2006 13:30:00. : 11L28851-4 Sample ID

: WG

: 1135L090204 Geometry Sample Type : 11BG060306MT BKGFILE : 3.42020E+00 L Ouantity Real Time : 0 08:00:10.02 Energy Tol : 1.00000 Start Channel : 40 Live time : 0 08:00:00.00

Pk Srch Sens: 5.00000 : 4090 End Channel Library Used: LIBD MDA Constant : 0.00

Fit Cts/Sec %Err %Eff FWHM Channel Bkgnd Area Pk It Energy 1.28E+00 1.46E-04**** 184.53 2.10 92.68* 701 4 1 0 1.69E+00 4.71E-03 42.1 1.20 279.31 136 779 0 139.94* 1.62E+00 2.05E-03 89.8 1.14 370.54 3 0 185.43* 59 608 1.57E+00 5.96E-03 24.9 1.20 396.63 172 555 4 0 198.44 1.42E+00 5.92E-07**** 1.02 476.89 0 466 5 238.47* 0 704.88 1.08E+00 1.16E-03130.0 352 1.52 33 6 0 352.21* 7.15E-01 1.96E-03 52.8 0.84 1192.55 223 7 0 595.66 57 7.02E-01 2.33E-03 49.2 1.83 1219.44 609.09* 67 181 8 0 6.19E-01 2.65E-03 32.0 3.79 1434.49 76 116 9 0 716.52 5.13E-01 1.63E-03 65.8 1.60 1825.10 109 911.75* 47 0 10 3.54E-01 9.17E-04 98.2 77 1.50 2921.37 1460.43* 26 11 0 3.04E-01 1.60E-03 28.3 1.77 3521.76 33 12 1761.39 46

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Sigma pCi/L %Error pCi/L %Eff %Abn Nuclide Energy Area 196.47 1.919E+01 3.540E-01 1.919E+01 10.67* 26 1460.81 K-40179.57 3.052E+01 3.052E+01 1.617E+00 3.28* 186.21 59 RA-226 Line Not Found _____ 1.75 5.493E-01 835.50 AC-228 131.69 9.095E+00 9.057E+00 5.133E-01 47 27.70* 911.07 7.382E-04 7.474E-04564692.25 44.60* 1.422E+00 238.63 0 TH-228 Line Not Found 3.95 1.413E+00 240.98 Line Not Found 1.695E+00 10.50* U-235 143.76 Line Not Found 1.678E+00 _____ 163.35 _____ 4.70 179.57 1.854E+00 1.617E+00 1.854E+00 59 54.00 185.71 Line Not Found 4.70 1.546E+00 205.31

Page: 2

Summary of Nuclide Activity
Sample ID: 11L28851-4

Acquisition date: 12-JUN-2006 23:25:00

12

Total number of lines in spectrum Number of unidentified lines

8

Number of lines tentatively identified by NID

33.33%

Nuclide Type : natural

			Uncorrected	Decay Corr		2-Sigma	
Nuclide K-40 RA-226 AC-228	Hlife 1.28E+09Y 1600.00Y 5.75Y	Decay 1.00 1.00	pCi/L 1.919E+01 3.052E+01	pCi/L 1.919E+01 3.052E+01 9.095E+00	2-Sigma Error 3.770E+01 5.480E+01 11.98E+00	196.47 179.57 131.69	Flags
TH-228 U-235	1.91Y 7.04E+08Y	1.01 1.00	7.382E-04 1.854E+00	7.474E-04 1.854E+00	***********56	179.57	K

Total Activity : 6.062E+01 6.065E+01

Grand Total Activity: 6.062E+01 6.065E+01

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 11L28851-4 Page: 3
Acquisition date: 12-JUN-2006 23:25:00

Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0 0 0 0 0	92.68 139.94 198.44 352.21 595.66 609.09 716.52 1761.39	4 136 172 33 57 67 76 46	701 779 555 352 223 181 116 33	2.10 1.20 1.52 0.84 1.83 3.79	1219.44 1434.49	1187 1212 1427	9 8 11 11 12 14	1.46E-04 4.71E-03 5.96E-03 1.16E-03 1.96E-03 2.33E-03 2.65E-03 1.60E-03	84.3 49.8 **** 98.3 63.9	1.28E+00 1.69E+00 1.57E+00 1.08E+00 7.15E-01 7.02E-01 6.19E-01 3.04E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 12
Number of unidentified lines 8
Number of lines tentatively identified by NID 4 33.33%

Nuclide Type : natural

MOTIGO	1750 1 11010		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error		riags
K-40	1.28E+09Y	1.00	1.919E+01	1.919E+01	3.770E+01	196.47	
RA-226	1600.00Y	1.00	3.052E+01	3.052E+01	5.480E+01	179.57	
AC-228	5.75Y	1.00	9.057E+00	9.095E+00	11.98E+00	131.69	
TH-228	1.91Y	1.01	7.382E-04	7.474E-04	**********	4692.25	
	Total Act	ivity :	5.876E+01	5.880E+01			

Grand Total Activity: 5.876E+01 5.880E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	1.919E+01	3.770E+01	3.124E+01	0.000E+00	0.614
RA-226	3.052E+01	5.480E+01	8.322E+01	0.000E+00	0.367
AC-228	9.095E+00	1.198E+01	1.241E+01	0.000E+00	0.733
TH-228	7.474E-04	4.221E+00	6.342E+00	0.000E+00	0.000

Non-Identified Nuclides ----

Nuclide	Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
חם ס	-1.228E+00		2.135E+01	3.476E+01	0.000E+00	-0.035
BE-7	5.063E-02		1.271E+00	Half-Life too	short	
NA-24	-1.916E+01		2.397E+01	3.880E+01	0.000E+00	-0.494
CR-51	-3.029E-01		2.115E+00	3.438E+00	0.000E+00	-0.088
MN-54	-7.052E-01		2.148E+00	3.519E+00	0.000E+00	-0.200
CO-57	-8.803E-01		2.338E+00	3.764E+00	0.000E+00	-0.234
CO-58	4.289E+00		4.761E+00	8.259E+00	0.000E+00	0.519
FE-59	4.289E+00 6.497E-01		2.158E+00	3.609E+00	0.000E+00	0.180
CO-60			4.644E+00	7.780E+00	0.000E+00	0.141
ZN-65	1.100E+00		2.957E+00	4.924E+00	0.000E+00	0.019
SE-75	9.460E-02		2.819E+00	5.411E+00	0.000E+00	3.503
SR-85	1.896E+01		2.694E+00	4.301E+00	0.000E+00	-0.253
Y-88	-1.090E+00		2.087E+00	3.367E+00	0.000E+00	-0.135
NB-94	-4.538E-01		2.352E+00	4.075E+00	0.000E+00	0.701
NB-95	2.856E+00		4.217E+00	6.944E+00	0.000E+00	0.016
ZR-95	1.138E-01		3.699E+02	5.960E+02	0.000E+00	-0.289
MO-99	-1.721E+02		2.734E+00	4.708E+00	0.000E+00	0.959
RU-103	4.514E+00		2.734E+00 2.036E+01	3.265E+01	0.000E+00	-0.508
RU-106	-1.660E+01		2.168E+00	3.634E+00	0.000E+00	0.193
AG-110m	7.010E-01		2.166E+00 2.954E+00	4.883E+00	0.000E+00	0.113
SN-113	5.505E-01		6.326E+00	3.941E+00	0.000E+00	-1.373
SB-124	-5.411E+00		6.326E+00	1.022E+01	0.000E+00	-0.018
SB-125	-1.846E-01			5.056E+01	0.000E+00	-0.097
TE-129M	-4.894E+0C		3.111E+01	1.043E+01	0.000E+00	0.003
I-131	3.150E-02		6.327E+00	4.977E+00	0.000E+00	0.373
BA-133	1.857E+00		3.488E+00	3.856E+00	0.000E+00	0.463
CS-134	1.785E+00		3.820E+00	6.229E+00	0.000E+00	-0.050
CS-136	-3.127E-01		3.816E+00	3.963E+00	0.000E+00	0.411
CS-137	1.630E+00		2.330E+00	3.685E+00	0.000E+00	0.102
CE-139	3.762E-01		2.244E+00	2.445E+01	0.000E+00	0.239
BA-140	5.834E+00		1.482E+01	7.886E+00	0.000E+00	0.053
LA-140	4.208E-01		4.722E+00	7.886E+00 7.469E+00	0.000E+00	-0.090
CE-141	-6.741E-01		5.382E+00	7.469E+00 2.802E+01	0.000E+00	0.501
CE-144	1.403E+01		1.967E+01		0.000E+00	-1.194
EU-152	-1.308E+0		8.388E+00	1.096E+01	0.000E+00	0.078
EU-154	5.661E-0		4.401E+00	7.272E+00	0.000E+00	0.613
TH-232	9.057E+00		1.193E+01	1.478E+01	0.000E+00	1.040
U-235	2.881E+0		1.907E+01	2.770E+01	0.000E+00	0.436
U-238	1.659E+0		2.201E+02	3.807E+02	0.000E+00	-1.913
AM-241	-8.490E+0	1	2.868E+01	4.438E+01	0.0005+00	1.717

```
3.420E+00,WG L28851-4 EX
                     ,06/13/2006 07:25,05/31/2006 13:30,
A,11L28851-4
                                             ,06/07/2006 09:40,1135L090204
                     ,LIBD
B,11L28851-4
                                                                     0.614
                                    3.770E+01,
                                                   3.124E+01,,
            , YES,
                     1.919E+01,
C, K-40
                                                                     0.367
                                                   8.322E+01,,
                                    5.480E+01,
                     3.052E+01,
C, RA-226
            , YES,
                                                                     0.733
                                                   1.241E+01,,
                                    1.198E+01,
C, AC-228
            ,YES,
                     9.095E+00,
                                                                     0.000
                                                   6.342E+00,,
                                    4.221E+00,
                     7.474E-04,
            , YES,
C, TH-228
                                                                    -0.035
                                    2.135E+01,
                                                   3.476E+01,,
                    -1.228E+00,
            , NO
C,BE-7
                                                                    -0.494
                                                   3.880E+01,,
                                    2.397E+01,
                    -1.916E+01,
C, CR-51
            , NO
                                                                    -0.088
                                                   3.438E+00,,
                                    2.115E+00,
                    -3.029E-01,
C, MN-54
            , NO
                                                                    -0.200
                                                   3.519E+00,,
                                    2.148E+00,
            ,NO
C, CO-57
                    -7.052E-01,
                                                   3.764E+00,,
                                                                    -0.234
                                    2.338E+00,
                    -8.803E-01,
C, CO-58
            , NO
                                                                     0.519
                                    4.761E+00,
                                                   8.259E+00,,
            , NO
                     4.289E+00,
C, FE-59
                                                   3.609E+00,,
                                                                     0.180
                                    2.158E+00,
                     6.497E-01,
            , NO
C, CO-60
                                                                     0.141
                                    4.644E+00,
                                                   7.780E+00,,
                     1.100E+00,
C, ZN-65
            , NO
                                                   4.924E+00,,
                                                                     0.019
                                    2.957E+00,
C, SE-75
            , NO
                     9.460E-02,
                                                                     3.503
                                                    5.411E+00,,
                                    2.819E+00,
                     1.896E+01,
C, SR-85
            , NO
                                                                    -0.253
                                                    4.301E+00,,
                    -1.090E+00,
                                    2.694E+00,
            ,NO
C, Y-88
                                                                    -0.135
                                                    3.367E+00,,
                                    2.087E+00,
                    -4.538E-01,
            , NO
C, NB-94
                                                                     0.701
                                                    4.075E+00,,
                                    2.352E+00,
                     2.856E+00,
C, NB-95
            , NO
                                                    6.944E+00,,
                                                                     0.016
                                    4.217E+00,
            , NO
                     1.138E-01,
C, ZR-95
                                                                    -0.289
                                                    5.960E+02,,
                                    3.699E+02,
            ,NO
                    -1.721E+02,
C, MO-99
                                                                     0.959
                                                    4.708E+00,,
                     4.514E+00,
                                     2.734E+00,
            , NO
C, RU-103
                                                    3.265E+01,,
                                                                    -0.508
                                     2.036E+01,
            , NO
                    -1.660E+01,
C, RU-106
                                                    3.634E+00,,
                                                                     0.193
                                     2.168E+00,
                     7.010E-01,
C, AG-110m
            , NO
                                                    4.883E+00,,
                                                                     0.113
                     5.505E-01,
                                     2.954E+00,
            , NO
C,SN-113
                                                                    -1.373
                                                    3.941E+00,,
                                     6.326E+00,
                    -5.411E+00,
            , NO
C,SB-124
                                                                    -0.018
                                                    1.022E+01,,
                                     6.243E+00,
                    -1.846E-01,
C,SB-125
            , NO
                                                                    -0.097
                                                    5.056E+01,,
                                     3.111E+01,
                    -4.894E+00,
C, TE-129M
            , NO
                                                                     0.003
                                     6.327E+00,
                                                    1.043E+01,,
                      3.150E-02,
 C, I-131
            , NO
                                                    4.977E+00,,
                                                                     0.373
                                     3.488E+00,
                     1.857E+00,
            , NO
C, BA-133
                                                                      0.463
                                                    3.856E+00,,
                                     3.820E+00,
            , NO
                      1.785E+00,
 C, CS-134
                                                                    -0.050
                                                    6.229E+00,,
                                     3.816E+00,
            , NO
                     -3.127E-01,
 C, CS-136
                                                                      0.411
                                                    3.963E+00,,
                      1.630E+00,
                                     2.330E+00,
 C, CS-137
            , NO
                                                                      0.102
                                                    3.685E+00,,
                                     2.244E+00,
                      3.762E-01,
             , NO
 C, CE-139
                                                    2.445E+01,,
                                                                      0.239
                                     1.482E+01,
                      5.834E+00,
            , NO
 C,BA-140
                                                                      0.053
                                                    7.886E+00,,
                                     4.722E+00,
             , NO
                      4.208E-01,
 C, LA-140
                                                                     -0.090
                                                    7.469E+00,,
                                     5.382E+00,
                     -6.741E-01,
 C, CE-141
             , NO
                                                                      0.501
                                     1.967E+01,
                                                    2.802E+01,,
                      1.403E+01,
             , NO
 C, CE-144
                                                    1.096E+01,,
                                                                     -1.194
                                     8.388E+00,
                     -1.308E+01,
 C, EU-152
             , NO
                                                                      0.078
                                                    7.272E+00,,
                                     4.401E+00,
                      5.661E-01,
 C, EU-154
             , NO
                                                                      0.613
                                                    1.478E+01,,
                                     1.193E+01,
             , NO
                      9.057E+00,
 C, TH-232
                                                    2.770E+01,,
                                                                      1.040
                                     1.907E+01,
             , NO
                      2.881E+01,
 C, U-235
                                                                      0.436
                                                    3.807E+02,,
                                     2.201E+02,
             , NO
                      1.659E+02,
 C, U-238
                                                    4.438E+01,,
                                                                     -1.913
                                     2.868E+01,
                     -8.490E+01,
```

, NO

C,AM-241

Sec. Review:

Analyst: LIMS: 

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 05:25:32.28 TBE13 P-10727B HpGe ******* Aquisition Date/Time: 12-JUN-2006 23:25:06.88 

LIMS No., Customer Name, Client ID: WG L28851-5 EX DRES

Smple Date: 31-MAY-2006 14:30:00. : 13L28851-5 Sample ID

Geometry : 133L082404 Sample Type : WG BKGFILE : 13BG060306MT Quantity : 3.19060E+00 L 

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9	1 1 1 1 2 2 1	46.07* 66.41 139.74* 185.77* 198.57* 583.12* 595.86 599.67 609.43* 1461.61*	78 175 113 20 160 0 136 62 51	533 651 570 700 464 128 125 101 164 80	1.79 1.48 2.24	92.26 132.92 279.48 371.48 397.06 1165.92 1191.38 1199.00 1218.52 2923.62	8.31E-01 2.27E+00 2.18E+00 2.12E+00 1.04E+00 1.02E+00 1.02E+00	3.61E-03 8.09E-03 5.22E-03 9.24E-042 7.39E-03 1.47E-05 6.28E-03 2.88E-03 2.36E-03 3.02E-04	25.3 39.9 281.4 28.2 **** 18.4 31.4 65.2	1.76E+00 1.10E+00 2.56E+00 3.65E+00 3.16E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

			Uncorrected	Decay Corr	2-Sigma
ergy Area	%Abn	%Eff	pCi/L	pCi/L	%Error
<u> </u>	10.67*	5.142E-01	4.666E+00	4.666E+00	875.13
,	3.28*	2.179E+00		1.095E+01	562.80
	10.50*	2.278E+00	Li:	ne Not Found	
	4.70	2.256E+00	Li:	ne Not Found	
	54.00	2.179E+00	• • •		562.80
	4.70	2.093E+00	Li	ne Not Found	
	ergy Area 0.81 7 5.21 20 8.76 8.35 5.71 20	ergy Area %Abn 0.81 7 10.67* 5.21 20 3.28* 8.76 10.50* 8.35 4.70 5.71 20 54.00	ergy Area %Abn %Eff 0.81 7 10.67* 5.142E-01 5.21 20 3.28* 2.179E+00 8.76 10.50* 2.278E+00 8.35 4.70 2.256E+00 5.71 20 54.00 2.179E+00	Uncorrected Variation (Victorial Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contr	Uncorrected Decay Correctly Area %Abn %Eff pCi/L pCi/L pCi/L 10.81 7 10.67* 5.142E-01 4.666E+00 4.666E+00 5.21 20 3.28* 2.179E+00 1.095E+01 1.095E+01 1.095E+01 10.50* 2.278E+00 Line Not Found 3.35 4.70 2.256E+00 Line Not Found 5.71 20 54.00 2.179E+00 6.651E-01 6.651E-01

Summary of Nuclide Activity Page: 2
Sample ID: 13L28851-5 Acquisition date: 12-JUN-2006 23:25:06

Total number of lines in spectrum 10
Number of unidentified lines 6
Number of lines tentatively identified by NID 4 40.00%

Nuclide Type : natural

RA-226	1.28E+09Y 1600.00Y	1.00	4.666E+00 1.095E+01	pCi/L 4.666E+00 1.095E+01	2-Sigma Error 40.83E+00 6.163E+01		
U-235	7.04E+08Y	1.00	6.651E-01	6.651E-01	37.43E-01	562.80	K
	Total Acti	vity:	1.628E+01	1.628E+01			

Grand Total Activity: 1.628E+01 1.628E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Act/MDA

0.531

MDA error

0.000E+00

Unidentified Energy Lines Sample ID: 13L28851-5 Page: 3
Acquisition date: 12-JUN-2006 23:25:06

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	46.07	78	533	2.67	92.26	89		3.61E-03	****	1.49E-01	
1	66.41	175	651	1.31	132.92	130	7	8.09E-03	50.7	8.31E-01	
1	139.74	113	570	0.94	279.48	276	7	5.22E-03	79.8	2.27E+00	
1	198.57	160	464	1.68	397.06	393	9	7.39E-03	56.4	2.12E+00	
1	583.12	0	128	1.82	1165.92	1162	9	1.47E-05	****	1.04E+00	${f T}$
2	595.86	136	125	1.79	1191.38	1185	25	6.28E-03	36.8	1.02E+00	
2	599.67	62	101	1.48	1199.00	1185	25	2.88E-03	62.8	1.02E+00	Т
1	609.43	51	164	2.24	1218.52	1211	14	2.36E-03	****	1.01E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 10
Number of unidentified lines 6
Number of lines tentatively identified by NID 4

40.00%

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma pCi/L 2-Sigma Error %Error Flags pCi/L Nuclide Hlife Decay 40.83E+00 875.13 4.666E+00 4.666E+00 1.00 K-40 1.28E+09Y 562.80 6.163E+01 1.095E+01 1.095E+01 RA-226 1600.00Y 1.00 _____ ________ Total Activity: 1.562E+01 1.562E+01

Grand Total Activity : 1.562E+01 1.562E+01

Activity K.L. Act error

Ided

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

Nuclide

BE-7

No interference correction performed

(pCi/L)

1.721E+01

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226	4.666E+00 1.095E+01	4.083E+01 6.163E+01	3.209E+01 7.562E+01	0.000E+00 0.000E+00	0.145 0.145
Non-Ide	ntified Nuclides				
	Key-Line				

1.921E+01

MDA (pCi/L)

3.243E+01

	0 0007 01	1 1677.00	Half-Life to	a ghart	
NA-24	-3.833E-01	1.167E+00 2.215E+01	3.539E+01	0.000E+00	-0.355
CR-51	-1.254E+01	2.215E+01 2.102E+00	3.558E+00	0.000E+00	0.345
MN-54	1.227E+00		3.048E+00	0.000E+00	0.066
CO-57	2.014E-01	1.823E+00	3.755E+00	0.000E+00	0.419
CO-58	1.575E+00	2.198E+00	8.340E+00	0.000E+00	0.599
FE-59	4.993E+00	4.800E+00		0.000E+00	-0.358
CO-60	-1.255E+00	2.205E+00	3.509E+00	0.000E+00	-0.137
ZN-65	-9.860E-01	4.433E+00	7.191E+00	0.000E+00	-0.162
SE-75	-7.189E-01	2.712E+00	4.440E+00	0.000E+00	3.157
SR-85	1.656E+01	2.775E+00	5.245E+00	0.000E+00	-0.070
Y-88	-2.886E-01	2.527E+00	4.095E+00		-0.194
NB-94	-6.187E-01	1.985E+00	3.186E+00	0.000E+00	0.481
NB-95	1.747E+00	2.104E+00	3.629E+00	0.000E+00	
ZR-95	-4.158E-01	3.915E+00	6.469E+00	0.000E+00	-0.064
MO-99	2.026E+02	3.542E+02	6.042E+02	0.000E+00	0.335
RU-103	1.017E+00	2.542E+00	4.197E+00	0.000E+00	0.242
RU-106	-1.853E-01	1.844E+01	3.031E+01	0.000E+00	-0.006
AG-110m	2.931E-02	2.072E+00	3.394E+00	0.000E+00	0.009
SN-113	1.029E+00	2.619E+00	4.399E+00	0.000E+00	0.234
SB-124	2.351E+00	4.576E+00	3.678E+00	0.000E+00	0.639
SB-125	-1.623E+00	5.789E+00	9.433E+00	0.000E+00	-0.172
TE-129M	2.760E+00	2.838E+01	4.662E+01	0.000E+00	0.059
I-131	5.726E-01	5.609E+00	9.375E+00	0.000E+00	0.061
BA-133	-1.677E+00	2.671E+00	4.371E+00	0.000E+00	-0.384
CS-134	3.430E+00	4.061E+00	3.418E+00	0.000E+00	1.004
CS-136	-3.545E+00	3.700E+00	5.801E+00	0.000E+00	-0.611
CS-137	2.389E+00	2.400E+00	3.875E+00	0.000E+00	0.616
CE-139	4.134E-01	1.915E+00	3.153E+00	0.000E+00	0.131
BA-140	4.873E+00	1.347E+01	2.273E+01	0.000E+00	0.214
LA-140	3.514E+00	4.349E+00	7.628E+00	0.000E+00	0.461
CE-141	3.041E+00	4.336E+00	6.549E+00	0.000E+00	0.464
CE-144	-1.568E+01	1.559E+01	2.245E+01	0.000E+00	-0.698
EU-152	-1.064E+01	6.401E+00	9.787E+00	0.000E+00	-1.087
EU-154	2.233E+00	3.737E+00	6.313E+00	0.000E+00	0.354
AC-228	1.178E+00	9.330E+00	1.414E+01	0.000E+00	0.083
TH-228	1.552E+00	4.110E+00	6.561E+00	0.000E+00	0.237
TH-232	1.174E+00	9.292E+00	1.408E+01	0.000E+00	0.083
U-235	-1.357E+00	1.717E+01	2.346E+01	0.000E+00	-0.058
U-238	-2.637E+01	2.479E+02	3.796E+02	0.000E+00	-0.069
AM-241	-2.544E+01	1.646E+01	2.627E+01	0.000E+00	-0.968

```
,06/13/2006 05:25,05/31/2006 14:30,
                                                                 3.191E+00,WG L28851-5 EX
A,13L28851-5
                                             ,08/05/2005 08:16,133L082404
B,13L28851-5
                     ,LIBD
                                                                    0.145
                     4.666E+00,
                                    4.083E+01,
                                                   3.209E+01,,
C, K-40
           ,YES,
                                    6.163E+01,
                                                   7.562E+01,,
                                                                    0.145
            , YES,
                     1.095E+01,
C, RA-226
                                                   3.243E+01,,
                                                                    0.531
                                    1.921E+01,
                     1.721E+01,
C, BE-7
            , NO
                                                   3.539E+01,,
                                                                   -0.355
                                    2.215E+01,
                    -1.254E+01,
C, CR-51
           , NO
                                                                     0.345
                                                   3.558E+00,,
                                    2.102E+00,
                     1.227E+00,
C, MN-54
            , NO
                                                                     0.066
                                                   3.048E+00,,
                                    1.823E+00,
C, CO-57
            , NO
                     2.014E-01,
                                                                     0.419
                     1.575E+00,
                                    2.198E+00,
                                                   3.755E+00,,
C, CO-58
            , NO
                                                   8.340E+00,,
                                                                     0.599
                                    4.800E+00,
            ,NO
                     4.993E+00,
C, FE-59
                                                   3.509E+00,,
                                                                   -0.358
                                    2.205E+00,
                    -1.255E+00,
C, CO-60
            , NO
                                                                   -0.137
                                                   7.191E+00,,
                                    4.433E+00,
C, ZN-65
            ,NO
                    -9.860E-01,
                                                   4.440E+00,,
                                                                   -0.162
            ,NO
                    -7.189E-01,
                                    2.712E+00,
C, SE-75
                                                                     3.157
                     1.656E+01,
                                                   5.245E+00,,
C, SR-85
                                    2.775E+00,
            , NO
                                    2.527E+00,
                                                   4.095E+00,,
                                                                   -0.070
            , NO
                    -2.886E-01,
C, Y-88
                                                                    -0.194
                                                   3.186E+00,,
                                    1.985E+00,
            , NO
                    -6.187E-01,
C, NB-94
                                                   3.629E+00,,
                                                                     0.481
            , NO
                                    2.104E+00,
C, NB-95
                     1.747E+00,
                                                                    -0.064
                                                   6.469E+00,,
                    -4.158E-01,
                                    3.915E+00,
C, ZR-95
            , NO
                                                                     0.335
            , NO
                                    3.542E+02,
                                                   6.042E+02,,
C, MO-99
                     2.026E+02,
                                                   4.197E+00,,
                                                                     0.242
                     1.017E+00,
                                    2.542E+00,
C, RU-103
            , NO
                                                                    -0.006
                                                   3.031E+01,,
                                    1.844E+01,
                    -1.853E-01,
C, RU-106
            ,NO
                                                                     0.009
                                                   3.394E+00,,
                     2.931E-02,
                                    2.072E+00,
            , NO
C, AG-110m
                                                   4.399E+00,,
                                                                     0.234
                     1.029E+00,
                                    2.619E+00,
C, SN-113
            , NO
                                    4.576E+00,
                                                   3.678E+00,,
                                                                     0.639
                     2.351E+00,
C,SB-124
            , NO
                                                   9.433E+00,,
                                                                    -0.172
C,SB-125
            , NO
                    -1.623E+00,
                                    5.789E+00,
                                                   4.662E+01,,
                                                                     0.059
                                    2.838E+01,
                     2.760E+00,
C, TE-129M
            , NO
                                                   9.375E+00,,
                                                                     0.061
                     5.726E-01,
                                    5.609E+00,
C, I-131
            , NO
                                                                    -0.384
                                                   4.371E+00,,
C, BA-133
                    -1.677E+00,
                                    2.671E+00,
            , NO
                                    4.061E+00,
                                                    3.418E+00,,
                                                                     1.004
                     3.430E+00,
            , NO
C, CS-134
                                                    5.801E+00,,
                                                                    -0.611
            , NO
                    -3.545E+00,
                                    3.700E+00,
C, CS-136
                     2.389E+00,
                                    2.400E+00,
                                                    3.875E+00,,
                                                                     0.616
            , NO
C, CS-137
                                                    3.153E+00,,
                                                                     0.131
                                    1.915E+00,
C, CE-139
            , NO
                     4.134E-01,
                                                    2.273E+01,,
                                                                     0.214
                     4.873E+00,
                                    1.347E+01,
C,BA-140
            , NO
                                                                     0.461
                                    4.349E+00,
                                                    7.628E+00,,
                     3.514E+00,
C, LA-140
            , NO
                                                    6.549E+00,,
                                                                     0.464
                                    4.336E+00,
                     3.041E+00,
C, CE-141
            , NO
                                                    2.245E+01,,
                                                                    -0.698
C, CE-144
                    -1.568E+01,
                                    1.559E+01,
            , NO
                                                                    -1.087
                                    6.401E+00,
                                                    9.787E+00,,
C, EU-152
            , NO
                    -1.064E+01,
                                                                     0.354
                                                    6.313E+00,,
                     2.233E+00,
                                    3.737E+00,
C, EU-154
            , NO
                                                    1.414E+01,,
                                                                     0.083
                                     9.330E+00,
                     1.178E+00,
C, AC-228
            , NO
                                                    6.561E+00,,
                                                                     0.237
                     1.552E+00,
                                     4.110E+00,
C, TH-228
            , NO
                                                                     0.083
                                                    1.408E+01,,
                                     9.292E+00,
C, TH-232
            , NO
                     1.174E+00,
                                    1.717E+01,
                                                    2.346E+01,,
                                                                    -0.058
                    -1.357E+00,
C, U-235
            , NO
                                                    3.796E+02,,
                                                                    -0.069
                    -2.637E+01,
                                     2.479E+02,
C, U-238
            , NO
                                                    2.627E+01,,
                                                                    -0.968
                                     1.646E+01,
                    -2.544E+01,
C, AM-241
            ,NO ,
```

Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 07:25:22.98

TBE14 P-10933A HpGe ******** Aquisition Date/Time: 12-JUN-2006 23:25:11.02

LIMS No., Customer Name, Client ID: WG L28851-6 EX DRES

Smple Date: 31-MAY-2006 15:20:00. : 14L28851-6 Sample ID

: WG Sample Type

Geometry : 143L082304 BKGFILE : 14BG060306MT : 3.09010E+00 L Quantity Energy Tol : 1.00000 Real Time : 0 08:00:04.56 Start Channel : 90 Pk Srch Sens: 5.00000 Live time: 0 08:00:00.00 Library Used: LIBD End Channel : 4090

MDA Constant : 0.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.24	291	1017	1.67	133.46		1.01E-02		
2	1	92.77*	56	816	1.49	186.66	1.28E+00	1.94E-033	102.5	1.81E+00
3	1	140.11	253	857	1.56	281.58	1.90E+00	8.77E-03	21.7	1.37E+00
4	1	186.01*	30	747	1.89	373.58	1.88E+00	1.03E-033	199.0	8.27E-01
5	1	198.90*	194	913	2.98	399.41	1.83E+00	6.75E-03	35.0	2.20E+00
6	1	583.04*	35	203	3.64	1167.88	8.62E-01	1.22E-03	103.1	1.31E+00
7	1	596.09	78	196	1.82	1193.97	8.48E-01	2.73E-03	35.5	1.37E+00
8	1	609.04*	55	220	2.60	1219.82	8.34E-01	1.91E-03	70.1	1.29E+00
9	1	911.11*	27	152	3.16	1822.34	6.16E-01	9.35E-043	117.7	1.00E+00
10	1	1120.87*	35	72	2.83	2239.88	5.30E-01	1.20E-03	67.9	1.34E+00
11	1	1238.24	52	62	3.42		4.93E-01	1.82E-03	35.3	1.84E+00
12	1	1461.22*	42	61	2.71	2915.88	4.36E-01	1.47E-03	69.9	1.22E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natura	al					
					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	42	10.67*	4.362E-01	2.768E+01	2.768E+01	139.88
RA-226	186.21	30	3.28*	1.876E+00	1.468E+01	1.468E+01	398.03
AC-228	835.50		1.75	6.571E-01	Li	ne Not Found	
	911.07	27	27.70*	6.165E-01	4.790E+00	4.810E+00	235.47
TH-232	583.14	35	30.25	8.622E-01	4.084E+00	4.084E+00	206.30
	911.07	27	27.70*	6.165E-01	4.790E+00	4.790E+00	235.47
	969.11		16.60	5.892E-01		ne Not Found	
U-235	143.76		10.50*	1.907E+00		ne Not Found	
	163.35		4.70	1.923E+00	Li:	ne Not Found	
	185.71	30	54.00	1.876E+00	8.914E-01	8.914E-01	398.03
	205.31		4.70	1.809E+00	Li:	ne Not Found	

Page: 2 Summary of Nuclide Activity Sample ID: 14L28851-6 Acquisition date: 12-JUN-2006 23:25:11

12 Total number of lines in spectrum Number of unidentified lines 8

Number of lines tentatively identified by NID 4 33.33%

Nuclide Type : natural

Nuclide K-40	Hlife 1.28E+09Y	Decay	Uncorrected pCi/L 2.768E+01	Decay Corr pCi/L 2.768E+01	Decay Corr 2-Sigma Error 3.872E+01	2-Sigma %Error 139.88	Flags
RA-226 AC-228 TH-232	1600.00Y 5.75Y 1.41E+10Y 7.04E+08Y	1.00	1.468E+01 4.790E+00 4.790E+00 8.914E-01	1.468E+01 4.810E+00 4.790E+00 8.914E-01	5.842E+01 11.33E+00 11.28E+00 35.48E-01	398.03 235.47 235.47 398.03	K
0-233	7.0411001						

Total Activity: 5.283E+01 5.285E+01

Grand Total Activity : 5.283E+01 5.285E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 14L28851-6

Page: 3 Acquisition date : 12-JUN-2006 23:25:11

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1	66.24 92.77 140.11 198.90 596.09 609.04 1120.87 1238.24	291 56 253 194 78 55 35	1017 816 857 913 196 220 72 62	1.67 1.49 1.56 2.98 1.82 2.60 2.83 3.42	1219.82 2239.88	1190 1213 2234	8 9 13 10 14 13	1.01E-02 1.94E-03 8.77E-03 6.75E-03 2.73E-03 1.91E-03 1.20E-03 1.82E-03	**** 43.4 70.0 71.0 ****	5.09E-01 1.28E+00 1.90E+00 1.83E+00 8.48E-03 8.34E-03 5.30E-03	) ) ) 1 1 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 12 Number of unidentified lines Number of lines tentatively identified by NID 4 33.33%

Nuclide Type : natural

Nuclide	Type : natu	raı	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	¬
RA-226 AC-228	Hlife 1.28E+09Y 1600.00Y 5.75Y 1.41E+10Y	Decay 1.00 1.00 1.00	pCi/L 2.768E+01 1.468E+01 7.062E-01 4.084E+00	pCi/L 2.768E+01 1.468E+01 7.091E-01 4.084E+00	2-Sigma Error 3.872E+01 5.842E+01 141.4E-01 8.425E+00	%Error 139.88 398.03 1993.62 206.30	Flags
	Total Acti	vity :	4.715E+01	4.715E+01			

Grand Total Activity: 4.715E+01 4.715E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Interfe	ring	Interf	ered
Nuclide	Line	Nuclide	Line
TH-232	911.07	AC-228	911.07

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	2.768E+01	3.872E+01	3.315E+01	0.000E+00	0.835
RA-226	1.468E+01	5.842E+01	8.241E+01	0.000E+00	0.178
AC-228	7.091E-01	1.414E+01	1.300E+01	0.000E+00	0.055

### ---- Non-Identified Nuclides ----

Nuclide	<b>-</b>	.L. Act error ded	MDA (pCi/L)	MDA error	Act/MDA
BE-7	-1.767E+01	2.176E+01	3.494E+01	0.000E+00	-0.506
NA-24	-1.080E+00	1.241E+00	Half-Life t		0 000
CR-51	-1.287E+01	2.485E+01	4.021E+01	0.000E+00	-0.320
MN-54	1.921E+00	2.365E+00	3.984E+00	0.000E+00	0.482
CO-57	1.337E+00	2.243E+00	3.761E+00	0.000E+00	0.355
CO-58	-1.856E+00	2.367E+00	3.730E+00	0.000E+00	-0.498
FE-59	1.527E+00	5.016E+00	8.329E+00	0.000E+00	0.183
CO-60	3.116E-01	2.345E+00	3.889E+00	0.000E+00	0.080
ZN-65	7.271E+00	5.881E+00	8.758E+00	0.000E+00	0.830
SE-75	-7.633E-01	2.989E+00	4.916E+00	0.000E+00	-0.155
SR-85	2.189E+01	2.923E+00	5.634E+00	0.000E+00	3.886
Y-88	-1.997E+00	2.591E+00	4.006E+00	0.000E+00	-0.499
NB-94	-4.464E-01	2.223E+00	3.639E+00	0.000E+00	-0.123
NB-95	1.248E+00	2.494E+00	4.172E+00	0.000E+00	0.299
ZR-95	-3.684E+00	4.402E+00	6.975E+00	0.000E+00	-0.528
MO-99	-7.057E+00	3.745E+02	6.151E+02	0.000E+00	-0.011
RU-103	4.761E-01	2.893E+00	4.779E+00	0.000E+00	0.100
RU-106	-7.333E+00	2.186E+01	3.452E+01	0.000E+00	-0.212
AG-110m	8.204E-01	2.264E+00	3.798E+00	0.000E+00	0.216
SN-113	-1.442E+00	3.147E+00	5.037E+00	0.000E+00	-0.286
SB-124	-1.554E+00	6.033E+00	3.981E+00	0.000E+00	-0.390
SB-125	-4.569E-01	6.411E+00	1.060E+01	0.000E+00	-0.043
TE-129M	1.526E+00	3.220E+01	5.323E+01	0.000E+00	0.029
I-131	-1.004E+00	6.527E+00	1.058E+01	0.000E+00	-0.095
BA-133	4.901E+00	3.116E+00	5.287E+00	0.000E+00	0.927
CS-134	1.594E+00	5.359E+00	3.835E+00	0.000E+00	0.416
CS-136	5.005E-01	3.958E+00	6.501E+00	0.000E+00	0.077
CS-137	1.781E+00	2.407E+00	4.092E+00	0.000E+00	0.435
CE-139	-2.123E-01	2.233E+00	3.656E+00	0.000E+00	-0.058
BA-140	-1.036E+01	1.508E+01	2.408E+01	0.000E+00	-0.430
LA-140	1.827E+00	4.619E+00	7.838E+00	0.000E+00	0.233
CE-141	1.520E+00	5.440E+00	7.675E+00	0.000E+00	0.198
CE-144	-7.120E+00	2.002E+01	2.788E+01	0.000E+00	-0.255
EU-152	-1.551E+01	7.135E+00	1.099E+01	0.000E+00	-1.411
EU-154	7.917E-01	4.593E+00	7.643E+00	0.000E+00	0.104
TH-228	4.887E+00	4.437E+00	7.024E+00	0.000E+00	0.696
U-235	2.639E+01	1.952E+01	2.833E+01	0.000E+00	0.931
U-238	-2.147E+01	2.412E+02	3.955E+02	0.000E+00	-0.054
AM-241	-3.217E+01	3.452E+01	4.714E+01	0.000E+00	-0.683

```
,06/13/2006 07:25,05/31/2006 15:20,
                                                                 3.090E+00,WG L28851-6 EX
A,14L28851-6
                                             ,06/02/2006 08:23,143L082304
B,14L28851-6
                     ,LIBD
           , YES,
                     2.768E+01,
                                    3.872E+01,
                                                   3.315E+01,,
                                                                     0.835
C, K-40
                                                                     0.178
           , YES,
                                                   8.241E+01,,
C, RA-226
                     1.468E+01,
                                    5.842E+01,
                                                   1.300E+01,,
                                                                     0.055
                     7.091E-01,
                                    1.414E+01,
C, AC-228
            ,YES,
            , YES,
                                                                     0.283
C, TH-232
                     4.084E+00,
                                    8.425E+00,
                                                   1.443E+01,,
                                                   3.494E+01,,
                    -1.767E+01,
                                    2.176E+01,
                                                                    -0.506
C, BE-7
            , NO
C, CR-51
                    -1.287E+01,
                                    2.485E+01,
                                                   4.021E+01,,
                                                                    -0.320
            , NO
                                    2.365E+00,
                                                   3.984E+00,,
                                                                     0.482
                     1.921E+00,
C, MN-54
            , NO
                                                                     0.355
C, CO-57
                     1.337E+00,
                                    2.243E+00,
                                                   3.761E+00,,
            , NO
                                                   3.730E+00,,
                                                                    -0.498
            , NO
                                    2.367E+00,
C, CO-58
                    -1.856E+00,
            , NO
C, FE-59
                     1.527E+00,
                                    5.016E+00,
                                                   8.329E+00,,
                                                                     0.183
                                                   3.889E+00,,
                                                                     0.080
C, CO-60
            , NO
                     3.116E-01,
                                    2.345E+00,
                                    5.881E+00,
                                                   8.758E+00,,
                                                                     0.830
C, ZN-65
                     7.271E+00,
            , NO
                                                   4.916E+00,,
                                                                    -0.155
            , NO
                                    2.989E+00,
C, SE-75
                    -7.633E-01,
                                                   5.634E+00,,
                                                                     3.886
                     2.189E+01,
                                    2.923E+00,
C, SR-85
            , NO
            , NO
                                                                    -0.499
C, Y-88
                    -1.997E+00,
                                    2.591E+00,
                                                   4.006E+00,,
                                                   3.639E+00,,
C, NB-94
                    -4.464E-01,
                                    2.223E+00,
                                                                    -0.123
            , NO
                                                   4.172E+00,,
                                                                     0.299
C, NB-95
                     1.248E+00,
                                    2.494E+00,
            , NO
                                                   6.975E+00,,
                                                                    -0.528
                    -3.684E+00,
                                    4.402E+00,
C, ZR-95
            , NO
                                                   6.151E+02,,
                                                                    -0.011
C, MO-99
                    -7.057E+00,
                                    3.745E+02,
            , NO
                                    2.893E+00,
                                                   4.779E+00,,
                                                                     0.100
C,RU-103
            , NO
                     4.761E-01,
C, RU-106
            , NO
                    -7.333E+00,
                                    2.186E+01,
                                                    3.452E+01,,
                                                                    -0.212
                                                    3.798E+00,,
                                                                     0.216
                     8.204E-01,
                                    2.264E+00,
C, AG-110m
            , NO
            , NO
                                    3.147E+00,
                                                   5.037E+00,,
                                                                    -0.286
C, SN-113
                    -1.442E+00,
                                                   3.981E+00,,
            , NO
                                    6.033E+00,
                                                                    -0.390
C,SB-124
                    -1.554E+00,
                                                   1.060E+01,,
                                                                    -0.043
C,SB-125
            , NO
                    -4.569E-01,
                                    6.411E+00,
C, TE-129M
            , NO
                     1.526E+00,
                                    3.220E+01,
                                                    5.323E+01,,
                                                                     0.029
                                    6.527E+00,
                                                    1.058E+01,,
                                                                    -0.095
            , NO
                    -1.004E+00,
C, I-131
                                                                     0.927
                     4.901E+00,
                                    3.116E+00,
                                                    5.287E+00,,
C, BA-133
            , NO
                                                    3.835E+00,,
                                                                     0.416
                                    5.359E+00,
C, CS-134
            , NO
                     1.594E+00,
                                                   6.501E+00,,
C, CS-136
            , NO
                     5.005E-01,
                                    3.958E+00,
                                                                     0.077
            , NO
                     1.781E+00,
                                                    4.092E+00,,
                                                                     0.435
C, CS-137
                                    2.407E+00,
C, CE-139
            , NO
                    -2.123E-01,
                                    2.233E+00,
                                                    3.656E+00,,
                                                                    -0.058
                                                                    -0.430
            , NO
                                                    2.408E+01,,
                    -1.036E+01,
                                    1.508E+01,
C, BA-140
                                                   7.838E+00,,
                                                                     0.233
                     1.827E+00,
                                    4.619E+00,
C, LA-140
            , NO
                                                    7.675E+00,,
C, CE-141
            , NO
                     1.520E+00,
                                    5.440E+00,
                                                                     0.198
C, CE-144
                                    2.002E+01,
                                                    2.788E+01,,
                                                                    -0.255
                    -7.120E+00,
            , NO
C, EU-152
            , NO
                    -1.551E+01,
                                    7.135E+00,
                                                    1.099E+01,,
                                                                    -1.411
                                                    7.643E+00,,
                                                                     0.104
                     7.917E-01,
                                    4.593E+00,
C, EU-154
            , NO
                                                                     0.696
                     4.887E+00,
                                    4.437E+00,
                                                    7.024E+00,,
C, TH-228
            , NO
                                                    2.833E+01,,
                                                                     0.931
                     2.639E+01,
                                    1.952E+01,
C, U-235
            , NO
                                    2.412E+02,
                                                    3.955E+02,,
                                                                    -0.054
C, U-238
                    -2.147E+01,
            , NO
```

3.452E+01,

C, AM-241

, NO

-3.217E+01,

4.714E+01,,

-0.683

Analyst: LIMS: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 07:25:32.22 TBE15 P-10635B HpGe ******* Aquisition Date/Time: 12-JUN-2006 23:25:16.71

______

LIMS No., Customer Name, Client ID: WG L28851-7 EX DRES

Smple Date: 1-JUN-2006 09:00:00.0 : 15L28851-7 Sample ID

Geometry : 153L082604 : WG Sample Type BKGFILE : 15BG060306MT : 3.08810E+00 L Quantity Start Channel: 40 Energy Tol: 1.50000 Real Time: 0 08:00:02.85 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 08:00:00.00 MDA Constant : 0.00 Library Used: LIBD

Pk I	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	139.55	239	717		267.39	1.66E+00			
2	1	198.42	166	532	1.29	385.78	1.54E+00			
3	1	294.47	54	266	1.52	578.91	1.18E+00			
4	1	595.77	115	178	2.05	1184.61		3.99E-03		
5	_	608.94	109	168	2.53	1211.08		3.79E-03		
6	1	1459.75*	96	39	3.07	2920.09		3.32E-03		
7	1	1764.01	35	18	2.17	3530.79	2.78E-01	1.22E-03	30.8	6.00E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

2-Sigma Uncorrected Decay Corr pCi/L %Error pCi/L %Eff %Abn Area Nuclide Energy 50.85 10.67* 3.227E-01 8.430E+01 8.430E+01 96 K-40 1460.81

Page: 2 Summary of Nuclide Activity Sample ID: 15L28851-7

Acquisition date : 12-JUN-2006 23:25:16

Total number of lines in spectrum 6 Number of unidentified lines

Number of lines tentatively identified by NID 1 14.29%

Nuclide Type : natural

2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags pĆi/L pCi/L Hlife Nuclide Decay

4.286E+01 50.85 8.430E+01 8.430E+01 K-40 1.28E+09Y 1.00

> 8.430E+01 Total Activity: 8.430E+01

8.430E+01 Grand Total Activity : 8.430E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Act/MDA

MDA error

Page: 3 Unidentified Energy Lines Acquisition date : 12-JUN-2006 23:25:16 Sample ID: 15L28851-7 Channel Left Pw Cts/Sec %Err %Eff Flags Bkgnd FWHM Area Ιt Energy 1.66E+00 9 8.31E-03 42.2 267.39 262 717 1.71 139.55 239 1 8 5.75E-03 50.9 385.78 382 1.54E+00 1.29 166 532 1 198.42 7 1.87E-03 **** 1.18E+00 578.91 576 266 1.52 294.47 54 1 1184.61 1178 12 3.99E-03 50.2 6.54E-01 2.05 595.77 115 178 1 6.43E-01 1211.08 1205 13 3.79E-03 52.8 168 2.53 109 608.94 1 2.78E-01 3530.79 3524 14 1.22E-03 61.7 18 2.17 35 1764.01 1 Flags: "T" = Tentatively associated Summary of Nuclide Activity 7 Total number of lines in spectrum 6 Number of unidentified lines 14.29% Number of lines tentatively identified by NID 1 Nuclide Type : natural Wtd Mean Wtd Mean 2-Sigma Decay Corr Uncorrected Decay Corr %Error Flags 2-Sigma Error pCi/L pCi/L Decay Nuclide Hlife 50.85 4.286E+01 8.430E+01 8.430E+01 K-401.28E+09Y 1.00 _____ 8.430E+01 8.430E+01 Total Activity: Grand Total Activity: 8.430E+01 8.430E+01 "M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited Interference Report No interference correction performed Combined Activity-MDA Report ---- Identified Nuclides ----Act/MDA MDA error MDA Act error Activity (pCi/L) (pCi/L) Nuclide 0.000E+00 2.176 3.873E+01 4.286E+01 8.430E+01 K - 40

0.000E+00 -0.756 3.767E+01 -2.849E+01 2.365E+01 BE-7 6.025E-01 Half-Life too short -6.208E-01 NA-24 -0.2870.000E+00 4.218E+01 2.585E+01 -1.211E+01 CR - 51

Act error

MDA

(pCi/L)

---- Non-Identified Nuclides ----

Nuclide

Key-Line

Activity

(pCi/L)

K.L.

Ided

CO-58	-8.668E-01	2.584E+00	4.190E+00	0.000E+00	-0.207
FE-59	5.969E+00	5.165E+00	9.117E+00	0.000E+00	0.655
CO-60	-4.201E-01	2.630E+00	4.237E+00	0.000E+00	-0.099
ZN-65	2.345E+00	5.035E+00	8.546E+00	0.000E+00	0.274
SE-75	-1.493E+00	3.318E+00	5.294E+00	0.000E+00	-0.282
SR-85	1.276E+01	3.060E+00	5.662E+00	0.000E+00	2.253
Y-88	-1.178E+00	3.168E+00	5.097E+00	0.000E+00	-0.231
NB-94	1.077E+00	2.399E+00	3.974E+00	0.000E+00	0.271
NB-95	8.424E-01	2.615E+00	4.398E+00	0.000E+00	0.192
ZR-95	3.409E-01	4.790E+00	7.968E+00	0.000E+00	0.043
MO-99	-1.677E+02	3.520E+02	5.716E+02	0.000E+00	-0.293
RU-103	1.492E+00	2.930E+00	4.952E+00	0.000E+00	0.301
RU-106	-7.372E+00	2.334E+01	3.765E+01	0.000E+00	-0.196
AG-110m	8.797E-01	2.489E+00	4.122E+00	0.000E+00	0.213
SN-113	7.754E-01	3.319E+00	5.469E+00	0.000E+00	0.142
SB-124	-4.556E-01	5.939E+00	4.289E+00	0.000E+00	-0.106
SB-125	-3.273E+00	6.861E+00	1.096E+01	0.000E+00	-0.299
TE-129M	3.001E+00	3.416E+01	5.550E+01	0.000E+00	0.054
I-131	2.726E-02	6.587E+00	1.082E+01	0.000E+00	0.003
BA-133	-1.996E+00	3.233E+00	5.212E+00	0.000E+00	-0.383
CS-134	4.861E+00	3.853E+00	4.319E+00	0.000E+00	1.126
CS-136	-5.382E-01	4.241E+00	6.947E+00	0.000E+00	-0.077
CS-137	1.848E+00	2.668E+00	4.485E+00	0.000E+00	0.412
CE-139	-1.106E+00	2.235E+00	3.656E+00	0.000E+00	-0.303
BA-140	-4.236E+00	1.598E+01	2.612E+01	0.000E+00	-0.162
LA-140	-1.757E+00	5.234E+00	8.368E+00	0.000E+00	-0.210
CE-141	3.307E+00	5.163E+00	7.748E+00	0.000E+00	0.427
CE-144	-6.619E+00	1.949E+01	2.757E+01	0.000E+00	-0.240
EU-152	-1.048E+01	7.243E+00	1.139E+01	0.000E+00	-0.920
EU-154	-5.510E+00	4.970E+00	7.451E+00	0.000E+00	-0.739
RA-226	-1.946E+01	6.207E+01	9.330E+01	0.000E+00	-0.209
AC-228	1.546E+01	9.354E+00	1.656E+01	0.000E+00	0.934
TH-228	9.303E-01	4.685E+00	6.980E+00	0.000E+00	0.133
TH-232	1.540E+01	9.318E+00	1.649E+01	0.000E+00	0.934
U-235	2.016E+01	1.899E+01	2.790E+01	0.000E+00	0.723
U-238	7.591E+01	2.827E+02	4.664E+02	0.000E+00	0.163
AM-241	-3.514E+01	2.610E+01	4.201E+01	0.000E+00	-0.836

```
,06/13/2006 07:25,06/01/2006 09:00,
                                                                 3.088E+00,WG L28851-7 EX
A,15L28851-7
                                             ,06/06/2006 10:43,153L082604
B,15L28851-7
                     ,LIBD
                                    4.286E+01,
                                                   3.873E+01,,
                                                                    2.176
                     8.430E+01,
C, K-40
           , YES,
                                                   3.767E+01,,
                                                                    -0.756
                    -2.849E+01,
                                    2.365E+01,
C, BE-7
           , NO
                                                   4.218E+01,,
                                                                    -0.287
                                    2.585E+01,
C, CR-51
            , NO
                    -1.211E+01,
                                                                     0.024
            , NO
                     9.743E-02,
                                    2.485E+00,
                                                   4.101E+00,,
C, MN-54
                                    2.407E+00,
                                                   3.684E+00,,
                                                                    -0.136
C, CO-57
                    -5.015E-01,
            , NO
                                                                    -0.207
                                    2.584E+00,
                                                   4.190E+00,,
C, CO-58
                    -8.668E-01,
            , NO
                                                   9.117E+00,,
                                                                     0.655
                                    5.165E+00,
            , NO
                     5.969E+00,
C, FE-59
                                                                    -0.099
                                                   4.237E+00,,
                                    2.630E+00,
C, CO-60
                    -4.201E-01,
            , NO
                                                                     0.274
                                                   8.546E+00,,
            , NO
                                    5.035E+00,
C, ZN-65
                     2.345E+00,
                                    3.318E+00,
                                                   5.294E+00,,
                                                                    -0.282
C, SE-75
            , NO
                    -1.493E+00,
                                                   5.662E+00,,
                                                                     2.253
            , NO
                     1.276E+01,
                                    3.060E+00,
C, SR-85
                                    3.168E+00,
                                                   5.097E+00,,
                                                                    -0.231
                    -1.178E+00,
C, Y-88
            , NO
                                                   3.974E+00,,
                                                                     0.271
            , NO
                                    2.399E+00,
                     1.077E+00,
C, NB-94
                                                                     0.192
                                    2.615E+00,
                                                   4.398E+00,,
                     8.424E-01,
C, NB-95
            , NO
                                                                     0.043
            , NO
                                                   7.968E+00,,
C, ZR-95
                     3.409E-01,
                                    4.790E+00,
                                                   5.716E+02,,
                    -1.677E+02,
                                    3.520E+02,
                                                                    -0.293
C,MO-99
            , NO
                                                   4.952E+00,,
                                                                     0.301
            , NO
                     1.492E+00,
                                    2.930E+00,
C, RU-103
                                                   3.765E+01,,
                                                                    -0.196
                                    2.334E+01,
                    -7.372E+00,
C, RU-106
            ,NO
                                                   4.122E+00,,
                                                                     0.213
                     8.797E-01,
                                    2.489E+00,
C, AG-110m
           , NO
                                                   5.469E+00,,
                                    3.319E+00,
                                                                     0.142
C, SN-113
            , NO
                     7.754E-01,
                    -4.556E-01,
                                    5.939E+00,
                                                   4.289E+00,,
                                                                    -0.106
C,SB-124
            , NO
            , NO
                                                   1.096E+01,,
                                                                    -0.299
                    -3.273E+00,
                                    6.861E+00,
C,SB-125
                                                   5.550E+01,,
                                                                     0.054
                     3.001E+00,
                                    3.416E+01,
            , NO
C, TE-129M
                                                                     0.003
            , NO
                                                   1.082E+01,,
                                    6.587E+00,
C, I-131
                     2.726E-02,
                                                   5.212E+00,,
                                                                    -0.383
                    -1.996E+00,
                                    3.233E+00,
C,BA-133
            , NO
                     4.861E+00,
                                    3.853E+00,
                                                   4.319E+00,,
                                                                     1.126
C, CS-134
            , NO
                                    4.241E+00,
                                                   6.947E+00,,
                                                                    -0.077
                    -5.382E-01,
            , NO
C,CS-136
                                                                     0.412
                                                    4.485E+00,,
                     1.848E+00,
                                    2.668E+00,
C, CS-137
            , NO
                                                                    -0.303
                                                    3.656E+00,,
                                    2.235E+00,
C, CE-139
            , NO
                    -1.106E+00,
                                                                    -0.162
                    -4.236E+00,
                                    1.598E+01,
                                                    2.612E+01,,
C, BA-140
            , NO
            ,NO
                                                    8.368E+00,,
                                                                    -0.210
C, LA-140
                    -1.757E+00,
                                    5.234E+00,
                     3.307E+00,
                                    5.163E+00,
                                                    7.748E+00,,
                                                                     0.427
C, CE-141
            , NO
                                                    2.757E+01,,
                                                                    -0.240
                                    1.949E+01,
C, CE-144
                    -6.619E+00,
            , NO
                                                    1.139E+01,,
                                                                    -0.920
                                    7.243E+00,
C, EU-152
            , NO
                    -1.048E+01,
                                                    7.451E+00,,
                                                                    -0.739
                    -5.510E+00,
                                    4.970E+00,
C, EU-154
            , NO
                                    6.207E+01,
                                                    9.330E+01,,
                                                                    -0.209
            ,NO
C, RA-226
                    -1.946E+01,
                                                                     0.934
                                    9.354E+00,
                                                    1.656E+01,,
C, AC-228
            , NO
                     1.546E+01,
                                                    6.980E+00,,
                                                                     0.133
                                    4.685E+00,
                     9.303E-01,
C, TH-228
            , NO
                                                                     0.934
                                     9.318E+00,
                                                    1.649E+01,,
C, TH-232
            , NO
                     1.540E+01,
                                                    2.790E+01,,
                                                                     0.723
C, U-235
            , NO
                                     1.899E+01,
                     2.016E+01,
                                     2.827E+02,
                                                    4.664E+02,,
                                                                     0.163
            , NO
                     7.591E+01,
C, U-238
                                                    4.201E+01,,
                                                                    -0.836
                    -3.514E+01,
                                     2.610E+01,
C, AM-241
            , NO
```

Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 13:24:05.67 TBE04 P-40312B HpGe ******** Aquisition Date/Time: 13-JUN-2006 10:07:34.92 

LIMS No., Customer Name, Client ID: WG L28851-8 DRESDEN

Smple Date: 1-JUN-2006 09:40:00.0 : 04L28851-8 Sample ID

Geometry : 043L082004 : WG Sample Type BKGFILE : 04BG060305MT : 3.12170E+00 L Quantity

Pk It	Energy	Area	Bkgnd	FWHM Channe	el %Eff	Cts/Sec	%Err	Fit
1 1 2 1 3 1 4 1 5 1 6 1 7 1	64.28 139.79* 198.46* 595.72 1130.71 1173.18* 1460.88*	226 66 65 48 20 20	28	4.04 129. 1.67 280. 1.09 397. 2.06 1191. 2.19 2261. 3.09 2346. 2.67 2921.	17 2.04E+00 45 1.86E+00 65 8.63E-01 36 5.23E-01 29 5.08E-01	1.92E-02 5.59E-03 5.48E-03 4.11E-03 1.67E-03 1.73E-03 9.23E-04	54.5 41.9 33.6 39.8 62.2	1.60E+00 1.02E+00 4.23E+00 2.35E+00 4.16E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nucliae	Type: nacurar	•			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	_	%Error
K-40	1460.81	11	10.67*	4.296E-01	1.743E+01		257.92

Nuclide Type: activation

Nucliae	Type. accive	201011			Uncorrected	Decay Corr	2-Sigma
Nuclide CO-60	Energy 1173.22 1332.49	Area 20	%Abn 100.00 100.00*	%Eff 5.085E-01	pCi/L 2.939E+00	pCi/L	%Error 124.34 

Page: 2

Summary of Nuclide Activity Sample ID : 04L28851-8

Acquisition date: 13-JUN-2006 10:07:34

5

Total number of lines in spectrum

Number of unidentified lines 28.57% 2

Number of lines tentatively identified by NID

Nuclide Type : natural

2-Sigma Uncorrected Decay Corr Decay Corr pCi/L 2-Sigma Error %Error Flags pCi/L Decay Hlife Nuclide 1.743E+01 4.496E+01 257.92

1.00 1.743E+01 K-40 1.28E+09Y _____

> 1.743E+01 1.743E+01 Total Activity:

Nuclide Type : activation

Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags pĊi/L pCi/L Hlife Decay Nuclide 3.670E+00 124.34 K 2.939E+00 2.952E+00 5.27Y 1.00 CO-60

2.952E+00 2.939E+00 Total Activity:

Grand Total Activity : 2.037E+01 2.038E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Page :

3

Unidentified Energy Lines Sample ID : 04L28851-8

Acquisition date : 13-JUN-2006 10:07:34

Samp	)TE TD .		_								777
Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Ρw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1	64.28 139.79 198.46 595.72 1130.71	226 66 65 48 20	310 211	4.04 1.67 1.09 2.06 2.19	280.17 397.45	274 393	11 8 9	1.92E-02 5.59E-03 5.48E-03 4.11E-03 1.67E-03	**** 83.7 67.1	1.86E+00 8.63E-01	) ) 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

7 Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified by NID 28.57%

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Decay Corr Uncorrected Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Decay Hlife 257.92 Nuclide 4.496E+01 1.743E+01 1.743E+01 1.00 K-40 1.28E+09Y _____ _____

1.743E+01 1.743E+01 Total Activity :

Nuclide Type : activation

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Hlife Decay Nuclide 124.34 3.670E+00 2.952E+00 2.939E+00 1.00 5.27Y CO-60 _____

2.952E+00 2.939E+00 Total Activity :

2.038E+01 Grand Total Activity: 2.037E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

# ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	1.743E+01	4.496E+01	4.943E+01	0.000E+00	0.353
CO-60	2.952E+00	3.670E+00	5.647E+00	0.000E+00	0.523

---- Non-Identified Nuclides ----

## L28851 94 of 145

Nuclide	Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
	1 0007.01		2.663E+01	4.594E+01	0.000E+00	0.429
BE-7	1.969E+01		1.096E+00	Half-Life to	o short	
NA-24	-2.947E+00		3.290E+01	5.344E+01	0.000E+00	-0.236
CR-51	-1.262E+01		3.036E+00	4.763E+00	0.000E+00	-0.278
MN-54	-1.324E+00		2.681E+00	4.366E+00	0.000E+00	-0.027
CO-57	-1.157E-01		3.219E+00	5.314E+00	0.000E+00	0.103
CO-58	5.455E-01		6.738E+00	1.122E+01	0.000E+00	0.160
FE-59	1.791E+00		6.103E+00	1.063E+01	0.000E+00	0.327
ZN-65	3.473E+00		3.948E+00	5.940E+00	0.000E+00	-0.997
SE-75	-5.924E+00 1.906E+01		3.955E+00	7.764E+00	0.000E+00	2.455
SR-85			3.903E+00	6.370E+00	0.000E+00	-0.059
Y-88	-3.781E-01		2.799E+00	4.540E+00	0.000E+00	-0.142
NB-94	-6.464E-01 3.159E-02		3.136E+00	5.137E+00	0.000E+00	0.006
NB-95	9.647E-01		5.627E+00	9.339E+00	0.000E+00	0.103
ZR-95	-8.751E+00		4.684E+02	7.679E+02	0.000E+00	-0.011
MO-99	1.527E+00		3.477E+00	5.880E+00	0.000E+00	0.260
RU-103	1.448E+00		2.786E+01	4.651E+01	0.000E+00	0.031
RU-106	4.548E-01		2.846E+00	4.768E+00	0.000E+00	0.095
AG-110m	-7.358E-01		4.062E+00	6.555E+00	0.000E+00	-0.112
SN-113	-9.432E+00		4.886E+00	5.593E+00	0.000E+00	-1.686
SB-124	9.631E-01		7.973E+00	1.338E+01	0.000E+00	0.072
SB-125	2.843E+01		4.174E+01	7.172E+01	0.000E+00	0.396
TE-129M	-1.303E+0		8.437E+00	1.371E+01	0.000E+00	-0.095
I-131	-6.447E-0		4.151E+00	6.760E+00	0.000E+00	-0.095
BA-133	7.744E-0		3.681E+00	5.420E+00	0.000E+00	0.143
CS-134	-7.762E-0		5.609E+00	9.034E+00	0.000E+00	-0.086
CS-136	4.622E-0		3.164E+00	5.291E+00	0.000E+00	0.087
CS-137	-1.845E+0		2.721E+00	4.428E+00	0.000E+00	-0.417
CE-139	-2.257E+0		1.888E+01	3.071E+01	0.000E+00	-0.073
BA-140	1.663E-0		7.194E+00	1.183E+01	0.000E+00	0.014
LA-140	8.569E+0		6.066E+00	9.035E+00	0.000E+00	0.948
CE-141	-8.141E+0		2.394E+01	3.265E+01	0.000E+00	-0.249
CE-144	-2.219E+0		9.704E+00	1.426E+01	0.000E+00	-1.556
EU-152	5.126E+0	_	5.438E+00	9.153E+00	0.000E+00	0.560
EU-154	-1.337E+0		6.685E+01	1.109E+02	0.000E+00	-0.121
RA-226	6.920E+0		1.161E+01	2.062E+01	0.000E+00	0.336
AC-228	2.498E+0		5.576E+00	9.677E+00	0.000E+00	0.258
TH-228	6.893E+0		1.156E+01	2.054E+01	0.000E+00	0.336
TH-232	1.385E+0		2.264E+01	3.241E+01	0.000E+00	0.427
U-235	-7.623E+0		3.313E+02	5.325E+02	0.000E+00	-0.143
U-238	2.310E+0		3.044E+01	4.410E+01	0.000E+00	0.524
AM-241	2.310570					

```
3.122E+00,WG L28851-8 DR
                     ,06/13/2006 13:24,06/01/2006 09:40,
A,04L28851-8
                                             ,06/13/2006 09:42,043L082004
                     ,LIBD
B,04L28851-8
                                                                    0.353
                                    4.496E+01,
                                                   4.943E+01,,
                     1.743E+01,
           , YES,
C, K-40
                                                   5.647E+00,,
                                                                    0.523
                                    3.670E+00,
           , YES,
                     2.952E+00,
C, CO-60
                                                                    0.429
                                                   4.594E+01,,
                                    2.663E+01,
C, BE-7
            ,NO
                     1.969E+01,
                                                                   -0.236
                                                   5.344E+01,,
                    -1.262E+01,
                                    3.290E+01,
C, CR-51
            ,NO
                                                                   -0.278
                    -1.324E+00,
                                    3.036E+00,
                                                   4.763E+00,,
            ,NO
C, MN-54
                                                                   -0.027
                                                   4.366E+00,,
                    -1.157E-01,
                                    2.681E+00,
            , NO
C, CO-57
                                                   5.314E+00,,
                                                                    0.103
                                    3.219E+00,
                     5.455E-01,
C, CO-58
            , NO
                                                   1.122E+01,,
                                                                    0.160
                                    6.738E+00,
            , NO
                     1.791E+00,
C, FE-59
                                                                    0.327
                                                   1.063E+01,,
            , NO
                                    6.103E+00,
C, ZN-65
                     3.473E+00,
                                                   5.940E+00,,
                                                                   -0.997
                    -5.924E+00,
                                    3.948E+00,
C, SE-75
            , NO
                                                                    2.455
                                    3.955E+00,
                                                   7.764E+00,,
            , NO
                     1.906E+01,
C, SR-85
                                                   6.370E+00,,
                                                                   -0.059
                                    3.903E+00,
                    -3.781E-01,
C, Y-88
            , NO
                                                                   -0.142
                                                   4.540E+00,,
                                    2.799E+00,
C, NB-94
            ,NO
                    -6.464E-01,
                                                                     0.006
                                                   5.137E+00,,
                                    3.136E+00,
                     3.159E-02,
C, NB-95
            , NO
                                                                     0.103
                                                   9.339E+00,,
                                    5.627E+00,
C, ZR-95
                     9.647E-01,
            , NO
                                                                    -0.011
                                    4.684E+02,
                                                   7.679E+02,,
            , NO
                    -8.751E+00,
C, MO-99
                                                   5.880E+00,,
                                                                     0.260
                                    3.477E+00,
                     1.527E+00,
C, RU-103
            , NO
                                                                     0.031
                                                   4.651E+01,,
                                    2.786E+01,
            , NO
                     1.448E+00,
C, RU-106
                                                                     0.095
                                                   4.768E+00,,
                     4.548E-01,
                                    2.846E+00,
           , NO
C, AG-110m
                                                   6.555E+00,,
                                                                    -0.112
                                    4.062E+00,
                    -7.358E-01,
C, SN-113
            ,NO
                                                                    -1.686
                                                   5.593E+00,,
                    -9.432E+00,
                                    4.886E+00,
            , NO
C,SB-124
                                                   1.338E+01,,
                                                                     0.072
                                    7.973E+00,
                     9.631E-01,
C,SB-125
            , NO
                                                                     0.396
                                                   7.172E+01,,
                                    4.174E+01,
            , NO
                     2.843E+01,
C, TE-129M
                                                    1.371E+01,,
                                                                    -0.095
                    -1.303E+00,
                                    8.437E+00,
            , NO
C, I-131
                                                                    -0.095
                                                    6.760E+00,,
                                    4.151E+00,
                    -6.447E-01,
C, BA-133
            , NO
                                                                     0.143
                                                    5.420E+00,,
                                    3.681E+00,
            , NO
                     7.744E-01,
C, CS-134
                                                                    -0.086
                                    5.609E+00,
                                                    9.034E+00,
                    -7.762E-01,
C, CS-136
            , NO
                                                                     0.087
                                                    5.291E+00,,
                     4.622E-01,
                                     3.164E+00,
C, CS-137
            , NO
                                                                    -0.417
                                                    4.428E+00,,
                    -1.845E+00,
                                    2.721E+00,
C, CE-139
            , NO
                                                                    -0.073
                                                    3.071E+01,,
                                     1.888E+01,
                    -2.257E+00,
            , NO
C, BA-140
                                                                     0.014
                                                    1.183E+01,,
                                     7.194E+00,
C, LA-140
            , NO
                     1.663E-01,
                                                                     0.948
                                                    9.035E+00,,
                     8.569E+00,
                                     6.066E+00,
 C, CE-141
            ,NO
                                                    3.265E+01,,
                                                                    -0.249
                                     2.394E+01,
 C, CE-144
            , NO
                     -8.141E+00,
                                                                    -1.556
                                                    1.426E+01,,
                                     9.704E+00,
                     -2.219E+01,
 C, EU-152
            , NO
                                                                     0.560
                                                    9.153E+00,,
                                     5.438E+00,
                     5.126E+00,
 C, EU-154
            , NO
                                                                    -0.121
                                     6.685E+01,
                                                    1.109E+02,,
                     -1.337E+01,
 C, RA-226
            , NO
                                                    2.062E+01,,
                                                                     0.336
                      6.920E+00,
                                     1.161E+01,
 C, AC-228
            , NO
                                                                     0.258
                                                    9.677E+00,,
                                     5.576E+00,
 C, TH-228
             , NO
                      2.498E+00,
                                                                     0.336
                                                    2.054E+01,,
             , NO
                      6.893E+00,
                                     1.156E+01,
 C, TH-232
                                                                     0.427
                                                    3.241E+01,,
                                     2.264E+01,
             , NO
                      1.385E+01,
 C, U-235
                                                                    -0.143
                                                    5.325E+02,,
                                     3.313E+02,
                     -7.623E+01,
             , NO
 C, U-238
```

3.044E+01,

2.310E+01,

C, AM-241

, NO

4.410E+01,,

0.524

LIMS: Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 13:24:45.70 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 13-JUN-2006 10:07:37.31 

LIMS No., Customer Name, Client ID: WG L28851-9 DRESDEN

Smple Date: 1-JUN-2006 11:20:00.0 : 07L28851-9

Sample ID Geometry : 0735L090904 BKGFILE : 07BG060306MT : WG Sample Type Quantity : 3.29800E+00 L

Pk It	Energy	Area	Bkgnd	FWHM Channel	%Eff	Cts/Sec	%Err	Fit
2 1 3 1	66.31* 139.95* 596.12 609.24*	131 83 60 66	316	1.43 133.20 1.14 280.60 2.25 1193.41 2.06 1219.66	2.09E+00 9.96E-01	7.06E-03 5.09E-03	42.1 36.8	7.52E-01 2.61E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Summary of Nuclide Activity Sample ID: 07L28851-9

Page: 2 Acquisition date : 13-JUN-2006 10:07:37

Total number of lines in spectrum

Number of unidentified lines 4

Number of lines tentatively identified by NID 0

**** There are no nuclides meeting summary criteria **** 0.00%

"M" = Manually accepted
"A" = Nuclide specific abn. limit Flags: "K" = Keyline not found
"E" = Manually edited

Unidentified Energy Lines Sample ID: 07L28851-9 Page: 3
Acquisition date: 13-JUN-2006 10:07:37

It Energy Area Bkgnd FWHM Channel Left Pw Cts/Sec %Err %Eff Flags

1 139.95 83 1 596.12 60 1 609.24 66	101	1.14 2.25 2.06	1193.41	1186	13	7.06E-03 8 5.09E-03 7 5.63E-03 7	73.5	9.96E-01
-------------------------------------------	-----	----------------------	---------	------	----	----------------------------------------	------	----------

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 4
Number of unidentified lines 4
Number of lines tentatively identified by NID 0 0.00%
**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113	-1.110E-01 1.926E-01 2.806E+01 -4.377E+01 9.506E-01 -3.217E-01 4.459E-01 -2.122E-01 -5.564E-01 9.890E-01 -1.506E+00 2.114E+01 -3.098E-01 -1.964E+00 -2.836E-01 -2.641E+00 9.528E+01 1.340E+00 -1.568E+01 -4.676E-01 2.083E+00	2.593E+01 9.023E-01 3.989E+01 2.994E+01 2.722E+00 2.810E+00 2.955E+00 6.395E+00 6.000E+00 3.922E+00 3.761E+00 3.761E+00 2.820E+00 2.820E+00 2.820E+00 2.954E+00 4.345E+02 3.253E+00 2.662E+01 2.729E+00 3.688E+00	4.220E+01 Half-Life to 7.367E+01 4.687E+01 4.599E+00 4.576E+00 4.939E+00 1.057E+01 4.645E+00 1.005E+01 6.309E+00 7.428E+00 5.354E+00 4.416E+00 4.880E+00 8.167E+00 7.164E+02 5.401E+00 4.231E+01 4.427E+00 6.231E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.003  0.381 -0.934 0.207 -0.070 0.090 -0.020 -0.120 0.098 -0.239 2.846 -0.058 -0.445 -0.058 -0.323 0.133 0.248 -0.370 -0.106 0.334 0.001
SB-124 SB-125 TE-129M	3.888E-03 1.261E+00 6.877E+00	7.255E+00 7.251E+00 3.977E+01	5.110E+00 1.199E+01 6.546E+01	0.000E+00 0.000E+00 0.000E+00	0.105

I-131	1.033E-01	7.598E+00	1.257E+01	0.000E+00	0.008
BA-133	5.067E+00	3.813E+00	6.653E+00	0.000E+00	0.762
CS-134	4.587E+00	5.488E+00	5.262E+00	0.000E+00	0.872
CS-136	5.845E-01	4.836E+00	8.065E+00	0.000E+00	0.072
CS-137	-5.395E-01	2.939E+00	4.761E+00	0.000E+00	-0.113
CE-139	1.250E+00	2.772E+00	4.686E+00	0.000E+00	0.267
BA-140	-3.135E+00	1.827E+01	3.005E+01	0.000E+00	-0.104
LA-140	4.915E-01	5.973E+00	9.893E+00	0.000E+00	0.050
CE-141	6.247E+00	6.654E+00	9.589E+00	0.000E+00	0.651
CE-144	-7.835E+00	2.481E+01	3.386E+01	0.000E+00	-0.231
EU-152	-1.935E+01	9.164E+00	1.393E+01	0.000E+00	-1.389
EU-154	4.425E+00	5.706E+00	9.543E+00	0.000E+00	0.464
RA-226	-6.189E+01	7.070E+01	1.147E+02	0.000E+00	-0.540
AC-228	-3.950E+00	1.134E+01	1.805E+01	0.000E+00	-0.219
TH-228	2.443E+00	5.367E+00	8.995E+00	0.000E+00	0.272
TH-232	-3.934E+00	1.129E+01	1.798E+01	0.000E+00	-0.219
U-235	3.264E+01	2.417E+01	3.545E+01	0.000E+00	0.921
U-238	1.239E+02	3.094E+02	5.195E+02	0.000E+00	0.238
AM-241	-4.077E+01	2.754E+01	3.837E+01	0.000E+00	-1.063
1111 21 II	2.0.72702				

```
,06/13/2006 13:24,06/01/2006 11:20,
                                                                 3.298E+00,WG L28851-9 DR
A,07L28851-9
                                             ,06/07/2006 09:32,0735L090904
                     ,LIBD
B,07L28851-9
                                                                   -0.003
                                    2.593E+01,
                                                   4.220E+01,,
                   -1.110E-01,
C, BE-7
           , NO
                                                                    0.381
                                                   7.367E+01,,
           , NO
                     2.806E+01,
                                    3.989E+01,
C, K-40
                                    2.994E+01,
                                                   4.687E+01,,
                                                                   -0.934
                   -4.377E+01,
           , NO
C, CR-51
                                                   4.599E+00,,
                                                                    0.207
                                    2.722E+00,
           , NO
                     9.506E-01,
C,MN-54
                                                                   -0.070
                                                   4.576E+00,,
                                    2.810E+00,
                   -3.217E-01,
C, CO-57
           , NO
                                                   4.939E+00,,
                                                                    0.090
C, CO-58
                     4.459E-01,
                                    2.955E+00,
           , NO
                                                                   -0.020
                                                   1.057E+01,,
           , NO
                                    6.395E+00,
C, FE-59
                    -2.122E-01,
                                                                   -0.120
                                                   4.645E+00,,
                    -5.564E-01,
                                    2.895E+00,
C, CO-60
           , NO
                                                   1.005E+01,,
                                                                     0.098
                                    6.000E+00,
                     9.890E-01,
C, ZN-65
           , NO
                                                                   -0.239
                                                   6.309E+00,,
                                    3.922E+00,
                    -1.506E+00,
C, SE-75
            , NO
                                                   7.428E+00,,
                                                                     2.846
                                    3.761E+00,
                     2.114E+01,
C, SR-85
            , NO
                                                                    -0.058
                                                   5.354E+00,,
                    -3.098E-01,
                                    3.265E+00,
C, Y-88
            , NO
                                                   4.416E+00,,
                                                                    -0.445
                                    2.820E+00,
                    -1.964E+00,
C, NB-94
            , NO
                                                   4.880E+00,,
                                                                    -0.058
                                    2.954E+00,
                    -2.836E-01,
C, NB-95
            , NO
                                                                    -0.323
                                                   8.167E+00,,
                                    5.214E+00,
                    -2.641E+00,
C, ZR-95
            , NO
                                                                     0.133
                                                   7.164E+02,,
                                    4.345E+02,
            , NO
                     9.528E+01,
C, MO-99
                                                   5.401E+00,,
                                                                     0.248
                     1.340E+00,
                                    3.253E+00,
C, RU-103
            , NO
                                    2.662E+01,
                                                   4.231E+01,,
                                                                    -0.370
            , NO
C, RU-106
                    -1.568E+01,
                                                   4.427E+00,,
                                                                    -0.106
                    -4.676E-01,
                                    2.729E+00,
           , NO
C, AG-110m
                                    3.688E+00,
                                                   6.231E+00,,
                                                                     0.334
                     2.083E+00,
C, SN-113
            , NO
                                                                     0.001
                                                   5.110E+00,,
                                    7.255E+00,
                     3.888E-03,
C,SB-124
            , NO
                                                                     0.105
                                                   1.199E+01,,
            , NO
                                    7.251E+00,
                     1.261E+00,
C,SB-125
                                                                     0.105
                                    3.977E+01,
                                                   6.546E+01,,
                     6.877E+00,
C, TE-129M
            , NO
                                                   1.257E+01,,
                                                                     0.008
                     1.033E-01,
                                    7.598E+00,
C, I-131
            , NO
                                                                     0.762
                                    3.813E+00,
                                                   6.653E+00,,
                     5.067E+00,
C, BA-133
            , NO
                                                   5.262E+00,,
                                                                     0.872
                                    5.488E+00,
            , NO
                     4.587E+00,
C, CS-134
                                                    8.065E+00,,
                                                                     0.072
                     5.845E-01,
                                    4.836E+00,
C, CS-136
            , NO
                                                                    -0.113
                                                   4.761E+00,,
                    -5.395E-01,
                                    2.939E+00,
C, CS-137
            , NO
                                                    4.686E+00,,
                                                                     0.267
                                    2.772E+00,
            , NO
C, CE-139
                     1.250E+00,
                                                                    -0.104
                                    1.827E+01,
                                                    3.005E+01,,
                    -3.135E+00,
C, BA-140
            , NO
                                                    9.893E+00,,
                                                                     0.050
                                    5.973E+00,
            , NO
                     4.915E-01,
C, LA-140
                                                                     0.651
                                                    9.589E+00,,
                     6.247E+00,
                                     6.654E+00,
C, CE-141
            , NO
                                                                    -0.231
                                     2.481E+01,
                                                    3.386E+01,,
                    -7.835E+00,
C, CE-144
            , NO
                                                    1.393E+01,,
                                                                    -1.389
                                     9.164E+00,
                    -1.935E+01,
C, EU-152
            , NO
                                                                     0.464
                                                    9.543E+00,,
                     4.425E+00,
                                     5.706E+00,
C, EU-154
            , NO
                                                                    -0.540
                                     7.070E+01,
                                                    1.147E+02,,
                    -6.189E+01,
C, RA-226
            , NO
                                                    1.805E+01,,
                                                                    -0.219
                    -3.950E+00,
                                     1.134E+01,
C, AC-228
            , NO
                                     5.367E+00,
                                                    8.995E+00,,
                                                                     0.272
            ,NO
C, TH-228
                     2.443E+00,
                                                    1.798E+01,,
                                                                    -0.219
                                     1.129E+01,
                    -3.934E+00,
C, TH-232
            , NO
                                                    3.545E+01,,
                                                                     0.921
            , NO
                                     2.417E+01,
C, U-235
                      3.264E+01,
                                                                     0.238
                                                    5.195E+02,,
                      1.239E+02,
                                     3.094E+02,
 C, U-238
            , NO
                                                    3.837E+01,,
                                                                    -1.063
                                     2.754E+01,
```

-4.077E+01,

C, AM-241

, NO

LIMS: Sec. Review: Analyst:

11/1 VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 14:17:41.39

TBE23 03017322 HpGe ****** Aquisition Date/Time: 13-JUN-2006 10:42:16.70 

LIMS No., Customer Name, Client ID: WG L28851-10 DRESDEN

Smple Date: 1-JUN-2006 11:45:00.0 : 23L28851-10 Sample ID

Geometry : 233L082404 Sample Type : WG BKGFILE : 23BG060306MT Quantity : 3.21660E+00 L 

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10	5 0 0 0 0 0 0 0 0 0	33.75* 92.65* 139.55* 185.60* 197.90* 238.12* 582.61* 608.79* 910.65* 1460.72* 1765.08*	25 14 63 8 97 24 32 26 43 15	56 607 440 350 350 311 68 96 34 39 14	1.38 2.80 2.26	67.82 185.54 279.27 371.31 395.90 476.28 1164.92 1217.26 1820.83 2921.07 3530.05	1.94E+00 2.32E+00 2.17E+00 2.11E+00 1.90E+00 9.72E-01 9.41E-01 7.09E-01 5.10E-01	1.95E-03 1.05E-033 4.85E-03 5.90E-044 7.52E-03 1.85E-03 2.47E-03 2.05E-03 3.31E-03 1.19E-03 6.76E-04	371.4 62.7 492.7 38.2 147.3 57.1 87.4 37.6	2.21E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nucliae	Type: nacura	<b>a</b>			Uncorrected	Decay Corr	2-Sigma
Nuclide K-40	Energy 1460.81	Area 15 8	%Abn 10.67* 3.28*	%Eff 5.096E-01 2.175E+00	pCi/L 1.836E+01 6.950E+00	pCi/L 1.836E+01 6.950E+00	%Error 279.14 985.35
RA-226 AC-228	186.21 835.50	0	1.75	7.515E-01	Li	ne Not Found	
	911.07	43	27.70* 44.60*	7.086E-01 1.903E+00	1.415E+01 1.836E+00	1.421E+01 1.858E+00	75.15 294.68
TH-228	238.63 240.98	24	3.95	1.888E+00		ne Not Found	
TH-232	583.14 911.07 969.11	32 43	30.25 27.70* 16.60	9.720E-01 7.086E-01 6.793E-01	7.054E+00 1.415E+01 Li:	7.054E+00 1.415E+01 ne Not Found	114.19 75.15

Summary of Nuclide Activity

Acquisition date: 13-JUN-2006 10:42:16 Sample ID : 23L28851-10

Total number of lines in spectrum 11 6

Number of unidentified lines Number of lines tentatively identified by NID 5 45.45%

Nuclide Type : natural

RA-226 AC-228 TH-228	Hlife 1.28E+09Y 1600.00Y 5.75Y 1.91Y 1.41E+10Y	Decay 1.00 1.00 1.00 1.01	6.950E+00 1.415E+01 1.836E+00 1.415E+01	Decay Corr pCi/L 1.836E+01 6.950E+00 1.421E+01 1.858E+00 1.415E+01	Decay Corr 2-Sigma Error 5.124E+01 68.48E+00 1.068E+01 5.475E+00 1.064E+01	2-Sigma %Error Flags 279.14 985.35 75.15 294.68 75.15
	Total Acti	vity:	5.545E+01	5.552E+01		

Grand Total Activity : 5.545E+01 5.552E+01

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 23L28851-10

Acquisition date: 13-JUN-2006 10:42:16

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
5 0 0 0 0	33.75 92.65 139.55 197.90 608.79 1765.08	25 14 63 97 26 9	607 440 350 96	1.26 0.86 1.11 1.62 1.38 1.46	279.27 395.90 1217.26	181 276 392 1211	10 8 9 12	1.95E-03 1.05E-03 4.85E-03 7.52E-03 2.05E-03 6.76E-04	**** **** 76.3 ***	1.94E+00 2.32E+00 2.11E+00 9.41E-00	0 0 0 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

11 Total number of lines in spectrum Number of unidentified lines 6
Number of lines tentatively identified by NID 5 45.45%

Nuclide Type : natural

	-11		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide K-40 RA-226 AC-228 TH-228	Hlife 1.28E+09Y 1600.00Y 5.75Y 1.91Y 1.41E+10Y	Decay 1.00 1.00 1.00 1.01	pCi/L 1.836E+01 6.950E+00 7.098E+00 1.836E+00 7.054E+00	pCi/L 1.836E+01 6.950E+00 7.127E+00 1.858E+00 7.054E+00  4.134E+01	2-Sigma Error 5.124E+01 68.48E+00 13.39E+00 5.475E+00 8.054E+00	%Error Flags 279.14 985.35 187.94 294.68 114.19	3
	Total Acti	·ATCA :	4.1235+01	4.1041101			

Grand Total Activity: 4.129E+01 4.134E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Interfe	ring	Interfered			
Nuclide	Line	Nuclide	Line		
TH-232	911.07	AC-228	911.07		

Combined Activity-MDA Report

## ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226 AC-228 TH-228 TH-232	1.836E+01 6.950E+00 7.127E+00 1.858E+00 7.054E+00	5.124E+01 6.848E+01 1.339E+01 5.475E+00 8.054E+00	4.660E+01 1.163E+02 1.723E+01 8.696E+00 1.710E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.394 0.060 0.414 0.214 0.412

# ---- Non-Identified Nuclides ----

Nuclide		L. Act error led	MDA (pCi/L)	MDA error	Act/MDA
BE-7	3.804E+00	2.660E+01	4.551E+01	0.000E+00	0.084
NA-24	-3.247E-01	8.590E-01	Half-Life to		4 000
CR-51	-5.612E+01	3.194E+01	5.109E+01	0.000E+00	-1.098
MN-54	1.347E+00	2.741E+00	4.875E+00	0.000E+00	0.276
CO-57	-4.173E+00	2.984E+00	4.861E+00	0.000E+00	-0.858
CO-58	1.180E+00	2.943E+00	5.215E+00	0.000E+00	0.226
FE-59	-1.519E+00	5.855E+00	1.011E+01	0.000E+00	-0.150
CO-60	8.007E-01	2.694E+00	4.860E+00	0.000E+00	0.165 0.310
ZN-65	3.315E+00	5.867E+00	1.068E+01	0.000E+00	-0.413
SE-75	-2.789E+00	4.032E+00	6.750E+00	0.000E+00	2.041
SR-85	1.427E+01	3.648E+00	6.991E+00	0.000E+00	-1.012
Y-88	-4.255E+00	2.831E+00	4.206E+00	0.000E+00	0.541
NB-94	2.479E+00	2.504E+00	4.583E+00	0.000E+00	0.462
NB-95	2.498E+00	2.978E+00	5.402E+00	0.000E+00 0.000E+00	-0.428
ZR-95	-3.778E+00	5.325E+00	8.819E+00	0.000E+00	-0.428
MO-99	-1.197E+02	3.769E+02	6.424E+02		-0.188
RU-103	-1.254E+00	3.453E+00	5.754E+00	0.000E+00 0.000E+00	0.184
RU-106	8.419E+00	2.591E+01	4.575E+01	0.000E+00	0.337
AG-110m	1.584E+00	2.615E+00	4.700E+00		0.059
SN-113	3.724E-01	3.715E+00	6.361E+00	0.000E+00 0.000E+00	-1.872
SB-124	-8.843E+00	3.907E+00	4.725E+00	0.000E+00	0.341
SB-125	4.827E+00	8.109E+00	1.414E+01	0.000E+00	-0.687
TE-129M	-4.242E+01	3.835E+01	6.171E+01	0.000E+00	0.198
I-131	2.609E+00	7.601E+00	1.315E+01	0.000E+00	-0.087
BA-133	-5.762E-01	3.897E+00	6.602E+00	0.000E+00	-0.323
CS-134	-1.661E+00	3.638E+00	5.140E+00	0.000E+00	-0.041
CS-136	-3.413E-01	4.865E+00	8.380E+00	0.000E+00	0.557
CS-137	3.015E+00	2.964E+00	5.416E+00	0.000E+00	-0.281
CE-139	-1.440E+00	3.100E+00	5.126E+00 3.194E+01	0.000E+00	0.336
BA-140	1.075E+01	1.825E+01	9.738E+01	0.000E+00	0.256
LA-140	2.495E+00	5.167E+00	1.073E+01	0.000E+00	-0.335
CE-141	-3.592E+00	7.670E+00		0.000E+00	-0.194
CE-144	-7.617E+00	2.783E+01	3.930E+01 1.495E+01	0.000E+00	-0.915
EU-152	-1.368E+01	9.269E+00	1.495E+01 1.001E+01	0.000E+00	-0.678
EU-154	-6.786E+00	6.106E+00	3.902E+01	0.000E+00	-0.023
U-235	-8.937E-01	2.787E+01	4.741E+02	0.000E+00	-0.218
U-238	-1.036E+02	2.876E+02	4.741E+02 2.788E+01	0.000E+00	-0.257
AM-241	-7.161E+00	1.707E+01	Z./OOE+UI	0.0000	0,20,

-0.257

2.788E+01,,

```
3.217E+00,WG L28851-10 D
                     ,06/13/2006 14:17,06/01/2006 11:45,
A,23L28851-10
                                             ,06/01/2006 10:14,233L082404
B,23L28851-10
                     ,LIBD
                                                   4.660E+01,,
                                                                    0.394
                                    5.124E+01,
C, K-40
           , YES,
                     1.836E+01,
                                                   1.163E+02,,
                                                                    0.060
                                    6.848E+01,
                     6.950E+00,
C, RA-226
           , YES,
                                                   1.723E+01,,
                                                                    0.414
                     7.127E+00,
                                    1.339E+01,
C, AC-228
            ,YES,
                                                                    0.214
                                    5.475E+00,
                                                   8.696E+00,,
C, TH-228
           ,YES,
                     1.858E+00,
                                                   1.710E+01,,
                                                                    0.412
                     7.054E+00,
                                    8.054E+00,
C, TH-232
            , YES,
                                                   4.551E+01,,
                                                                    0.084
                                    2.660E+01,
            , NO
                     3.804E+00,
C, BE-7
                                                                   -1.098
                                                   5.109E+01,,
                                    3.194E+01,
                    -5.612E+01,
            , NO
C, CR-51
                                                   4.875E+00,,
                                                                    0.276
                                    2.741E+00,
            , NO
                     1.347E+00,
C,MN-54
                                                   4.861E+00,,
                                                                   -0.858
                    -4.173E+00,
                                    2.984E+00,
C, CO-57
            , NO
                                                   5.215E+00,,
                                                                     0.226
                                    2.943E+00,
                     1.180E+00,
C, CO-58
            , NO
                                                                   -0.150
                                                   1.011E+01,,
                    -1.519E+00,
                                    5.855E+00,
C, FE-59
            , NO
                                                                     0.165
                                                   4.860E+00,,
                                    2.694E+00,
            , NO
                     8.007E-01,
C,CO-60
                                                                     0.310
                                                   1.068E+01,,
                                    5.867E+00,
            , NO
                     3.315E+00,
C, ZN-65
                                                                   -0.413
                                                   6.750E+00,,
                    -2.789E+00,
                                    4.032E+00,
C,SE-75
            , NO
                                                                     2.041
                                    3.648E+00,
                                                   6.991E+00,,
C, SR-85
            ,NO
                     1.427E+01,
                                                   4.206E+00,,
                                                                   -1.012
                    -4.255E+00,
                                    2.831E+00,
C, Y-88
            , NO
                                                                     0.541
                                    2.504E+00,
                                                   4.583E+00,,
            , NO
                     2.479E+00,
C, NB-94
                                                   5.402E+00,,
                                                                     0.462
                                    2.978E+00,
                     2.498E+00,
C, NB-95
            , NO
                                                   8.819E+00,,
                                                                    -0.428
                                    5.325E+00,
C, ZR-95
            , NO
                    -3.778E+00,
                                                                    -0.186
                                                   6.424E+02,,
                    -1.197E+02,
                                    3.769E+02,
            , NO
C,MO-99
                                                                    -0.218
                                    3.453E+00,
                                                   5.754E+00,,
                    -1.254E+00,
C, RU-103
            , NO
                                                                     0.184
                                    2.591E+01,
                                                   4.575E+01,,
                     8.419E+00,
            , NO
C, RU-106
                                                   4.700E+00,,
                                                                     0.337
                                    2.615E+00,
            ,NO
                     1.584E+00,
C, AG-110m
                                                                     0.059
                                                   6.361E+00,,
                                    3.715E+00,
C, SN-113
            , NO
                     3.724E-01,
                                                                    -1.872
                                                   4.725E+00,,
            , NO
                    -8.843E+00,
                                    3.907E+00,
C,SB-124
                                                                     0.341
            , NO
                                    8.109E+00,
                                                   1.414E+01,,
C,SB-125
                     4.827E+00,
                                                    6.171E+01,,
                                                                    -0.687
                                    3.835E+01,
            , NO
                    -4.242E+01,
C, TE-129M
                                                   1.315E+01,,
                                                                     0.198
                                    7.601E+00,
                     2.609E+00,
C, I-131
            , NO
                                                                    -0.087
                                                    6.602E+00,,
                                    3.897E+00,
            , NO
                    -5.762E-01,
C,BA-133
                                                    5.140E+00,,
                                                                    -0.323
            , NO
                    -1.661E+00,
                                     3.638E+00,
C, CS-134
                                                                    -0.041
                    -3.413E-01,
                                    4.865E+00,
                                                    8.380E+00,,
            , NO
C,CS-136
                                     2.964E+00,
                                                    5.416E+00,,
                                                                     0.557
                     3.015E+00,
C, CS-137
            , NO
                                                    5.126E+00,,
                                                                    -0.281
                                     3.100E+00,
                    -1.440E+00,
C, CE-139
            , NO
                                                                     0.336
                                                    3.194E+01,,
                                     1.825E+01,
            , NO
                     1.075E+01,
C, BA-140
                                                                     0.256
                                                    9.738E+00,,
            , NO
                     2.495E+00,
                                     5.167E+00,
C, LA-140
                                                                    -0.335
                                                    1.073E+01,,
                    -3.592E+00,
                                     7.670E+00,
 C, CE-141
            , NO
                                     2.783E+01,
                                                    3.930E+01,,
                                                                    -0.194
                    -7.617E+00,
C, CE-144
            , NO
                                                    1.495E+01,,
                                                                    -0.915
                                     9.269E+00,
                    -1.368E+01,
 C, EU-152
            , NO
                                                    1.001E+01,,
                                                                    -0.678
                                     6.106E+00,
                    -6.786E+00,
 C, EU-154
            , NO
                                                    3.902E+01,,
                                                                    -0.023
                     -8.937E-01,
                                     2.787E+01,
 C, U-235
            , NO
                                                                    -0.218
                                                    4.741E+02,,
                     -1.036E+02,
                                     2.876E+02,
 C, U-238
            , NO
```

1.707E+01,

-7.161E+00,

C,AM-241

,NO ,

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 15:58:41.27 TBE13 P-10727B HpGe ******* Aquisition Date/Time: 13-JUN-2006 13:22:29.95

LIMS No., Customer Name, Client ID: WG L28851-11 DRESDEN

Smple Date: 30-MAY-2006 14:10:00. : 13L28851-11 Sample ID

Geometry : 133L082404 : WG Sample Type BKGFILE : 13BG060306MT : 3.25340E+00 L Quantity

Pk :	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 1 1	92.79* 140.06* 185.58* 198.73* 238.32* 351.76* 595.74 609.18* 1238.67* 1461.10* 1764.66*	16 59 10 68 16 36 46 35 8 13	332 264 231 315 225 81 94 80 27 11	2.92	185.54 280.09 371.14 397.44 476.62 703.53 1191.62 1218.52 2478.24 2923.50 3531.27	2.27E+00 2.18E+00 2.12E+00 1.94E+00 1.51E+00 1.02E+00 1.01E+00 5.80E-01 5.14E-01	1.11E-03293.7 7.29E-03 53.7 1.66E-03199.2 3.86E-03 52.1 4.94E-03 43.0 3.72E-03 59.0 8.90E-04138.7	8.92E-01 1.81E+00 1.91E+00 1.70E+00 8.30E-01 2.49E+00 1.13E+00 1.45E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide	Type: natura	3.T			Uncorrected	Decay Corr	2-Sigma
Nuclide K-40 RA-226 TH-228 U-235	Energy 1460.81 186.21 238.63 240.98 143.76 163.35 185.71	Area 13 10 16 	%Abn 10.67* 3.28* 44.60* 3.95 10.50* 4.70 54.00	%Eff 5.143E-01 2.180E+00 1.939E+00 1.927E+00 2.278E+00 2.256E+00 2.180E+00	pCi/L 2.112E+01 1.285E+01 1.592E+00 Lin Lin 7.805E-01	pCi/L 2.112E+01 1.285E+01 1.614E+00 ne Not Found ne Not Found ne Not Found 7.805E-01	%Error 209.92 587.38 398.44  587.38
	205.31		4.70	2.093E+00		ne Not Found	

Summary of Nuclide Activity

Acquisition date: 13-JUN-2006 13:22:29 Sample ID : 13L28851-11

Total number of lines in spectrum 11 Number of unidentified lines 8

Number of lines tentatively identified by NID 27.27% 3

Nuclide Type : natural

Nuclide K-40 RA-226 TH-228	1.28E+09Y 1600.00Y 1.91Y	Decay 1.00 1.00 1.01	pCi/L 2.112E+01 1.285E+01 1.592E+00	2.112E+01 1.285E+01 1.614E+00	4.433E+01 7.547E+01 6.431E+00	209.92 587.38 398.44	
TH-228 U-235	7.04E+08Y			7.805E-01	45.84E-01	587.38	K
			2 (242,01	3 636E±01			

Total Activity: 3.634E+01 3.636E+01

Grand Total Activity: 3.634E+01 3.636E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 13L28851-11

Page: 3 Acquisition date: 13-JUN-2006 13:22:29

Samp	TE ID :	T2HZ002T			•	_					
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1	92.79 140.06 198.73 351.76 595.74 609.18 1238.67 1764.66	16 59 68 36 46 35 8	332 264 315 81 94 80 27 14	1.04 1.69 1.74 1.10 1.53 1.51 2.17 4.03	1218.52 2478.24	700 1186 1213 2471	8 11 7 11 11	1.70E-03 6.31E-03 7.29E-03 3.86E-03 4.94E-03 3.72E-03 8.90E-04 1.34E-03	**** **** 86.0 ***	1.74E+0 2.27E+0 2.12E+0 1.51E+0 1.02E+0 1.01E+0 5.80E-0 4.55E-0	0 0 0 0 0 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 11 Number of unidentified lines Number of lines tentatively identified by NID 3 27.27%

Nuclide Type : natural

Nuclide :	rype : nacu.		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	+
1	Hlife 1.28E+09Y 1600.00Y 1.91Y	Decay 1.00 1.00 1.01	pCi/L 2.112E+01 1.285E+01	pCi/L 2.112E+01 1.285E+01 1.614E+00  3.558E+01	2-Sigma Error 4.433E+01 7.547E+01 6.431E+00	%Error 209.92 587.38 398.44	F1ags

3.558E+01 Grand Total Activity: 3.556E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

# ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	2.112E+01	4.433E+01	4.205E+01	0.000E+00	0.502
RA-226	1.285E+01	7.547E+01	1.155E+02	0.000E+00	0.111
TH-228	1.614E+00	6.431E+00	8.290E+00	0.000E+00	0.195

# ---- Non-Identified Nuclides ----

	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide	(pci/L)	raea		(F - / - /		

BE-7	-1.019E+01	2.842E+01	4.500E+01	0.000E+00	-0.226
NA-24	-6.049E+00	9.912E+00	Half-Life to		0.000
CR-51	-1.161E+01	3.481E+01	5.712E+01	0.000E+00	-0.203
MN-54	1.669E+00	3.128E+00	5.339E+00	0.000E+00	0.313
CO-57	6.124E-01	2.835E+00	4.681E+00	0.000E+00	0.131
CO-58	-2.066E+00	3.427E+00	5.385E+00	0.000E+00	-0.384
FE-59	8.709E+00	6.844E+00	1.247E+01	0.000E+00	0.698
CO-60	7.048E-01	3.323E+00	5.605E+00	0.000E+00	0.126
ZN-65	5.197E+00	6.715E+00	1.175E+01	0.000E+00	0.442
ZN-65 SE-75	6.599E-01	4.576E+00	7.504E+00	0.000E+00	0.088
	1.797E+01	4.144E+00	8.038E+00	0.000E+00	2.236
SR-85 Y-88	-1.459E+00	3.797E+00	5.940E+00	0.000E+00	-0.246
Y-88 NB-94	-2.032E+00	2.874E+00	4.559E+00	0.000E+00	-0.446
	2.055E+00	3.604E+00	6.183E+00	0.000E+00	0.332
NB-95 ZR-95	-2.845E+00	6.059E+00	9.692E+00	0.000E+00	-0.294
	1.002E+03	8.551E+02	1.517E+03	0.000E+00	0.661
MO-99	1.589E+00	3.948E+00	6.707E+00	0.000E+00	0.237
RU-103	-1.953E+01	3.091E+01	4.857E+01	0.000E+00	-0.402
RU-106	-1.953E+01 -1.582E+00	3.084E+00	4.845E+00	0.000E+00	-0.326
AG-110m	-1.582E+00 -1.797E+00	4.187E+00	6.728E+00	0.000E+00	-0.267
SN-113		9.749E+00	6.470E+00	0.000E+00	-0.690
SB-124	-4.464E+00	8.788E+00	1.472E+01	0.000E+00	0.283
SB-125	4.165E+00	4.591E+01	7.608E+01	0.000E+00	0.216
TE-129M	1.640E+01	1.024E+01	1.678E+01	0.000E+00	-0.104
I-131	-1.742E+00	4.876E+00	6.819E+00	0.000E+00	-0.050
BA-133	-3.410E-01	6.048E+00	6.219E+00	0.000E+00	0.299
CS-134	1.859E+00	5.841E+00	9.733E+00	0.000E+00	0.098
CS-136	9.534E-01	3.250E+00	5.334E+00	0.000E+00	0.246
CS-137	1.314E+00	3.250E+00 3.084E+00	5.020E+00	0.000E+00	0.162
CE-139	8.146E-01	2.213E+01	3.718E+01	0.000E+00	0.150
BA-140	5.581E+00	2.213E+01 7.881E+00	1.363E+01	0.000E+00	0.347
LA-140	4.727E+00	7.881E+00 7.733E+00	1.092E+01	0.000E+00	0.235
CE-141	2.564E+00		3.614E+01	0.000E+00	-0.287
CE-144	-1.036E+01	2.529E+01	1.546E+01	0.000E+00	-0.988
EU-152	-1.527E+01	1.119E+01	9.562E+00	0.000E+00	0.012
EU-154	1.187E-01	5.833E+00	2.167E+01	0.000E+00	0.395
AC-228	8.568E+00	1.275E+01	2.167E+01 2.157E+01	0.000E+00	0.395
TH-232	8.528E+00	1.269E+01	2.15/E+01 3.692E+01	0.000E+00	-0.121
U-235	-4.472E+00	2.680E+01	5.492E+01	0.000E+00	-0.311
U-238	-1.708E+02	3.521E+02	5.492E+02 4.082E+01	0.000E+00	-0.842
AM-241	-3.438E+01	2.650E+01	4.0025+01	0.000100	

-0.842

4.082E+01,,

```
3.253E+00,WG L28851-11 D
                     ,06/13/2006 15:58,05/30/2006 14:10,
A,13L28851-11
                                             ,06/13/2006 09:43,133L082404
                     , LIBD
B,13L28851-11
                                                                     0.502
                                                   4.205E+01,,
                                    4.433E+01,
                     2.112E+01,
           , YES,
C, K-40
                                                   1.155E+02,,
                                                                     0.111
                                    7.547E+01,
C, RA-226
           , YES,
                     1.285E+01,
                                                                     0.195
                                                   8.290E+00,,
                     1.614E+00,
                                    6.431E+00,
C, TH-228
           ,YES,
                                                   4.500E+01,,
                                                                   -0.226
                                    2.842E+01,
           , NO
                    -1.019E+01,
C,BE-7
                                                                   -0.203
                                    3.481E+01,
                                                   5.712E+01,,
                    -1.161E+01,
            , NO
C, CR-51
                                                                     0.313
                                                   5.339E+00,,
                                    3.128E+00,
                     1.669E+00,
C, MN-54
            , NO
                                                                     0.131
                                                   4.681E+00,,
                                    2.835E+00,
            , NO
                     6.124E-01,
C, CO-57
                                                                    -0.384
                                                   5.385E+00,,
                                    3.427E+00,
                    -2.066E+00,
            , NO
C, CO-58
                                                                     0.698
                                    6.844E+00,
                                                   1.247E+01,,
            , NO
                     8.709E+00,
C, FE-59
                                                                     0.126
                                                   5.605E+00,,
                                    3.323E+00,
                     7.048E-01,
            , NO
C, CO-60
                                    6.715E+00,
                                                   1.175E+01,,
                                                                     0.442
                     5.197E+00,
C, ZN-65
            , NO
                                                                     0.088
                                                   7.504E+00,,
                                    4.576E+00,
                     6.599E-01,
C, SE-75
            , NO
                                                   8.038E+00,,
                                                                     2.236
                                    4.144E+00,
            , NO
                     1.797E+01,
C,SR-85
                                                                    -0.246
                                    3.797E+00,
                                                   5.940E+00,,
            , NO
                    -1.459E+00,
C, Y-88
                                                   4.559E+00,,
                                                                    -0.446
                                    2.874E+00,
                    -2.032E+00,
C, NB-94
            , NO
                                                                     0.332
                                                   6.183E+00,,
                                    3.604E+00,
            , NO
                     2.055E+00,
C, NB-95
                                                   9.692E+00,,
                                                                    -0.294
                                    6.059E+00,
            , NO
                    -2.845E+00,
C, ZR-95
                                                                     0.661
                                                   1.517E+03,,
                                    8.551E+02,
                     1.002E+03,
C,MO-99
            , NO
                                                                     0.237
                                                   6.707E+00,,
                                    3.948E+00,
                     1.589E+00,
            , NO
C, RU-103
                                                                    -0.402
                                                   4.857E+01,,
                                    3.091E+01,
            , NO
                    -1.953E+01,
C, RU-106
                                                   4.845E+00,,
                                                                    -0.326
                                    3.084E+00,
C, AG-110m
            , NO
                    -1.582E+00,
                                                                    -0.267
                                                   6.728E+00,,
                                    4.187E+00,
                    -1.797E+00,
C, SN-113
            , NO
                                                                    -0.690
                                                   6.470E+00,,
                    -4.464E+00,
                                     9.749E+00,
            , NO
C,SB-124
                                                   1.472E+01,,
                                                                     0.283
                                    8.788E+00,
                     4.165E+00,
C,SB-125
            , NO
                                                                     0.216
                                                    7.608E+01,,
                                    4.591E+01,
                     1.640E+01,
C,TE-129M
            , NO
                                                    1.678E+01,,
                                                                    -0.104
                                     1.024E+01,
C, I-131
            , NO
                    -1.742E+00,
                                                    6.819E+00,,
                                                                    -0.050
                                     4.876E+00,
            , NO
                    -3.410E-01,
C, BA-133
                                                                     0.299
                                                    6.219E+00,,
                     1.859E+00,
                                     6.048E+00,
            , NO
C, CS-134
                                                                     0.098
                                                    9.733E+00,,
                                     5.841E+00,
                      9.534E-01,
C, CS-136
            , NO
                                                                     0.246
                                                    5.334E+00,,
                                     3.250E+00,
                     1.314E+00,
C, CS-137
            , NO
                                                                     0.162
                                                    5.020E+00,,
                                     3.084E+00,
            , NO
C, CE-139
                      8.146E-01,
                                                                     0.150
                                                    3.718E+01,,
            , NO
                      5.581E+00,
                                     2.213E+01,
 C,BA-140
                                                                     0.347
                                                    1.363E+01,,
                      4.727E+00,
                                     7.881E+00,
 C, LA-140
            , NO
                                                                     0.235
                                     7.733E+00,
                                                    1.092E+01,,
                      2.564E+00,
            , NO
 C, CE-141
                                                    3.614E+01,,
                                                                    -0.287
                                     2.529E+01,
                     -1.036E+01,
 C, CE-144
            , NO
                                                                    -0.988
                                                    1.546E+01,,
                                     1.119E+01,
            ,NO
                     -1.527E+01,
 C, EU-152
                                                    9.562E+00,,
                                                                     0.012
                      1.187E-01,
                                     5.833E+00,
 C, EU-154
            ,NO
                                                                     0.395
                                                    2.167E+01,,
                      8.568E+00,
                                     1.275E+01,
             , NO
 C, AC-228
                                                                     0.395
                                     1.269E+01,
                                                    2.157E+01,,
                      8.528E+00,
             , NO
 C, TH-232
                                                    3.692E+01,,
                                                                    -0.121
                                     2.680E+01,
                     -4.472E+00,
 C, U-235
             , NO
                                                    5.492E+02,,
                                                                    -0.311
                                     3.521E+02,
                     -1.708E+02,
 C, U-238
             , NO
```

2.650E+01,

C, AM-241

, NO

-3.438E+01,

Analyst: WLMS: V Sec. Review:

______

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 16:29:54.41 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 13-JUN-2006 13:29:48.93

______

LIMS No., Customer Name, Client ID: WG L28851-12 DRESDEN

Smple Date: 30-MAY-2006 15:15:00. : 04L28851-12 Sample ID

Geometry : 043L082004 : WG Sample Type BKGFILE: 04BG060306MT : 3.07470E+00 L Quantity End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 03:00:00.00 MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.37*	71	274	1.50	133.39	6.65E-01	6.58E-03	43.4	1.49E+00
2	1	139.77	75	255	1.28	280.12	2.04E+00	6.91E-03	40.5	1.41E+00
3	1	175.32	52	212	1.92	351.19	1.97E+00	4.78E-03	52.8	1.65E+00
4	1	185.85*	31	214	2.33	372.24	1.92E+00	2.85E-03	98.9	8.41E-01
5	1	198.64*	46	192	1.37	397.81	1.86E+00	4.30E-03	62.6	1.39E+00
6	1	238.53*	28	168	1.59	477.56	1.68E+00	2.55E-03	99.7	1.63E+00
7	1	351.87*	32	89	1.96	704.14	1.28E+00	3.00E-03	64.9	2.59E+00
8	1	595.60	50	94	2.71	1191.42	8.63E-01	4.63E-03	39.6	2.82E+00
9	1	609.21*	34	81	1.53	1218.63	8.49E-01	3.15E-03	62.3	5.52E+00
10	1	1333.70	58	14	1.38	2667.28	4.60E-01	5.35E-03	16.6	1.01E+01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
RA-226	186.21	31	3.28*	1.922E+00	3.973E+01	3.973E+01	197.85
TH-228	238.63	28	44.60*	1.680E+00	2.990E+00	3.031E+00	199.30
	240.98		3.95	1.669E+00	Li	ne Not Found	
U-235	143.76		10.50*	2.041E+00	Li	ne Not Found	
	163.35		4.70	2.007E+00	Li:	ne Not Found	
	185.71	31	54.00	1.922E+00	2.413E+00	2.413E+00	197.85
	205.31		4.70	1.833E+00	Li:	ne Not Found	

Summary of Nuclide Activity Sample ID: 04L28851-12

Acquisition date : 13-JUN-2006 13:29:48

10

8

Total number of lines in spectrum

Number of unidentified lines

Number of lines tentatively identified by NID 2 20.00%

Nuclide Type : natural

Nuclide RA-226 TH-228 U-235	Hlife 1600.00Y 1.91Y 7.04E+08Y	Decay 1.00 1.01	Uncorrected pCi/L 3.973E+01 2.990E+00 2.413E+00	Decay Corr pCi/L 3.973E+01 3.031E+00 2.413E+00	2-Sigma %Error 197.85 199.30 197.85	_

Total Activity : 4.513E+01 4.517E+01

Grand Total Activity: 4.513E+01 4.517E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

0.251

0.000E+00

Unidentified Energy Lines Sample ID : 04L28851-12

Page: 3 Acquisition date : 13-JUN-2006 13:29:48

20.00%

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1	66.37 139.77 175.32 198.64 351.87 595.60 609.21 1333.70	71 75 52 46 32 50 34 58	274 255 212 192 89 94 81 14	1.50 1.28 1.92 1.37 1.96 2.71 1.53	1218.63	700 1186 1214	9 10 10 11	6.58E-03 6.91E-03 4.78E-03 4.30E-03 3.00E-03 4.63E-03 3.15E-03 5.35E-03	81.1 **** **** 79.2 ****	6.65E-03 2.04E+00 1.97E+00 1.86E+00 1.28E+00 8.63E-03 8.49E-03	0 0 0 0 0 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

10 Total number of lines in spectrum Number of unidentified lines 8 Number of lines tentatively identified by NID 2

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Hlife Decay pCi/L pCi/L 2-Sigma Error %Error 1600.00Y 1.00 3.973E+01 3.973E+01 7.860E+01 197.85 1.91Y 1.01 2.990E+00 3.031E+00 6.042E+00 199.30 2-Sigma Error %Error Flags Nuclide RA-226 TH-228 ______ 4.272E+01 4.276E+01 Total Activity:

Grand Total Activity: 4.272E+01 4.276E+01

"M" = Manually accepted Flags: "K" = Keyline not found

1.277E+01 2.997E+01

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

BE-7

No interference correction performed

Combined Activity-MDA Report

## ---- Identified Nuclides ----

Idelicitie	Identified Natified											
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA							
RA-226 TH-228	3.973E+01 3.031E+00	7.860E+01 6.042E+00	1.147E+02 9.014E+00	0.000E+00 0.000E+00	0.346 0.336							
Non-Iden	tified Nuclides											
Nuclide	Key-Line Activity K.L. (pCi/L) Ided		MDA (pCi/L)	MDA error	Act/MDA							

5.083E+01

	-1.968E+01	9.432E+00	Half-Life to	short	
NA-24	5.617E+00	4.409E+01	8.179E+01	0.000E+00	0.069
K-40		3.618E+01	5.910E+01	0.000E+00	-0.153
CR-51	-9.061E+00	3.100E+00	4.743E+00	0.000E+00	-0.435
MN-54	-2.061E+00	2.777E+00	4.553E+00	0.000E+00	0.087
CO-57	3.976E-01	3.569E+00	6.012E+00	0.000E+00	0.256
CO-58	1.536E+00	7.967E+00	1.350E+01	0.000E+00	0.289
FE-59	3.897E+00	3.756E+00	6.269E+00	0.000E+00	0.167
CO-60	1.050E+00		1.212E+01	0.000E+00	0.249
ZN-65	3.021E+00	7.045E+00	6.912E+00	0.000E+00	-0.362
SE-75	-2.503E+00	4.386E+00	8.437E+00	0.000E+00	2.276
SR-85	1.920E+01	4.330E+00	6.564E+00	0.000E+00	-0.184
Y-88	-1.209E+00	4.122E+00	5.097E+00	0.000E+00	0.063
NB-94	3.234E-01	3.070E+00	5.512E+00	0.000E+00	0.239
NB-95	1.316E+00	3.260E+00	9.739E+00	0.000E+00	-0.170
ZR-95	-1.656E+00	6.077E+00	1.190E+03	0.000E+00	-0.284
MO-99	-3.377E+02	7.519E+02		0.000E+00	0.091
RU-103	5.984E-01	3.955E+00	6.581E+00	0.000E+00	-0.156
RU-106	-7.860E+00	3.220E+01	5.051E+01	0.000E+00	-0.462
AG-110m	-2.346E+00	3.224E+00	5.073E+00	0.000E+00	0.373
SN-113	2.720E+00	4.331E+00	7.297E+00	0.000E+00	-0.445
SB-124	-2.578E+00	8.703E+00	5.789E+00	0.000E+00	-0.628
SB-125	-9.059E+00	9.135E+00	1.442E+01	0.000E+00	-0.014
TE-129M	-9.958E-01	4.403E+01	7.293E+01	0.000E+00	0.586
I-131	1.034E+01	1.023E+01	1.764E+01	0.000E+00	0.368
BA-133	2.588E+00	4.859E+00	7.039E+00		0.330
CS-134	1.894E+00	5.605E+00	5.749E+00	0.000E+00	-0.071
CS-136	-7.371E-01	6.437E+00	1.038E+01	0.000E+00	0.256
CS-137	1.477E+00	3.380E+00	5.764E+00	0.000E+00	-0.003
CE-139	-1.362E-02	2.920E+00	4.863E+00	0.000E+00	-0.003
BA-140	-1.986E+00	2.254E+01	3.674E+01	0.000E+00	-0.054
LA-140	-1.028E+01	7.900E+00	1.084E+01	0.000E+00	0.262
CE-141	2.679E+00	7.261E+00	1.022E+01	0.000E+00	
CE-144	-1.482E+01	2.441E+01	3.425E+01	0.000E+00	-0.433
EU-152	-1.219E+01	1.142E+01	1.527E+01	0.000E+00	-0.798
EU-154	1.314E+00	5.665E+00	9.313E+00	0.000E+00	0.141
AC-228	1.095E+01	1.283E+01	2.249E+01	0.000E+00	0.487
TH-232	1.090E+01	1.277E+01	2.238E+01	0.000E+00	0.487
U-235	3.576E+00	2.527E+01	3.517E+01	0.000E+00	0.102
U-238	1.647E+01	3.623E+02	5.963E+02	0.000E+00	0.028
0-238 AM-241	-8.510E+00	3.047E+01	4.721E+01	0.000E+00	-0.180
HIM - 7.4 T	0.5101.00	<del> </del>			

-0.180

4.721E+01,,

```
3.075E+00,WG L28851-12 D
                     ,06/13/2006 16:29,05/30/2006 15:15,
A,04L28851-12
                                             ,06/13/2006 09:42,043L082004
                     ,LIBD
B,04L28851-12
                                                                    0.346
                                                   1.147E+02,,
                                    7.860E+01,
                     3.973E+01,
C, RA-226
           ,YES,
                                                                    0.336
                                                   9.014E+00,,
                                    6.042E+00,
                     3.031E+00,
           , YES,
C, TH-228
                                                                    0.251
                                                   5.083E+01,,
                                    2.997E+01,
                     1.277E+01,
C, BE-7
            , NO
                                                                    0.069
                                                   8.179E+01,,
                                    4.409E+01,
                     5.617E+00,
            , NO
C, K-40
                                                   5.910E+01,,
                                                                   -0.153
                                    3.618E+01,
                    -9.061E+00,
            , NO
C, CR-51
                                                                    -0.435
                                                   4.743E+00,,
                                    3.100E+00,
                    -2.061E+00,
            , NO
C, MN-54
                                                   4.553E+00,,
                                                                     0.087
                                    2.777E+00,
            , NO
                     3.976E-01,
C, CO-57
                                                   6.012E+00,,
                                                                     0.256
                                    3.569E+00,
                     1.536E+00,
            ,NO
C, CO-58
                                                                     0.289
                                                   1.350E+01,,
                                    7.967E+00,
                     3.897E+00,
            , NO
C, FE-59
                                                                     0.167
                                                   6.269E+00,,
                                    3.756E+00,
                     1.050E+00,
            , NO
C, CO-60
                                                                     0.249
                                                   1.212E+01,,
                                    7.045E+00,
            , NO
                     3.021E+00,
C, ZN-65
                                                   6.912E+00,,
                                                                    -0.362
                                    4.386E+00,
                    -2.503E+00,
C, SE-75
            , NO
                                                                     2.276
                                                   8.437E+00,,
                                    4.330E+00,
                     1.920E+01,
            , NO
C,SR-85
                                                                    -0.184
                                                   6.564E+00,,
                                    4.122E+00,
                    -1.209E+00,
C, Y-88
            , NO
                                                                     0.063
                                                   5.097E+00,,
                                    3.070E+00,
            , NO
                     3.234E-01,
C, NB-94
                                                                     0.239
                                                   5.512E+00,,
                                    3.260E+00,
                     1.316E+00,
            , NO
C, NB-95
                                                   9.739E+00,,
                                                                    -0.170
                                    6.077E+00,
                    -1.656E+00,
C, ZR-95
            , NO
                                                   1.190E+03,,
                                                                    -0.284
                                    7.519E+02,
                    -3.377E+02,
            , NO
C, MO-99
                                                                     0.091
                                                    6.581E+00,,
                                    3.955E+00,
                     5.984E-01,
C, RU-103
            , NO
                                                                    -0.156
                                                    5.051E+01,,
                                     3.220E+01,
                    -7.860E+00,
            , NO
 C, RU-106
                                                                    -0.462
                                                    5.073E+00,,
                                     3.224E+00,
                    -2.346E+00,
            , NO
 C, AG-110m
                                                    7.297E+00,,
                                                                     0.373
                                     4.331E+00,
            , NO
                     2.720E+00,
 C, SN-113
                                                                    -0.445
                                                    5.789E+00,,
                    -2.578E+00,
                                     8.703E+00,
            , NO
 C,SB-124
                                                                    -0.628
                                                    1.442E+01,,
                                     9.135E+00,
                     -9.059E+00,
            , NO
 C,SB-125
                                                                    -0.014
                                                    7.293E+01,,
                                     4.403E+01,
                     -9.958E-01,
 C, TE-129M
            , NO
                                                                     0.586
                                                    1.764E+01,,
                                     1.023E+01,
                      1.034E+01,
             , NO
 C, I-131
                                                                     0.368
                                                    7.039E+00,,
                                     4.859E+00,
                      2.588E+00,
             , NO
 C, BA-133
                                                                     0.330
                                                    5.749E+00,,
                                     5.605E+00,
                      1.894E+00,
 C, CS-134
             , NO
                                                                    -0.071
                                                    1.038E+01,,
                                     6.437E+00,
                     -7.371E-01,
             ,NO
 C, CS-136
                                                    5.764E+00,,
                                                                     0.256
                                     3.380E+00,
                      1.477E+00,
             , NO
 C, CS-137
                                                                    -0.003
                                                    4.863E+00,,
                     -1.362E-02,
                                     2.920E+00,
             ,NO
 C, CE-139
                                                                    -0.054
                                     2.254E+01,
                                                    3.674E+01,,
                     -1.986E+00,
             , NO
 C, BA-140
                                                                    -0.948
                                                    1.084E+01,,
                                     7.900E+00,
                     -1.028E+01,
 C, LA-140
             , NO
                                                                      0.262
                                                    1.022E+01,,
                      2.679E+00,
                                     7.261E+00,
             ,NO
 C, CE-141
                                                                     -0.433
                                                    3.425E+01,,
                                     2.441E+01,
             ,NO
                     -1.482E+01,
 C, CE-144
                                                                     -0.798
                                                    1.527E+01,,
                                     1.142E+01,
                     -1.219E+01,
 C, EU-152
             , NO
                                                    9.313E+00,,
                                                                      0.141
                                     5.665E+00,
                      1.314E+00,
             ,NO
 C, EU-154
                                                                      0.487
                                                    2.249E+01,,
                                     1.283E+01,
                      1.095E+01,
             , NO
 C, AC-228
                                                                      0.487
                                                    2.238E+01,,
                                     1.277E+01,
                      1.090E+01,
 C, TH-232
             , NO
                                                                      0.102
                                                    3.517E+01,,
                                     2.527E+01,
             , NO
                      3.576E+00,
 C, U-235
                                                                      0.028
                                                    5.963E+02,,
                                     3.623E+02,
                      1.647E+01,
             , NO
 C, U-238
```

3.047E+01,

-8.510E+00,

, NO

C, AM-241

Sec. Review:

Analyst:

LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 15:55:18.11 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 13-JUN-2006 13:29:52.18 

LIMS No., Customer Name, Client ID: WG L28751-13 DRESDEN

Smple Date: 30-MAY-2006 17:20:00. : 07L28851-13 Sample ID

Geometry : 073L082504 Sample Type : WG : 07BG060306MT BKGFILE : 3.20040E+00 L

Start Channel: 40 Energy Tol: 1.00000 Real Time: 0 02:25:17.99 Pk Srch Sens: 5.00000 Live time: 0 02:25:16.33 End Channel : 4090

Library Used: LIBD MDA Constant : 0.00

Fit Cts/Sec %Err FWHM Channel %Eff Bkqnd Area Pk It Energy 8.21E-01 1.33E-02 31.8 3.02E+00 2.19 134.02 280 116 66.72* 2.36E+00 7.48E-03 45.5 2.41E-01 1 1 1.10 280.51 230 65 139.91* 2.25E+00 7.89E-03 43.8 1.98E+00 2 1 397.21 2.54 69 195 198.22* 3 1 5.83E-01 2.94E-03 54.1 9.21E-01 2.37 2923.16 13 1 1461.09* 26

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

2-Sigma Uncorrected Decay Corr pCi/L %Error pCi/L %Eff %Abn Area Energy Nuclide 108.17 10.67* 5.827E-01 3.998E+01 3.998E+01 26 1460.81 K-40

Summary of Nuclide Activity Sample ID: 07L28851-13 Acquisition date : 13-JUN-2006 13:29:52

Total number of lines in spectrum Number of unidentified lines 3
Number of lines tentatively identified by NID 1 25.00%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 3.998E+01 3.998E+01 4.325E+01 108.17

Total Activity: 3.998E+01 3.998E+01

Grand Total Activity: 3.998E+01 3.998E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

3

-0.718

0.629

0.226

-0.676

-0.009

-0.381

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

Page:

Unidentified Energy Lines Sample ID: 07L28851-13

Acquisition date : 13-JUN-2006 13:29:52

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
_	cc =0	110	200	2 10	13/ 02	129	12	1 33E-02	63.6	8.21E-01	

129 12 1.33E-02 63.6 8.21E-01 134.02 2.19 280 66.72 116 1 2.36E+00 276 9 7.48E-03 90.9 1.10 280.51 65 230 139.91 1 392 11 7.89E-03 87.7 2.25E+00 397.21 2.54 195 69 198.22 1.

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 3 Number of unidentified lines Number of lines tentatively identified by NID 25.00% 1

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Decay Corr Decay Corr Uncorrected 2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay 108.17 4.325E+01 1.28E+09Y 3.998E+01 1.00 3.998E+01 K-40 _____ _____ 3.998E+01 3.998E+01 Total Activity:

Grand Total Activity: 3.998E+01 3.998E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

NA-24

CR-51

MN-54

CO-57

CO-58

FE-59

CO-60

No interference correction performed

-3.765E+01

3.251E+00

1.097E+00

-3.257E+00

-1.041E-01

-1.833E+00

Combined Activity-MDA Report

## ---- Identified Nuclides ----

identit	Ted Nacifacs				
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	3.998E+01	4.325E+01	5.207E+01	0.000E+00	0.768
Non-Ide	ntified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24	-8.439E+00 -4.177E+00	2.905E+01 6.819E+00	4.645E+01 Half-Life to	0.000E+00 o short	-0.182

3.330E+01

2.883E+00

2.924E+00

3.175E+00

6.699E+00

3.143E+00

5.244E+01

5.167E+00

4.843E+00

4.821E+00

1.108E+01

4.818E+00

	2 400F:00	6.696E+00	1.154E+01	0.000E+00	0.303
ZN-65	3.498E+00	4.187E+00	6.962E+00	0.000E+00	0.253
SE-75	1.761E+00	4.134E+00	8.145E+00	0.000E+00	2.399
SR-85	1.954E+01	3.216E+00	5.187E+00	0.000E+00	-0.122
Y-88	-6.314E-01	3.130E+00	4.837E+00	0.000E+00	-0.514
NB-94	-2.487E+00	3.453E+00	5.663E+00	0.000E+00	-0.116
NB-95	-6.581E-01	6.137E+00	9.805E+00	0.000E+00	-0.135
ZR-95	-1.320E+00	7.362E+02	1.164E+03	0.000E+00	-0.229
MO-99	-2.665E+02	3.942E+00	6.508E+00	0.000E+00	0.170
RU-103	1.105E+00	2.814E+01	4.616E+01	0.000E+00	-0.025
RU-106	-1.152E+00	2.014E+01 2.905E+00	5.018E+00	0.000E+00	0.444
AG-110m	2.229E+00	4.168E+00	6.867E+00	0.000E+00	0.004
SN-113	2.674E-02	3.852E+00	5.736E+00	0.000E+00	-1.130
SB-124	-6.480E+00	8.426E+00	1.391E+01	0.000E+00	0.080
SB-125	1.114E+00	4.341E+01	7.233E+01	0.000E+00	0.213
TE-129M	1.542E+01	9.534E+00	1.557E+01	0.000E+00	-0.149
I-131	-2.312E+00	4.232E+00	7.310E+00	0.000E+00	0.547
BA-133	4.002E+00	3.309E+00	5.361E+00	0.000E+00	-0.186
CS-134	-9.953E-01	5.617E+00	1.037E+01	0.000E+00	0.836
CS-136	8.670E+00	3.056E+00	5.360E+00	0.000E+00	0.564
CS-137	3.022E+00	2.949E+00	4.894E+00	0.000E+00	-0.089
CE-139	-4.368E-01	2.949E+00 2.143E+01	3.542E+01	0.000E+00	-0.042
BA-140	-1.493E+00	7.157E+00	1.195E+01	0.000E+00	0.088
LA-140	1.057E+00	7.428E+00	1.031E+01	0.000E+00	0.082
CE-141	8.483E-01	2.548E+01	3.560E+01	0.000E+00	0.111
CE-144	3.955E+00	9.417E+00	1.478E+01	0.000E+00	-0.721
EU-152	-1.066E+01	5.992E+00	9.955E+00	0.000E+00	0.282
EU-154	2.806E+00	7.234E+01	1.188E+02	0.000E+00	-0.420
RA-226	-4.984E+01	1.194E+01	2.035E+01	0.000E+00	0.246
AC-228	4.996E+00	5.715E+00	9.553E+00	0.000E+00	-0.001
TH-228	-1.243E-02	1.189E+01	2.025E+01	0.000E+00	0.246
TH-232	4.973E+00	2.523E+01	3.695E+01	0.000E+00	0.763
U-235	2.820E+01	3.135E+01	5.258E+02	0.000E+00	0.187
U-238	9.817E+01	3.135E+02 2.989E+01	4.423E+01	0.000E+00	0.388
AM-241	1.717E+01	Z.909ETUI	, , <u>, , , , , , , , , , , , , , , , , </u>		

```
3.200E+00,WG L28751-13 D
                     ,06/13/2006 15:55,05/30/2006 17:20,
A,07L28851-13
                                             ,06/07/2006 09:32,073L082504
                     ,LIBD
B,07L28851-13
                                                                    0.768
                                    4.325E+01,
                                                   5.207E+01,,
           , YES,
                     3.998E+01,
C, K-40
                                                   4.645E+01,,
                                                                   -0.182
                                    2.905E+01,
                    -8.439E+00,
           , NO
C, BE-7
                                                                   -0.718
                                                   5.244E+01,,
                                    3.330E+01,
           , NO
                    -3.765E+01,
C, CR-51
                                                                    0.629
                                                   5.167E+00,,
                                    2.883E+00,
                     3.251E+00,
            , NO
C, MN-54
                                                                     0.226
                                    2.924E+00,
                                                   4.843E+00,,
            , NO
                     1.097E+00,
C, CO-57
                                                                    -0.676
                                                   4.821E+00,,
                                    3.175E+00,
                    -3.257E+00,
            , NO
C, CO-58
                                                   1.108E+01,,
                                                                    -0.009
                                    6.699E+00,
                    -1.041E-01,
C, FE-59
            , NO
                                                   4.818E+00,,
                                                                    -0.381
                                    3.143E+00,
                    -1.833E+00,
C, CO-60
            , NO
                                                                     0.303
                                                   1.154E+01,,
            , NO
                                    6.696E+00,
                     3.498E+00,
C, ZN-65
                                                                     0.253
                                                   6.962E+00,,
                     1.761E+00,
                                    4.187E+00,
            ,NO
C, SE-75
                                                                     2.399
                                    4.134E+00,
                                                   8.145E+00,,
                     1.954E+01,
C, SR-85
            , NO
                                    3.216E+00,
                                                   5.187E+00,,
                                                                    -0.122
                    -6.314E-01,
C, Y-88
            , NO
                                                   4.837E+00,,
                                                                    -0.514
                                    3.130E+00,
                    -2.487E+00,
            , NO
C, NB-94
                                                                    -0.116
                                                   5.663E+00,,
                                    3.453E+00,
                    -6.581E-01,
C, NB-95
            , NO
                                                                    -0.135
                                                   9.805E+00,,
                                    6.137E+00,
                    -1.320E+00,
            , NO
C, ZR-95
                                                                    -0.229
                                                   1.164E+03,,
                                    7.362E+02,
            , NO
                    -2.665E+02,
C, MO-99
                                                   6.508E+00,,
                                                                     0.170
                     1.105E+00,
                                    3.942E+00,
C, RU-103
            , NO
                                                                    -0.025
                                                   4.616E+01,,
                                    2.814E+01,
            , NO
                    -1.152E+00,
C, RU-106
                                                                     0.444
                                                   5.018E+00,,
                     2.229E+00,
                                    2.905E+00,
C, AG-110m
            , NO
                                                                     0.004
                                                    6.867E+00,,
                                    4.168E+00,
            , NO
                     2.674E-02,
C, SN-113
                                                                    -1.130
                                                    5.736E+00,,
                    -6.480E+00,
                                    3.852E+00,
C,SB-124
            , NO
                                                    1.391E+01,,
                                                                     0.080
                                     8.426E+00,
                     1.114E+00,
C,SB-125
            , NO
                                                    7.233E+01,,
                                                                     0.213
                                     4.341E+01,
            ,NO
                     1.542E+01,
C, TE-129M
                                                                    -0.149
                                                    1.557E+01,,
            , NO
                    -2.312E+00,
                                     9.534E+00,
C, I-131
                                                                     0.547
                                                    7.310E+00,,
                     4.002E+00,
                                     4.232E+00,
            , NO
C, BA-133
                                                                    -0.186
                    -9.953E-01,
                                                    5.361E+00,,
                                     3.309E+00,
            , NO
C, CS-134
                                                    1.037E+01,,
                                                                     0.836
                                     5.617E+00,
            , NO
                      8.670E+00,
C, CS-136
                                                                     0.564
                                                    5.360E+00,,
                                     3.056E+00,
                      3.022E+00,
            , NO
C,CS-137
                                                                    -0.089
                                                    4.894E+00,,
                                     2.949E+00,
                    -4.368E-01,
C, CE-139
            , NO
                                                                    -0.042
                                                    3.542E+01,,
                                     2.143E+01,
                     -1.493E+00,
 C, BA-140
            , NO
                                                                     0.088
                                                    1.195E+01,,
                                     7.157E+00,
            , NO
                      1.057E+00,
 C, LA-140
                                                                     0.082
                                                    1.031E+01,,
                      8.483E-01,
                                     7.428E+00,
 C, CE-141
            , NO
                                                    3.560E+01,,
                                                                     0.111
                                     2.548E+01,
            , NO
                      3.955E+00,
 C, CE-144
                                                                    -0.721
                                                    1.478E+01,,
                                     9.417E+00,
                     -1.066E+01,
 C, EU-152
             , NO
                                                                      0.282
                                                    9.955E+00,,
                                     5.992E+00,
                      2.806E+00,
             , NO
 C, EU-154
                                                                    -0.420
                                                    1.188E+02,,
                                     7.234E+01,
                     -4.984E+01,
             , NO
 C, RA-226
                                                    2.035E+01,,
                                                                      0.246
                                     1.194E+01,
                      4.996E+00,
 C, AC-228
             , NO
                                                                    -0.001
                                                    9.553E+00,,
                                     5.715E+00,
             , NO
                     -1.243E-02,
 C, TH-228
                                                                      0.246
                                                    2.025E+01,,
                      4.973E+00,
                                     1.189E+01,
             , NO
 C, TH-232
                                                                      0.763
                                                    3.695E+01,,
                                     2.523E+01,
             ,NO
                      2.820E+01,
 C, U-235
                                                                      0.187
                                                    5.258E+02,,
                                     3.135E+02,
                      9.817E+01,
 C, U-238
             , NO
```

2.989E+01,

C,AM-241

, NO

1.717E+01,

4.423E+01,,

0.388

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 18:35:51.30 TBE23 03017322 HpGe ******* Aquisition Date/Time: 13-JUN-2006 14:21:02.99

LIMS No., Customer Name, Client ID: WG L28851-14 DRESDEN

Smple Date: 31-MAY-2006 10:15:00. Sample ID : 23L28851-14

Geometry : 233L082404 Sample Type : WG BKGFILE : 23BG060306MT Quantity : 3.15880E+00 L 

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	6	33.64*	54	12	1.10	67.61	8.04E-02	3.52E-03	34.0	5.64E+00
2	6	35.36*	48	115	2.13	71.04	1.08E-01	3.15E-03	80.3	
3	6	37.90*	17	222	2.14	76.12	1.57E-01	1.10E-032	241.7	
4	3	63.22*	113	566	1.66	126.72	1.04E+00	7.40E-03	43.9	2.11E+00
5	3	66.26	130	472	1.42	132.79	1.16E+00	8.52E-03	30.4	
6	0	92.74*	57	771	1.36	185.72	1.94E+00	3.71E-033	104.2	
7	0	139.91*	57	624	1.15	279.99	2.32E+00	3.74E-03	84.4	
8	0	198.57*	69	354	1.42	397.23	2.11E+00	4.50E-03	53.0	
9	0	238.33*	18	284	0.91	476.70	1.90E+00	1.19E-03	186.6	
10	0	595.55	79	78	1.85	1190.79	9.56E-01	5.19E-03	24.2	
11	0	1001.62*	25	35	1.09	2002.76	6.64E-01	1.67E-03	52.7	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					uncorrected	Decay Corr	z-Sigiiia	
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error	
TH-228	238.63	18	44.60*	1.902E+00	1.205E+00	1.221E+00	373.16	
	240.98		3.95	1.888E+00	Lir	ne Not Found		
U-238	766.41	<u> </u>	0.21	7.978E-01	Lir	ne Not Found		
	1001.03	25	0.92*	6.643E-01	2.338E+02	2.338E+02	105.45	

Summary of Nuclide Activity

Page: 2

Sample ID: 23L28851-14 Acquisition date: 13-JUN-2006 14:21:02

Total number of lines in spectrum 11
Number of unidentified lines 9

Number of lines tentatively identified by NID 2 18.18%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags

TH-228 1.91Y 1.01 1.205E+00 1.221E+00 4.558E+00 373.16 U-238 4.47E+09Y 1.00 2.338E+02 2.338E+02 2.465E+02 105.45

Total Activity: 2.350E+02 2.350E+02

Grand Total Activity: 2.350E+02 2.350E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 23L28851-14

Acquisition date : 13-JUN-2006 14:21:02

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff Fl	ags
6 6 6 3 0 0 0	33.64 35.36 37.90 63.22 66.26 92.74 139.91 198.57 595.55	54 48 17 113 130 57 57 69	12 115 222 566 472 771 624 354 78	1.10 2.13 2.14 1.66 1.42 1.36 1.15 1.42 1.85	67.61 71.04 76.12 126.72 132.79 185.72 279.99 397.23 1190.79	65 65 120 120 180 276 393	24 24 18 18 11 9	3.52E-03 3.15E-03 1.10E-03 7.40E-03 8.52E-03 3.71E-03 3.74E-03 4.50E-03 5.19E-03	**** **** 87.8	8.04E-02 1.08E-01 1.57E-01 1.04E+00 1.16E+00 1.94E+00 2.32E+00 2.11E+00 9.56E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 11
Number of unidentified lines 9
Number of lines tentatively identified by NID 2

18.18%

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr 2-Sigma Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay 4.558E+00 373.16 TH-228 1.91Y 1.01 1.205E+00 1.221E+00 U-238 4.47E+09Y 1.00 2.338E+02 2.338E+02 2.465E+02 105.45 ______

Total Activity : 2.350E+02 2.350E+02

Grand Total Activity: 2.350E+02 2.350E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-228	1.221E+00	4.558E+00	8.096E+00	0.000E+00	0.151
U-238	2.338E+02	2.465E+02	4.565E+02	0.000E+00	0.512

---- Non-Identified Nuclides ----

NT	. •		Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L)	Ided		(pCi/L)		

		0 4200.01	4 0727.01	0.000E+00	-0.199
BE-7	-8.090E+00	2.439E+01	4.073E+01 Half-Life to		-0.199
NA-24	-3.568E+00	3.276E+00 3.778E+01	7.377E+01	0.000E+00	-0.299
K-40	-2.209E+01	3.778E+01 2.929E+01	4.796E+01	0.000E+00	-0.708
CR-51	-3.393E+01	2.510E+01	4.527E+00	0.000E+00	0.457
MN-54	2.069E+00	2.803E+00	4.674E+00	0.000E+00	-0.207
CO-57	-9.658E-01	2.803E+00 2.766E+00	4.702E+00	0.000E+00	-0.135
CO-58	-6.358E-01	2.766E+00 5.249E+00	9.423E+00	0.000E+00	0.178
FE-59	1.682E+00	2.435E+00	4.523E+00	0.000E+00	0.403
CO-60	1.822E+00	5.148E+00	9.279E+00	0.000E+00	0.239
ZN-65	2.218E+00	3.840E+00	6.507E+00	0.000E+00	-0.148
SE-75	-9.656E-01	3.840E+00 3.329E+00	6.386E+00	0.000E+00	2.171
SR-85	1.387E+01	3.329E+00 2.976E+00	5.067E+00	0.000E+00	-0.278
Y-88	-1.408E+00		4.288E+00	0.000E+00	0.412
NB-94	1.765E+00	2.395E+00	4.200E+00 5.246E+00	0.000E+00	0.629
NB-95	3.301E+00	2.875E+00	8.551E+00	0.000E+00	-0.144
ZR-95	-1.228E+00	5.027E+00	9.512E+02	0.000E+00	0.398
MO-99	3.782E+02	5.315E+02	9.512E+02 5.561E+00	0.000E+00	-0.040
RU-103	-2.238E-01	3.300E+00		0.000E+00	0.239
RU-106	9.832E+00	2.328E+01	4.120E+01	0.000E+00	0.034
AG-110m	1.488E-01	2.509E+00	4.355E+00	0.000E+00	0.494
SN-113	2.996E+00	3.448E+00	6.063E+00	0.000E+00	-1.401
SB-124	-7.044E+00	3.913E+00	5.026E+00	0.000E+00	0.196
SB-125	2.491E+00	7.381E+00	1.270E+01	0.000E+00	0.076
TE-129M	4.688E+00	3.637E+01	6.206E+01	0.000E+00	0.057
I-131	7.952E-01	8.213E+00	1.401E+01	0.000E+00	-0.047
BA-133	-2.897E-01	3.632E+00	6.157E+00	0.000E+00	1.169
CS-134	5.854E+00	2.993E+00	5.007E+00	0.000E+00	0.000
CS-136	-4.219E-04	4.642E+00	8.016E+00		-0.049
CS-137	-2.298E-01	2.721E+00	4.686E+00	0.000E+00	-0.049
CE-139	-3.529E-01	2.885E+00	4.804E+00	0.000E+00	0.273
BA-140	8.460E+00	1.788E+01	3.099E+01	0.000E+00	0.271
LA-140	2.732E+00	5.412E+00	1.007E+01	0.000E+00	
CE-141	8.845E-01	7.108E+00	1.014E+01	0.000E+00	0.087
CE-144	6.073E+00	2.580E+01	3.699E+01	0.000E+00	0.164
EU-152	-7.595E+00	8.443E+00	1.392E+01	0.000E+00	-0.546
EU-154	-5.663E+00	5.770E+00	9.492E+00	0.000E+00	-0.597
RA-226	3.380E+01	7.467E+01	1.211E+02	0.000E+00	0.279
AC-228	-1.266E+00	9.941E+00	1.561E+01	0.000E+00	-0.081
TH-232	-1.260E+00	9.898E+00	1.554E+01	0.000E+00	-0.081
U-235	8.067E+00	2.591E+01	3.642E+01	0.000E+00	0.222
AM-241	2.169E+01	1.765E+01	2.581E+01	0.000E+00	0.840

0.840

2.581E+01,,

```
3.159E+00,WG L28851-14 D
                     ,06/13/2006 18:35,05/31/2006 10:15,
A,23L28851-14
                                             ,06/01/2006 10:14,233L082404
                     ,LIBD
B,23L28851-14
                                    4.558E+00,
                                                   8.096E+00,,
                                                                     0.151
                     1.221E+00,
C, TH-228
            ,YES,
                                                                     0.512
                     2.338E+02,
                                                   4.565E+02,,
           , YES,
                                    2.465E+02,
C, U-238
                                                   4.073E+01,,
                                                                   -0.199
                                    2.439E+01,
C, BE-7
           , NO
                    -8.090E+00,
                                                                   -0.299
                                                   7.377E+01,,
C, K-40
           , NO
                    -2.209E+01,
                                    3.778E+01,
                                                                   -0.708
            , NO
                                    2.929E+01,
                                                   4.796E+01,,
C, CR-51
                    -3.393E+01,
                                    2.510E+00,
                                                   4.527E+00,,
                                                                    0.457
            ,NO
                     2.069E+00,
C, MN-54
                                                   4.674E+00,,
                                                                    -0.207
                                    2.803E+00,
C, CO-57
            , NO
                    -9.658E-01,
                                                                    -0.135
                                                   4.702E+00,,
                    -6.358E-01,
                                    2.766E+00,
C, CO-58
            , NO
                                                                     0.178
                                                   9.423E+00,,
C, FE-59
            , NO
                     1.682E+00,
                                    5.249E+00,
                                                                     0.403
                     1.822E+00,
                                    2.435E+00,
                                                   4.523E+00,,
            , NO
C, CO-60
                                                   9.279E+00,,
                                                                     0.239
                     2.218E+00,
                                    5.148E+00,
C, ZN-65
            , NO
                                                   6.507E+00,,
                                                                    -0.148
                                    3.840E+00,
                    -9.656E-01,
            , NO
C, SE-75
                                                                     2.171
                                                   6.386E+00,,
                     1.387E+01,
                                    3.329E+00,
C,SR-85
            , NO
                                                   5.067E+00,,
                                                                    -0.278
                    -1.408E+00,
                                    2.976E+00,
            , NO
C, Y-88
                                                                     0.412
                                    2.395E+00,
                                                   4.288E+00,,
C, NB-94
            , NO
                     1.765E+00,
                                    2.875E+00,
                                                   5.246E+00,,
                                                                     0.629
            , NO
C, NB-95
                     3.301E+00,
                                                                    -0.144
                    -1.228E+00,
                                    5.027E+00,
                                                   8.551E+00,,
            , NO
C, ZR-95
                                                                     0.398
                                                   9.512E+02,,
                                    5.315E+02,
            ,NO
C, MO-99
                     3.782E+02,
                                                                    -0.040
                                    3.300E+00,
                                                   5.561E+00,,
            , NO
                    -2.238E-01,
C,RU-103
                                                                     0.239
                                                   4.120E+01,,
                                    2.328E+01,
C, RU-106
            , NO
                     9.832E+00,
                     1.488E-01,
                                                   4.355E+00,,
                                                                     0.034
                                    2.509E+00,
            , NO
C, AG-110m
                                                                     0.494
                                    3.448E+00,
                                                   6.063E+00,,
                     2.996E+00,
C, SN-113
            , NO
                                                                    -1.401
                                                   5.026E+00,,
                    -7.044E+00,
                                    3.913E+00,
C,SB-124
            , NO
                                                                     0.196
            , NO
                                                   1.270E+01,,
C,SB-125
                     2.491E+00,
                                    7.381E+00,
                                                   6.206E+01,,
                                                                     0.076
                                    3.637E+01,
                     4.688E+00,
C, TE-129M
           , NO
                                                                     0.057
                                                   1.401E+01,,
                                    8.213E+00,
C, I-131
            , NO
                     7.952E-01,
                                                                    -0.047
                                    3.632E+00,
                                                   6.157E+00,,
            , NO
                    -2.897E-01,
C, BA-133
                                                    5.007E+00,,
                                                                     1.169
                                    2.993E+00,
                     5.854E+00,
C, CS-134
            , NO
                                                                     0.000
                                                    8.016E+00,,
                                     4.642E+00,
C, CS-136
            , NO
                    -4.219E-04,
                                                                    -0.049
                    -2.298E-01,
                                     2.721E+00,
                                                    4.686E+00,,
C,CS-137
            , NO
                                                    4.804E+00,,
                                                                    -0.073
                                     2.885E+00,
C, CE-139
            , NO
                    -3.529E-01,
                                                    3.099E+01,,
                                                                     0.273
                     8.460E+00,
                                     1.788E+01,
            , NO
C, BA-140
                                                                     0.271
                                                    1.007E+01,,
            , NO
                     2.732E+00,
                                     5.412E+00,
C, LA-140
                                                                     0.087
                                     7.108E+00,
                                                    1.014E+01,,
            , NO
                     8.845E-01,
C, CE-141
                                                                     0.164
                     6.073E+00,
                                     2.580E+01,
                                                    3.699E+01,,
C, CE-144
            , NO
                                                    1.392E+01,,
                                                                    -0.546
                                     8.443E+00,
C, EU-152
                    -7.595E+00,
            , NO
                                                                    -0.597
                                                    9.492E+00,,
                                     5.770E+00,
                    -5.663E+00,
C, EU-154
            , NO
                                                                     0.279
                                     7.467E+01,
                                                    1.211E+02,,
C, RA-226
            , NO
                      3.380E+01,
                                                                    -0.081
                                     9.941E+00,
                                                    1.561E+01,,
            , NO
                    -1.266E+00,
C, AC-228
                                                    1.554E+01,,
                                                                    -0.081
                                     9.898E+00,
                    -1.260E+00,
C, TH-232
            , NO
                                                    3.642E+01,,
                                                                     0.222
                      8.067E+00,
                                     2.591E+01,
            , NO
 C, U-235
```

1.765E+01,

C, AM-241

, NO

2.169E+01,

Sec. Review:

Analyst: \( \int\) LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-JUN-2006 00:11:36.10

TBE15 P-10635B HpGe ******** Aquisition Date/Time: 13-JUN-2006 15:52:28.90 

LIMS No., Customer Name, Client ID: WG L28851-15 DRESDEN

Smple Date: 31-MAY-2006 10:25:00. : 15L28851-15 Sample ID

Geometry : 1535L090104 Sample Type : WG BKGFILE : 15BG060306MT Quantity : 3.31770E+00 L End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 07:25:33.74 MDA Constant: 0.00 Library Used: LIBD

Pk It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 1 2 1 3 1 4 1 5 1 6 1 7 1	139.73 197.80 350.68* 594.79 608.11 1457.78 1761.52	151 138 91 123 145 170		3.04 2.22		5.98E-01 5.87E-01 2.91E-01		30.2 42.6 21.7 22.9 13.2	1.64E+00 8.30E-01 1.77E+01 2.20E+00 2.21E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Page: 2 Summary of Nuclide Activity
Sample ID: 15L28851-15 Acquisition date : 13-JUN-2006 15:52:28

Total number of lines in spectrum 7 Number of unidentified lines 7
Number of lines tentatively identified by NID 0
**** There are no nuclides meeting summary criteria **** 7 0.00%

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted

"A" = Nuclide specific abn. limit

Page: 3 Unidentified Energy Lines Acquisition date : 13-JUN-2006 15:52:28 Sample ID : 15L28851-15

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	139.73	151	740	1.36	267.74			5.66E-03			
1	197.80	138	523	1.52	384.52	381	8	5.17E-03	60.4	1.37E+00	)
1	350.68	91	299	2.45	691.91	687	11	3.42E-03	85.3	9.18E-01	L
1	594.79	123	163	0.78	1182.64	1178	11	4.61E-03	43.4	5.98E-01	L
1	608.11	145	179	3.04	1209.41	1202	17	5.41E-03	45.8	5.87E-01	L
1	1457.78	170	58	2.22	2916.14	2907	18	6.36E-03	26.4	2.91E-01	L
	1761.52	32	39	2.17	3525.80	3517	14	1.19E-03	89.3	2.54E-01	L

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

7 Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified by NID 0 0.00% **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

Non-	Identified Nucl	ides -				
Nuclide		K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	8.712E+00		2.518E+01	4.242E+01	0.000E+00	0.205
NA-24	-2.450E+00		4.063E+00	Half-Life	too short	
K-40	1.201E+02		4.419E+01	7.284E+01	0.000E+00	1.648
CR-51	-2.686E+01		2.881E+01	4.631E+01	0.000E+00	-0.580
MN-54	2.723E-02		2.568E+00	4.231E+00	0.000E+00	0.006
CO-57	-2.023E+00		2.633E+00	3.997E+00	0.000E+00	-0.506
CO-58	-2.308E+00		2.937E+00	4.651E+00	0.000E+00	-0.496
FE-59	4.027E-01		5.838E+00	9.692E+00	0.000E+00	0.042
CO-60	4.305E-01		2.824E+00	4.651E+00	0.000E+00	0.093
ZN-65	8.650E+00		5.702E+00	1.023E+01	0.000E+00	0.845
SE-75	-3.566E-02		3.555E+00	5.742E+00	0.000E+00	-0.006
SR-85	3.830E+00		3.406E+00	5.828E+00	0.000E+00	0.657
Y-88	-9.77TE-01		3.140E+00	5.062E+00	0.000E+00	-0.193
NB-94	-5.476E-01		2.582E+00	4.148E+00	0.000E+00	-0.132
NB-95	9.664E-01		2.930E+00	4.930E+00	0.000E+00	0.196
ZR-95	8.033E-01		5.312E+00	8.870E+00	0.000E+00	0.091
MO-99	-7.018E+01		5.753E+02	9.498E+02	0.000E+00	-0.074
RU-103	-4.183E-01		3.204E+00	5.292E+00	0.000E+00	-0.079
RU-106	1.267E+01		2.411E+01	4.042E+01	0.000E+00	0.314
AG-110m	1.195E+00		2.694E+00	4.482E+00	0.000E+00	0.267
SN-113	-2.768E+00		3.540E+00	5.627E+00	0.000E+00	-0.492

0.944 -0.206
0 200
0.206
0.101
-0.041
0.763
0.308
-0.670
-0.186
-0.197
-0.419
0.352
0.347
-0.659
-0.477
-0.483
0.400
0.382
0.400
0.883
0.189
-1.131

```
3.318E+00,WG L28851-15 D
                     ,06/14/2006 00:11,05/31/2006 10:25,
A,15L28851-15
                                             ,06/06/2006 10:43,1535L090104
B,15L28851-15
                     ,LIBD
C,BE-7
           , NO
                    8.712E+00,
                                    2.518E+01,
                                                   4.242E+01,,
                                                                    0.205
C, K-40
                    1.201E+02,
                                    4.419E+01,
                                                   7.284E+01,,
                                                                    1.648
           , NO
           , NO
                                                                   -0.580
                   -2.686E+01,
                                                   4.631E+01,,
C, CR-51
                                    2.881E+01,
                                    2.568E+00,
                                                   4.231E+00,,
                                                                    0.006
C, MN-54
           , NO
                    2.723E-02,
C, CO-57
           , NO
                   -2.023E+00,
                                    2.633E+00,
                                                   3.997E+00,,
                                                                   -0.506
C, CO-58
           , NO
                   -2.308E+00,
                                    2.937E+00,
                                                   4.651E+00,,
                                                                   -0.496
C, FE-59
                    4.027E-01,
                                    5.838E+00,
                                                   9.692E+00,,
                                                                    0.042
           , NO
                                                   4.651E+00,,
                                                                    0.093
C, CO-60
                    4.305E-01,
                                    2.824E+00,
           , NO
C, ZN-65
                    8.650E+00,
                                    5.702E+00,
                                                   1.023E+01,,
                                                                    0.845
           , NO
                                                   5.742E+00,,
                                                                   -0.006
C, SE-75
            , NO
                    -3.566E-02,
                                    3.555E+00,
                                                   5.828E+00,,
C, SR-85
            , NO
                    3.830E+00,
                                    3.406E+00,
                                                                    0.657
C, Y-88
           , NO
                                    3.140E+00,
                                                   5.062E+00,,
                                                                   -0.193
                   -9.77E-01,
                                                   4.148E+00,,
                                                                   -0.132
C, NB-94
                    -5.476E-01,
                                    2.582E+00,
            , NO
           , NO
                                    2.930E+00,
                                                   4.930E+00,,
                                                                    0.196
C, NB-95
                     9.664E-01,
                                                   8.870E+00,,
                                                                    0.091
C, ZR-95
           , NO
                     8.033E-01,
                                    5.312E+00,
C,MO-99
            , NO
                    -7.018E+01,
                                    5.753E+02,
                                                   9.498E+02,,
                                                                   -0.074
C, RU-103
                    -4.183E-01,
                                    3.204E+00,
                                                   5.292E+00,,
                                                                   -0.079
            , NO
           ,NO
                                                   4.042E+01,,
C, RU-106
                     1.267E+01,
                                    2.411E+01,
                                                                    0.314
                                                   4.482E+00,,
C, AG-110m
                     1.195E+00,
                                    2.694E+00,
                                                                    0.267
           , NO
                    -2.768E+00,
                                    3.540E+00,
                                                   5.627E+00,,
                                                                   -0.492
C, SN-113
            , NO
                                                   4.892E+00,,
C,SB-124
            , NO
                     4.618E+00,
                                    5.863E+00,
                                                                    0.944
                    -2.480E+00,
                                    7.509E+00,
                                                   1.206E+01,,
                                                                   -0.206
C,SB-125
            , NO
C, TE-129M
                     1.306E+01,
                                    3.867E+01,
                                                   6.343E+01,,
                                                                    0.206
           , NO
                                                   1.329E+01,,
                                                                    0.101
C, I-131
            ,NO
                     1.339E+00,
                                    8.048E+00,
            ,NO
                    -2.322E-01,
                                    4.076E+00,
                                                   5.670E+00,,
                                                                   -0.041
C,BA-133
                                                   4.664E+00,,
                                                                    0.763
C, CS-134
            , NO
                     3.558E+00,
                                    3.988E+00,
                                                   8.558E+00,,
C,CS-136
            , NO
                     2.638E+00,
                                    5.053E+00,
                                                                    0.308
C, CS-137
            , NO
                    -3.053E+00,
                                    2.939E+00,
                                                   4.554E+00,,
                                                                   -0.670
            , NO
C, CE-139
                    -7.673E-01,
                                    2.506E+00,
                                                   4.115E+00,,
                                                                   -0.186
                                                   3.001E+01,,
                    -5.913E+00,
                                    1.841E+01,
                                                                   -0.197
C, BA-140
            , NO
C, LA-140
            , NO
                    -4.147E+00,
                                    6.361E+00,
                                                   9.907E+00,,
                                                                   -0.419
                                                   8.693E+00,,
                                                                    0.352
C, CE-141
            , NO
                     3.061E+00,
                                    6.016E+00,
            ,NO
                                    2.188E+01,
                                                   3.174E+01,,
                     1.102E+01,
                                                                    0.347
C, CE-144
                    -8.242E+00,
                                    9.335E+00,
                                                   1.250E+01,,
                                                                   -0.659
C, EU-152
            , NO
                                                   8.153E+00,,
                                                                   -0.477
C, EU-154
            , NO
                    -3.888E+00,
                                    5.369E+00,
                                                                   -0.483
C, RA-226
            ,NO
                    -4.892E+01,
                                    6.739E+01,
                                                   1.012E+02,,
C, AC-228
                     6.582E+00,
                                    9.712E+00,
                                                   1.647E+01,,
                                                                    0.400
            , NO
                                                   8.017E+00,,
C, TH-228
            , NO
                     3.064E+00,
                                    5.253E+00,
                                                                    0.382
C, TH-232
                     6.553E+00,
                                    9.669E+00,
                                                   1.640E+01,,
                                                                    0.400
            , NO
C, U-235
                     2.729E+01,
                                    2.089E+01,
                                                   3.092E+01,,
                                                                    0.883
            , NO
C, U-238
            , NO
                     9.526E+01,
                                    3.051E+02,
                                                   5.047E+02,,
                                                                    0.189
```

2.938E+01,

4.678E+01,,

-1.131

-5.290E+01,

C, AM-241

,NO ,

Sec. Review:

Analyst

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 23:19:11.81

TBE23 03017322 HpGe ******* Aquisition Date/Time: 13-JUN-2006 18:37:19.67 ______

LIMS No., Customer Name, Client ID: WG L28851-16 DRESDEN

Smple Date: 31-MAY-2006 11:45:00. Sample ID : 23L28851-16

: WG Geometry : 233L082404 Sample Type BKGFILE : 23BG060306MT : 3.23880E+00 L Quantity 

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1	6	33.80*	93	19	1.20	67.92	8.27E-02	5.53E-03 22.4	4.46E+00
2	6	35.34*	16	156	1.94	71.01	1.07E-01	9.34E-04262.6	
3	6	38.30*	52	349	2.14	76.91	1.66E-01	3.11E-03 84.7	
4	0	92.72*	40	986	1.47	185.68	1.94E+00	2.35E-03170.9	
5	0	139.50*	75	595	0.96	279.16	2.32E+00	4.47E-03 61.1	
6	0	185.53*	11	598	1.21	371.17	2.18E+00	6.62E-04473.5	
7	0	198.36*	79	447	1.35	396.80	2.11E+00	4.67E-03 51.5	
8	0	238.21*	13	435	1.01	476.46	1.90E+00	7.82E-04327.9	
9	0	351.77*	36	294	1.54	703.44	1.43E+00	2.13E-03109.9	
10	0	583.88*	7	114	1.36	1167.46	9.70E-01	4.06E-04342.8	
11	0	596.01	101	93	1.73	1191.71	9.56E-01	6.01E-03 20.9	
12	0	1103.92	26	32	1.42	2207.36	6.22E-01	1.54E-03 48.2	
13	0	1306.63	14	8	0.96	2612.82	5.53E-01	8.49E-04 40.2	

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

1,401140	750. 110.001				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
RA-226	186.21	11	3.28*	2.175E+00	7.745E+00	7.746E+00	947.06
TH-228	238.63	13	44.60*	1.902E+00	7.692E-01	7.794E-01	655.70
	240.98		3.95	1.888E+00	Li	ne Not Found	

Page: 2 Summary of Nuclide Activity

Acquisition date: 13-JUN-2006 18:37:19 Sample ID : 23L28851-16

13 Total number of lines in spectrum Number of unidentified lines 10

Number of lines tentatively identified by NID 3 23.08%

Nuclide Type : natural

2-Sigma Uncorrected Decay Corr Decay Corr

pĈi/L pCi/L 2-Sigma Error %Error Flags Nuclide Hlife Decay

_ _ _ _ _ _ _ _ _

7.746E+00 73.35E+00 947.06 1.00 7.745E+00 RA-226 1600.00Y 51.11E-01 655.70 1.01 7.692E-01 7.794E-01 TH-228 1.91Y

> _____ Total Activity: 8.515E+00 8.525E+00

Grand Total Activity: 8.515E+00 8.525E+00

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 23L28851-16

Page: Acquisition date : 13-JUN-2006 18:37:19

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff ]	Flags
6660000000	33.80 35.34 38.30 92.72 139.50 198.36 351.77 583.88 596.01 1103.92 1306.63	93 16 52 40 75 79 36 7 101 26 14	19 156 349 986 595 447 294 114 93 32 8	1.20 1.94 2.14 1.47 0.96 1.35 1.54 1.36 1.73 1.42 0.96	67.92 71.01 76.91 185.68 279.16 396.80 703.44 1167.46 1191.71 2207.36 2612.82	65 65 180 276 393 697 1160 1186 2200	22 22 12 8 8 14 11 11	4.67E-03	*** *** *** *** *** *** 41.9 96.4	8.27E-02 1.07E-01 1.66E-01 1.94E+00 2.32E+00 2.11E+00 1.43E+00 9.70E-01 9.56E-01 6.22E-01 5.53E-01	Т

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

13 Total number of lines in spectrum Number of unidentified lines 10 3

23.08% Number of lines tentatively identified by NID

Nuclide Type : natural

Wtd Mean Wtd Mean Decay Corr 2-Siqma Uncorrected Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay 947.06 73.35E+00 7.745E+00 7.746E+00 1.00 1600.00Y RA-226 655.70 51.11E-01 7.692E-01 7.794E-01 1.91Y 1.01 TH-228 8.525E+00 8.515E+00 Total Activity:

8.525E+00 Grand Total Activity : 8.515E+00

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
RA-226	7.746E+00	7.335E+01	1.018E+02	0.000E+00	0.076
TH-228	7.794E-01	5.111E+00	7.358E+00	0.000E+00	0.106

---- Non-Identified Nuclides ----

Key-Line Act/MDA MDA error Activity K.L. Act error MDA

Nuclide	(pCi/L)	Ided		(pCi/L)		
BE-7	2.124E+01		2.318E+01	4.071E+01	0.000E+00	0.522
NA-24	6.177E-01		3.040E+00	Half-Life t		
K-40	-4.177E+01		3.446E+01	6.545E+01	0.000E+00	-0.638
CR-51	-1.027E+01		2.858E+01	4.804E+01	0.000E+00	-0.214
MN-54	5.464E-01		2.390E+00	4.152E+00	0.000E+00	0.132
CO-57	-1.759E+00		2.615E+00	4.331E+00	0.000E+00	-0.406
CO-58	-1.679E+00		2.518E+00	4.166E+00	0.000E+00	-0.403
FE-59	-6.468E-01		6.428E+00	9.348E+00	0.000E+00	-0.069
CO-60	-1.357E+00		2.223E+00	3.704E+00	0.000E+00	-0.366
ZN-65	9.423E+00		4.888E+00	9.299E+00	0.000E+00	1.013
SE-75	-9.808E-01		3.493E+00	5.912E+00	0.000E+00	-0.166
SR-85	1.405E+01		3.050E+00	5.889E+00	0.000E+00	2.386
Y-88	3.074E+00		2.677E+00	5.215E+00	0.000E+00	0.589
NB-94	2.794E-01		2.232E+00	3.867E+00	0.000E+00	0.072
NB-95	1.202E+00		2.506E+00	4.428E+00	0.000E+00	0.271
ZR-95	-1.472E+00		4.576E+00	7.743E+00	0.000E+00	-0.190
MO-99	-1.796E+02		4.999E+02	8.446E+02	0.000E+00	-0.213
RU-103	2.901E+00		2.934E+00	5.167E+00	0.000E+00	0.561
RU-106	-3.140E+00		2.142E+01	3.680E+01	0.000E+00	-0.085
AG-110m	-1.253E+00		2.351E+00	3.952E+00	0.000E+00	-0.317
SN-113	-1.453E+00		3.232E+00	5.393E+00	0.000E+00	-0.269
SB-124	-6.792E+00		3.445E+00	4.365E+00	0.000E+00	-1.556
SB-125	-2.966E+00		7.062E+00	1.176E+01	0.000E+00	-0.252
TE-129M	4.181E+00		3.562E+01	6.051E+01	0.000E+00	0.069
I-131	-6.424E-01		7.641E+00	1.294E+01	0.000E+00	-0.050
BA-133	2.409E+00		3.846E+00	5.705E+00	0.000E+00	0.422
CS-134	2.596E+00		2.663E+00	4.225E+00	0.000E+00	0.615
CS-136	-9.797E-02		4.298E+00	7.396E+00	0.000E+00	-0.013
CS-137	1.137E+00	1	2.525E+00	4.451E+00	0.000E+00	0.255
CE-139	-5.212E-01	•	2.678E+00	4.449E+00	0.000E+00	-0.117
BA-140	6.467E+00	)	1.636E+01	2.820E+01	0.000E+00	0.229
LA-140	-1.655E+00	)	5.307E+00	9.193E+00	0.000E+00	-0.180
CE-141	5.945E+00	)	6.696E+00	9.757E+00	0.000E+00	0.609
CE-144	2.221E+00	)	2.363E+01	3.370E+01	0.000E+00	0.066
EU-152	1.887E+00	)	8.682E+00	1.263E+01	0.000E+00	0.149
EU-154	-3.002E+00	)	5.352E+00	8.881E+00	0.000E+00	-0.338 0.266
AC-228	4.050E+00		9.464E+00	1.522E+01	0.000E+00	0.266
TH-232	4.033E+00		9.423E+00	1.515E+01	0.000E+00	0.266
U-235	2.289E+01		2.443E+01	3.482E+01	0.000E+00	0.100
U-238	4.198E+01		2.499E+02	4.197E+02	0.000E+00	-0.602
AM-241	-1.446E+01	L	1.491E+01	2.403E+01	0.000E+00	-0.002

```
3.239E+00,WG L28851-16 D
                     ,06/13/2006 23:19,05/31/2006 11:45,
A,23L28851-16
                                             ,06/01/2006 10:14,233L082404
                     ,LIBD
B,23L28851-16
                                                                     0.076
                                                   1.018E+02,,
                                    7.335E+01,
           , YES,
                     7.746E+00,
C, RA-226
                                                   7.358E+00,,
                                                                     0.106
                     7.794E-01,
                                    5.111E+00,
C, TH-228
            ,YES,
                                                                     0.522
                                    2.318E+01,
                                                   4.071E+01,,
                     2.124E+01,
C, BE-7
            , NO
                                                   6.545E+01,,
                                                                   -0.638
                                    3.446E+01,
C, K-40
           , NO
                    -4.177E+01,
                                                                    -0.214
                                    2.858E+01,
                                                   4.804E+01,,
                    -1.027E+01,
C, CR-51
            , NO
                                                                     0.132
                                                   4.152E+00,,
                                    2.390E+00,
C, MN-54
            , NO
                     5.464E-01,
                                                                    -0.406
                                    2.615E+00,
                                                   4.331E+00,,
                    -1.759E+00,
            , NO
C, CO-57
                                                                   -0.403
                                                   4.166E+00,,
                                    2.518E+00,
                    -1.679E+00,
C, CO-58
            , NO
                                                                    -0.069
                                                   9.348E+00,,
                                    6.428E+00,
            , NO
                    -6.468E-01,
C, FE-59
                                                   3.704E+00,,
                                                                    -0.366
                                    2.223E+00,
                    -1.357E+00,
C, CO-60
            , NO
                                                   9.299E+00,,
                                                                     1.013
                                    4.888E+00,
            , NO
                     9.423E+00,
C, ZN-65
                                                                    -0.166
                                                   5.912E+00,,
                    -9.808E-01,
                                    3.493E+00,
            , NO
C,SE-75
                                                   5.889E+00,,
                                                                     2.386
                                    3.050E+00,
                     1.405E+01,
C,SR-85
            , NO
                                                                     0.589
                     3.074E+00,
                                                   5.215E+00,,
                                    2.677E+00,
C, Y-88
            , NO
                                                   3.867E+00,,
                                                                     0.072
                                    2.232E+00,
                     2.794E-01,
C, NB-94
            , NO
                                                                     0.271
                                    2.506E+00,
                                                   4.428E+00,,
                     1.202E+00,
C, NB-95
            , NO
                                                   7.743E+00,,
                                                                    -0.190
                                    4.576E+00,
                    -1.472E+00,
C, ZR-95
            , NO
                                                                    -0.213
                                                   8.446E+02,,
                    -1.796E+02,
                                    4.999E+02,
            , NO
C, MO-99
                                                                     0.561
                                                   5.167E+00,,
                                    2.934E+00,
                     2.901E+00,
C, RU-103
            ,NO
                                                                    -0.085
                                    2.142E+01,
                                                   3.680E+01,,
            , NO
                    -3.140E+00,
C, RU-106
                                                   3.952E+00,,
                                                                    -0.317
                                    2.351E+00,
                    -1.253E+00,
C, AG-110m
           , NO
                                                    5.393E+00,,
                                                                    -0.269
                    -1.453E+00,
                                    3.232E+00,
C, SN-113
            , NO
                                                                    -1.556
                                                   4.365E+00,,
                    -6.792E+00,
                                    3.445E+00,
C,SB-124
            , NO
                                                                    -0.252
                                    7.062E+00,
                                                   1.176E+01,,
                    -2.966E+00,
            , NO
C,SB-125
                                                    6.051E+01,,
                                                                     0.069
                                    3.562E+01,
                     4.181E+00,
C, TE-129M
            , NO
                                                                    -0.050
            , NO
                                                    1.294E+01,,
                                    7.641E+00,
C, I-131
                    -6.424E-01,
                                                                     0.422
                                    3.846E+00,
                                                    5.705E+00,,
                     2.409E+00,
            , NO
C, BA-133
                                                    4.225E+00,,
                                                                     0.615
                                    2.663E+00,
            , NO
                     2.596E+00,
C, CS-134
                                     4.298E+00,
                                                    7.396E+00,,
                                                                    -0.013
                    -9.797E-02,
C,CS-136
            , NO
                                                    4.451E+00,,
                                                                     0.255
                     1.137E+00,
                                     2.525E+00,
C, CS-137
            , NO
                                                                    -0.117
                                                    4.449E+00,,
                                     2.678E+00,
C, CE-139
            , NO
                    -5.212E-01,
                                                    2.820E+01,,
                                                                     0.229
                     6.467E+00,
                                     1.636E+01,
            , NO
C,BA-140
                                                    9.193E+00,,
                                                                    -0.180
            , NO
                                     5.307E+00,
                    -1.655E+00,
C, LA-140
                                                                     0.609
                                                    9.757E+00,,
                                     6.696E+00,
                     5.945E+00,
            , NO
C, CE-141
                                                    3.370E+01,,
                                                                     0.066
            , NO
                                     2.363E+01,
                     2.221E+00,
C, CE-144
                                                                     0.149
                                                    1.263E+01,,
                                     8.682E+00,
C, EU-152
            ,NO
                     1.887E+00,
                                                                    -0.338
                                                    8.881E+00,,
                    -3.002E+00,
                                     5.352E+00,
C, EU-154
            , NO
                                                                     0.266
                     4.050E+00,
                                     9.464E+00,
                                                    1.522E+01,,
 C,AC-228
            , NO
                                                                     0.266
                                                    1.515E+01,,
                                     9.423E+00,
                     4.033E+00,
            , NO
 C, TH-232
                                                                     0.657
                                                    3.482E+01,,
                                     2.443E+01,
                      2.289E+01,
 C, U-235
            , NO
                                                                     0.100
                                                    4.197E+02,,
 C, U-238
            , NO
                      4.198E+01,
                                     2.499E+02,
                                                    2.403E+01,,
                                                                    -0.602
                     -1.446E+01,
                                     1.491E+01,
```

C, AM-241

,NO,

Analyst: MLIMS: Sec. Review:

______ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-JUN-2006 05:42:04.06

TBE04 P-40312B HpGe ******** Aquisition Date/Time: 13-JUN-2006 23:41:56.69

______

LIMS No., Customer Name, Client ID: WG L28851-17 EX DRES

Smple Date: 31-MAY-2006 14:00:00. : 04L28851-17 Sample ID

Geometry : 043L082004 Sample Type : WG BKGFILE : 04BG060306MT : 2.98580E+00 L Quantity Start Channel: 90 Energy Tol: 1.00000 Real Time: 0 06:00:03.64 End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 06:00:00.00 MDA Constant: 0.00 Library Used: LIBD

Pk It	5	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
8	1 1 1 1 1 1	66.01* 92.70* 139.36 198.43* 238.45* 352.09* 583.27* 595.71 609.54* 1460.64*	186 38 104 100 4 38 36 85 57 26	525 529 585 369 365 230 92 165 115 27	1.41	132.67 186.03 279.32 397.40 477.39 704.57 1166.76 1191.64 1219.27 2921.14	1.54E+00 2.04E+00 1.86E+00 1.68E+00 1.28E+00 8.77E-01 8.63E-01 8.48E-01	8.61E-03 1.78E-03 4.80E-03 4.62E-03 1.88E-049 1.74E-03 1.64E-03 3.93E-03 2.65E-03 1.18E-03	123.9 43.7 42.2 965.6 84.8 61.8 33.2 51.2	1.55E+00 9.07E+00 9.45E-01 1.90E+00 9.47E-01 1.22E+00 1.72E+00 2.04E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nucriae	Type: nacura	L-L-			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	26	10.67*	4.296E-01	2.335E+01	2.335E+01	148.70
TH-228	238.63	4			2.275E-01	2.306E-01	
111 220	240.98		3.95	1.669E+00	Li	ne Not Found	

Flaq: "*" = Keyline

Page: 2 Summary of Nuclide Activity

Acquisition date : 13-JUN-2006 23:41:56 Sample ID : 04L28851-17

Total number of lines in spectrum 10 7 Number of unidentified lines Number of lines tentatively identified by NID 3

30.00%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma pCi/L pCi/L 2-Sigma Error %Error Flags Hlife Decay Nuclide 1.00 2.335E+01 2.335E+01 3.471E+01 148.70 1.01 2.275E-01 2.306E-01 44.53E-01 1931.25 K-40 1.28E+09Y TH-228 1.91Y

> Total Activity : 2.357E+01 2.358E+01

2.358E+01 Grand Total Activity: 2.357E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 04L28851-17 Page: 3
Acquisition date: 13-JUN-2006 23:41:56

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1	66.01 92.70 139.36 198.43 352.09 583.27 595.71 609.54	186 38 104 100 38 36 85	525 529 585 369 230 92 165 115	1.45 1.51 0.82 1.26 1.05 1.73 1.68		1162 1185	9 9 9 9 9	8.61E-03 1.78E-03 4.80E-03 4.62E-03 1.74E-03 1.64E-03 3.93E-03 2.65E-03	**** 87.5 84.4 **** 66.3	6.52E-01 1.54E+00 2.04E+00 1.86E+00 1.28E+00 8.77E-01 8.63E-01 8.48E-01	. Т

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 10
Number of unidentified lines 7
Number of lines tentatively identified by NID 3 30.00%

Nuclide Type : natural

 Wtd Mean
 Wtd Mean
 Uncorrected
 Decay Corr
 Decay Corr
 2-Sigma

 Nuclide
 Hlife
 Decay
 pCi/L
 2-Sigma Error %Error Flags

 K-40
 1.28E+09Y
 1.00
 2.335E+01
 2.335E+01
 3.471E+01
 148.70

 TH-228
 1.91Y
 1.01
 2.275E-01
 2.306E-01
 44.53E-01
 1931.25

 Total Activity:
 2.357E+01
 2.358E+01

Grand Total Activity: 2.357E+01 2.358E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

Nuclide

BE-7

No interference correction performed

(pCi/L) Ided

5.122E+00 2.082E+01

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Identi	TEG NGCTTGCD				
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 TH-228	2.335E+01 2.306E-01	3.471E+01 4.453E+00	4.244E+01 6.229E+00	0.000E+00 0.000E+00	0.550 0.037
Non-Ide	entified Nuclides	5			
	Key-Line Activity K.L	. Act error	MDA	MDA error	Act/MDA

(pCi/L)

3.482E+01

0.000E+00

0.147

		1 200F.00	Half-Life to	n short	
NA-24	3.286E-01	4.309E+00	4.128E+01	0.000E+00	-0.226
CR-51	-9.342E+00	2.529E+01	3.725E+00	0.000E+00	-0.319
MN-54	-1.189E+00	2.362E+00	3.725E+00 3.305E+00	0.000E+00	-0.332
CO-57	-1.096E+00	2.055E+00	4.225E+00	0.000E+00	-0.359
CO-58	-1.518E+00	2.678E+00	9.040E+00	0.000E+00	0.510
FE-59	4.610E+00	5.255E+00	4.815E+00	0.000E+00	0.239
CO-60	1.149E+00	3.037E+00	8.379E+00	0.000E+00	0.397
ZN-65	3.325E+00	4.838E+00	4.974E+00	0.000E+00	-0.212
SE-75	-1.055E+00	3.108E+00	6.289E+00	0.000E+00	3.582
SR-85	2.253E+01	3.174E+00	4.431E+00	0.000E+00	-0.425
Y-88	-1.882E+00	2.854E+00	4.431E+00 3.842E+00	0.000E+00	0.515
NB-94	1.978E+00	2.236E+00	3.842E+00 4.319E+00	0.000E+00	0.221
NB-95	9.556E-01	2.588E+00	4.319E+00 6.996E+00	0.000E+00	-0.731
ZR-95	-5.116E+00	4.557E+00		0.000E+00	0.361
MO-99	3.144E+02	5.139E+02	8.704E+02	0.000E+00	0.673
RU-103	3.425E+00	2.949E+00	5.087E+00	0.000E+00	-0.303
RU-106	-1.075E+01	2.243E+01	3.548E+01	0.000E+00	0.455
AG-110m	1.782E+00	2.280E+00	3.920E+00	0.000E+00	-0.812
SN-113	-3.903E+00	3.109E+00	4.808E+00	0.000E+00	-0.531
SB-124	-2.296E+00	6.416E+00	4.326E+00	0.000E+00	-0.002
SB-125	-2.247E-02	6.401E+00	1.067E+01	0.000E+00	0.489
TE-129M	2.677E+01	3.194E+01	5.479E+01	0.000E+00	0.168
I-131	2.015E+00	7.238E+00	1.198E+01	0.000E+00	1.204
BA-133	6.728E+00	3.671E+00	5.588E+00	0.000E+00	0.655
CS-134	2.711E+00	4.428E+00	4.136E+00	0.000E+00	-0.201
CS-136	-1.535E+00	4.765E+00	7.618E+00	0.000E+00	0.382
CS-137	1.611E+00	2.465E+00	4.211E+00		-0.590
CE-139	-2.080E+00	2.168E+00	3.526E+00	0.000E+00	0.196
BA-140	5.137E+00	1.577E+01	2.626E+01	0.000E+00	-0.188
LA-140	-1.790E+00	5.956E+00	9.541E+00	0.000E+00	-0.143
CE-141	-1.063E+00	5.419E+00	7.420E+00	0.000E+00	-0.143
CE-144	-1.614E+01	1.916E+01	2.575E+01	0.000E+00	-0.827
EU-152	-9.179E+00	7.958E+00	1.119E+01	0.000E+00	-0.820
EU-154	-3.199E+00	4.264E+00	6.818E+00	0.000E+00	0.209
RA-226	1.902E+01	5.782E+01	9.099E+01	0.000E+00	
AC-228	-7.953E+00	9.717E+00	1.456E+01	0.000E+00	-0.546
TH-232	-7.917E+00	9.674E+00	1.449E+01	0.000E+00	-0.546
U-235	6.675E+00	1.889E+01	2.643E+01	0.000E+00	0.253
U-238	-1.032E+00	2.618E+02	4.291E+02	0.000E+00	-0.002
AM-241	-5.364E+00	2.235E+01	3.478E+01	0.000E+00	-0.154
**** ** * * *	• •				

```
2.986E+00,WG L28851-17 E
                    ,06/14/2006 05:42,05/31/2006 14:00,
A,04L28851-17
                                             ,06/13/2006 09:42,043L082004
                     ,LIBD
B,04L28851-17
                                                                    0.550
                                    3.471E+01,
                                                   4.244E+01,,
           ,YES,
                    2.335E+01,
C, K-40
                                                                    0.037
                                                   6.229E+00,,
                                    4.453E+00,
           , YES,
                    2.306E-01,
C, TH-228
                                                                    0.147
                                                   3.482E+01,,
                                    2.082E+01,
                     5.122E+00,
            , NO
C, BE-7
                                                   4.128E+01,,
                                                                   -0.226
                                    2.529E+01,
                   -9.342E+00,
            , NO
C, CR-51
                                                                   -0.319
                                                   3.725E+00,,
                                    2.362E+00,
                   -1.189E+00,
            , NO
C, MN-54
                                                                   -0.332
                                                   3.305E+00,,
                                    2.055E+00,
                    -1.096E+00,
C, CO-57
            , NO
                                                                   -0.359
                                                   4.225E+00,,
                                    2.678E+00,
                    -1.518E+00,
C, CO-58
            , NO
                                                   9.040E+00,,
                                                                    0.510
                                    5.255E+00,
            , NO
                     4.610E+00,
C, FE-59
                                                                    0.239
                                                   4.815E+00,,
                                    3.037E+00,
            , NO
                     1.149E+00,
C,CO-60
                                                                    0.397
                                                   8.379E+00,,
                                    4.838E+00,
                     3.325E+00,
            , NO
C, ZN-65
                                                                   -0.212
                                    3.108E+00,
                                                   4.974E+00,,
                    -1.055E+00,
C, SE-75
            , NO
                                                                    3.582
                                                   6.289E+00,,
                                    3.174E+00,
                     2.253E+01,
            , NO
C, SR-85
                                                   4.431E+00,,
                                                                   -0.425
                                    2.854E+00,
                    -1.882E+00,
C, Y-88
            , NO
                                                                     0.515
                                                   3.842E+00,,
                                    2.236E+00,
                     1.978E+00,
C, NB-94
            , NO
                                                                     0.221
                                                   4.319E+00,,
                                    2.588E+00,
                     9.556E-01,
            , NO
C, NB-95
                                                                   -0.731
                                                   6.996E+00,,
                                    4.557E+00,
            , NO
                    -5.116E+00,
C, ZR-95
                                                   8.704E+02,,
                                                                     0.361
                                    5.139E+02,
                     3.144E+02,
C, MO-99
            , NO
                                                                     0.673
                                                   5.087E+00,,
                                    2.949E+00,
                     3.425E+00,
            , NO
C, RU-103
                                                                    -0.303
                                                   3.548E+01,,
                    -1.075E+01,
                                    2.243E+01,
            , NO
C, RU-106
                                                                     0.455
                                                   3.920E+00,,
                                    2.280E+00,
                     1.782E+00,
           , NO
C, AG-110m
                                                                    -0.812
                                                   4.808E+00,,
                    -3.903E+00,
                                    3.109E+00,
C, SN-113
            ,NO
                                                                    -0.531
                                                   4.326E+00,,
                                    6.416E+00,
                    -2.296E+00,
            , NO
C,SB-124
                                                   1.067E+01,,
                                                                    -0.002
                                    6.401E+00,
            , NO
                    -2.247E-02,
C,SB-125
                                                                     0.489
                                                   5.479E+01,,
                     2.677E+01,
                                    3.194E+01,
            , NO
C, TE-129M
                                                                     0.168
                                                   1.198E+01,,
                                    7.238E+00,
            , NO
                     2.015E+00,
C, I-131
                                                                     1.204
                                                   5.588E+00,,
                                     3.671E+00,
                     6.728E+00,
 C,BA-133
            , NO
                                                                     0.655
                                                    4.136E+00,,
                                     4.428E+00,
                     2.711E+00,
            , NO
 C, CS-134
                                                                    -0.201
                                                    7.618E+00,,
                                     4.765E+00,
                    -1.535E+00,
             , NO
 C, CS-136
                                                                     0.382
                                                    4.211E+00,,
                                     2.465E+00,
                      1.611E+00,
             , NO
 C, CS-137
                                                                    -0.590
                                                    3.526E+00,,
                                     2.168E+00,
                    -2.080E+00,
             , NO
 C, CE-139
                                                                     0.196
                                     1.577E+01,
                                                    2.626E+01,,
                      5.137E+00,
             , NO
 C, BA-140
                                                                    -0.188
                                                    9.541E+00,,
                    -1.790E+00,
                                     5.956E+00,
             , NO
 C, LA-140
                                                                    -0.143
                                                    7.420E+00,,
                                     5.419E+00,
                     -1.063E+00,
 C, CE-141
             NO
                                                                    -0.627
                                                    2.575E+01,,
                                     1.916E+01,
             , NO
                     -1.614E+01,
 C, CE-144
                                                    1.119E+01,,
                                                                    -0.820
                                     7.958E+00,
                     -9.179E+00,
             , NO
 C, EU-152
                                                                    -0.469
                                                    6.818E+00,,
                                     4.264E+00,
                     -3.199E+00,
 C, EU-154
             , NO
                                                                     0.209
                                     5.782E+01,
                                                    9.099E+01,,
                      1.902E+01,
             , NO
 C, RA-226
                                                                    -0.546
                                                    1.456E+01,,
                                     9.717E+00,
             ,NO
                     -7.953E+00,
 C,AC-228
                                                                    -0.546
                                                    1.449E+01,,
                                     9.674E+00,
                     -7.917E+00,
             , NO
 C, TH-232
                                                                     0.253
                                                    2.643E+01,,
                                     1.889E+01,
                      6.675E+00,
             ,NO
 C, U-235
                                                                    -0.002
                                                    4.291E+02,,
                                     2.618E+02,
                     -1.032E+00,
 C, U-238
             , NO
                                                    3.478E+01,,
                                                                    -0.154
```

2.235E+01,

-5.364E+00,

C,AM-241

, NO

Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-JUN-2006 05:42:16.93

TBE07 P-10768B HpGe ******** Aquisition Date/Time: 13-JUN-2006 23:42:01.88

LIMS No., Customer Name, Client ID: WG L28851-18 EX DRES

Smple Date: 31-MAY-2006 15:30:00. : 07L28851-18 Sample ID

Geometry : 073L082504 : WG Sample Type : 07BG060306MT BKGFILE : 3.06340E+00 L Quantity

Start Channel: 40 Energy Tol: 1.00000 Real Time: 0 06:00:04.18 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 06:00:00.00 MDA Constant : 0.00 Library Used: LIBD

Pk I	t	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7	1 1 1 1	66.35* 85.74 140.20* 198.34* 583.14* 596.14 609.77* 1461.31*	240 113 179 111 65 78 100	392 1014 502 490 99 141 196 50	1.54 2.11	133.26 172.09 281.10 397.44 1167.44 1193.46 1220.73 2923.60	1.12E+00 1.10E+00 1.09E+00	5.21E-03	61.3 25.4 41.9 40.5 30.2 36.8	4.59E+00 4.98E+00 2.13E+00 3.99E-01 2.16E+00 2.14E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Sigma pCi/L pCi/L %Error %Eff %Abn Area Energy Nuclide 79.37 10.67* 5.826E-01 4.266E+01 4.266E+01 65 1460.81 K-40

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity

Acquisition date : 13-JUN-2006 23:42:01 Sample ID : 07L28851-18

8 Total number of lines in spectrum Number of unidentified lines 6

Number of lines tentatively identified by NID 2 25.00%

Nuclide Type : natural

2-Sigma Uncorrected Decay Corr Decay Corr

pČi/L 2-Sigma Error %Error Flags Nuclide Hlife Decay pCi/L

4.266E+01 79.37 3.386E+01 1.28E+09Y 1.00 4.266E+01 K-40

> 4.266E+01 4.266E+01 Total Activity:

Grand Total Activity: 4.266E+01 4.266E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3 Unidentified Energy Lines Acquisition date : 13-JUN-2006 23:42:01 Sample ID : 07L28851-18

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
2 1 1 1 1	66.35 85.74 140.20 198.34 583.14 596.14	240 113 179 111 65	502 490 99 141	1.25 3.84 1.23 1.40 2.57	1193.46	164 277 394 1163 1189	14 8 9 10 9	1.11E-02 5.21E-03 8.30E-03 5.12E-03 3.00E-03	**** 50.9 83.7 81.1 60.4	8.06E-01 1.53E+00 2.36E+00 2.25E+00 1.12E+00 1.10E+00	Т
1	609.77	100	196	2.11	1220.73	1215	Т2	4.62E-03	13.6	T.09E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

8 Total number of lines in spectrum Number of unidentified lines 6 Number of lines tentatively identified by NID 25.00%

Nuclide Type : natural

Wtd Mean Wtd Mean Decay Corr 2-Sigma Uncorrected Decay Corr pCi/L 2-Sigma Error %Error Flags pCi/L Nuclide Hlife Decay 4.266E+01 4.266E+01 3.386E+01 79.37 1.28E+09Y 1.00 K-40

4.266E+01

Grand Total Activity: 4.266E+01 4.266E+01

Flags: "K" = Keyline not found "M" = Manually accepted

4.266E+01

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Total Activity:

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	4.266E+01	3.386E+01	3.015E+01	0.000E+00	1.415
Non-Id	entified Nuclide	ac			

### ---- Non-ldentified Nuclides

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	2.145E+01	1.943E+01	3.296E+01	0.000E+00	0.651
NA-24	8.466E-01	3.069E+00	Half-Life too	short	
CR-51	-4.739E+01	2.257E+01	3.524E+01	0.000E+00	-1.345
MN-54	1.327E+00	2.016E+00	3.433E+00	0.000E+00	0.387

ao ==	-1.275E+00	1.951E+00	3.140E+00	0.000E+00	-0.406
CO-57	9.811E-02	2.166E+00	3.594E+00	0.000E+00	0.027
CO-58		4.467E+00	7.480E+00	0.000E+00	0.122
FE-59	9.105E-01	2.154E+00	3.428E+00	0.000E+00	-0.249
CO-60	-8.528E-01	4.451E+00	7.747E+00	0.000E+00	0.590
ZN-65	4.570E+00	2.734E+00	4.383E+00	0.000E+00	-0.395
SE-75	-1.733E+00	2.796E+00	5.554E+00	0.000E+00	4.056
SR-85	2.253E+01	2.736E+00 2.333E+00	3.748E+00	0.000E+00	-0.243
Y-88	-9.107E-01	2.027E+00	3.254E+00	0.000E+00	-0.237
NB-94	-7.727E-01	2.027E+00 2.211E+00	3.711E+00	0.000E+00	0.135
NB-95	4.993E-01	4.045E+00	6.348E+00	0.000E+00	-0.439
ZR-95	-2.789E+00		7.193E+02	0.000E+00	-0.451
MO-99	-3.241E+02	4.574E+02	4.282E+00	0.000E+00	0.556
RU-103	2.381E+00	2.547E+00	4.282E+00 3.194E+01	0.000E+00	0.035
RU-106	1.107E+00	2.091E+01	3.237E+00	0.000E+00	-0.019
AG-110m	-5.988E-02	1.977E+00	4.509E+00	0.000E+00	0.006
SN-113	2.877E-02	2.737E+00	3.688E+00	0.000E+00	0.243
SB-124	8.975E-01	5.084E+00	9.022E+00	0.000E+00	-0.265
SB-125	-2.392E+00	5.593E+00		0.000E+00	0.110
TE-129M	5.226E+00	2.897E+01	4.759E+01	0.000E+00	-0.206
I-131	-2.109E+00	6.246E+00	1.022E+01	0.000E+00	0.901
BA-133	4.232E+00	2.710E+00	4.697E+00	0.000E+00	0.977
CS-134	3.590E+00	3.480E+00	3.675E+00		-0.308
CS-136	-1.892E+00	3.806E+00	6.143E+00	0.000E+00	0.384
CS-137	1.347E+00	2.082E+00	3.511E+00	0.000E+00	-0.686
CE-139	-2.188E+00	1.960E+00	3.189E+00	0.000E+00	-0.042
BA-140	-9.686E-01	1.401E+01	2.319E+01	0.000E+00	
LA-140	-1.083E-01	4.647E+00	7.624E+00	0.000E+00	-0.014
CE-141	5.785E-01	5.054E+00	6.998E+00	0.000E+00	0.083
CE-144	-6.748E+00	1.757E+01	2.402E+01	0.000E+00	-0.281
EU-152	-1.610E+01	6.235E+00	9.527E+00	0.000E+00	-1.690
EU-154	-1.772E+00	3.970E+00	6.419E+00	0.000E+00	-0.276
RA-226	-1.573E+01	5.046E+01	8.083E+01	0.000E+00	-0.195
AC-228	1.243E+00	8.442E+00	1.317E+01	0.000E+00	0.094
TH-228	-7.575E-01	4.000E+00	6.343E+00	0.000E+00	-0.119
TH-232	1.237E+00	8.405E+00	1.311E+01	0.000E+00	0.094
U-235	1.244E+01	1.775E+01	2.507E+01	0.000E+00	0.496
U-238	9.699E+00	2.132E+02	3.488E+02	0.000E+00	0.028
AM-241	1.519E+01	2.073E+01	2.930E+01	0.000E+00	0.518
171.1 51.77	and the first price of the same is the same				

```
3.063E+00,WG L28851-18 E
                    ,06/14/2006 05:42,05/31/2006 15:30,
A,07L28851-18
                                             ,06/07/2006 09:32,073L082504
                    ,LIBD
B,07L28851-18
                                                                    1.415
                                                   3.015E+01,,
                                    3.386E+01,
                    4.266E+01,
C, K-40
           , YES,
                                                                    0.651
                                                   3.296E+01,,
                                    1.943E+01,
                    2.145E+01,
           , NO
C, BE-7
                                                                   -1.345
                                                   3.524E+01,,
                                    2.257E+01,
                    -4.739E+01,
C, CR-51
           , NO
                                                                    0.387
                                                   3.433E+00,,
                                    2.016E+00,
                     1.327E+00,
            , NO
C, MN-54
                                                                   -0.406
                                                   3.140E+00,,
                    -1.275E+00,
                                    1.951E+00,
C, CO-57
            , NO
                                                                    0.027
                                                   3.594E+00,,
                     9.811E-02,
                                    2.166E+00,
C, CO-58
            , NO
                                                                    0.122
                                    4.467E+00,
                                                   7.480E+00,,
                     9.105E-01,
            , NO
C, FE-59
                                                                   -0.249
                                                   3.428E+00,,
                                    2.154E+00,
                    -8.528E-01,
C, CO-60
            , NO
                                                                     0.590
                                                   7.747E+00,,
                                    4.451E+00,
                     4.570E+00,
            , NO
C, ZN-65
                                                   4.383E+00,,
                                                                   -0.395
                    -1.733E+00,
                                    2.734E+00,
            ,NO
C, SE-75
                                                                    4.056
                                                   5.554E+00,,
                                    2.796E+00,
                     2.253E+01,
            , NO
C, SR-85
                                                                   -0.243
                                                   3.748E+00,,
                                    2.333E+00,
            , NO
                    -9.107E-01,
C, Y-88
                                                                   -0.237
                                                   3.254E+00,,
                                    2.027E+00,
            , NO
                    -7.727E-01,
C, NB-94
                                                   3.711E+00,,
                                                                     0.135
                                    2.211E+00,
                     4.993E-01,
            , NO
C, NB-95
                                                                    -0.439
                                                   6.348E+00,,
                    -2.789E+00,
                                    4.045E+00,
            , NO
C, ZR-95
                                                                    -0.451
                                                   7.193E+02,,
                                    4.574E+02,
                    -3.241E+02,
            , NO
C,MO-99
                                                                     0.556
                                                   4.282E+00,,
                     2.381E+00,
                                    2.547E+00,
            , NO
C, RU-103
                                                                     0.035
                                                   3.194E+01,,
                                    2.091E+01,
                     1.107E+00,
            , NO
C, RU-106
                                                   3.237E+00,,
                                                                    -0.019
                                    1.977E+00,
                    -5.988E-02,
C, AG-110m , NO
                                                                     0.006
                                                   4.509E+00,,
                                    2.737E+00,
            , NO
                     2.877E-02,
C,SN-113
                                                                     0.243
                                                    3.688E+00,,
                                    5.084E+00,
                     8.975E-01,
C,SB-124
            , NO
                                                                    -0.265
                                                    9.022E+00,,
                                    5.593E+00,
                    -2.392E+00,
            , NO
C,SB-125
                                                    4.759E+01,,
                                                                     0.110
                                    2.897E+01,
                     5.226E+00,
            , NO
C, TE-129M
                                                    1.022E+01,,
                                                                    -0.206
                                     6.246E+00,
            , NO
                    -2.109E+00,
C, I-131
                                                                     0.901
                                                    4.697E+00,,
                     4.232E+00,
                                     2.710E+00,
            ,NO
 C, BA-133
                                                                     0.977
                                                    3.675E+00,,
                     3.590E+00,
                                     3.480E+00,
 C, CS-134
            , NO
                                                                    -0.308
                                                    6.143E+00,,
                                     3.806E+00,
                    -1.892E+00,
            , NO
 C, CS-136
                                                                     0.384
                                                    3.511E+00,,
                                     2.082E+00,
                      1.347E+00,
             , NO
 C, CS-137
                                                                    -0.686
                                                    3.189E+00,,
                                     1.960E+00,
            , NO
                    -2.188E+00,
 C, CE-139
                                                                    -0.042
                                                    2.319E+01,,
                                     1.401E+01,
                    -9.686E-01,
 C, BA-140
             , NO
                                                                    -0.014
                                                    7.624E+00,,
                                     4.647E+00,
                    -1.083E-01,
             , NO
 C, LA-140
                                                                     0.083
                                                    6.998E+00,,
                      5.785E-01,
                                     5.054E+00,
 C, CE-141
             , NO
                                                                    -0.281
                                                    2.402E+01,,
                                     1.757E+01,
             , NO
                     -6.748E+00,
 C, CE-144
                                                                    -1.690
                                                    9.527E+00,,
                                     6.235E+00,
                     -1.610E+01,
 C, EU-152
             , NO
                                                                    -0.276
                                                    6.419E+00,,
                                     3.970E+00,
                     -1.772E+00,
             , NO
 C, EU-154
                                                                    -0.195
                                                    8.083E+01,,
                                     5.046E+01,
                     -1.573E+01,
             , NO
 C, RA-226
                                                                     0.094
                                                    1.317E+01,,
                                     8.442E+00,
                      1.243E+00,
 C, AC-228
             , NO
                                                                    -0.119
                                                    6.343E+00,,
                                     4.000E+00,
                     -7.575E-01,
             , NO
 C, TH-228
                                                                     0.094
                                                    1.311E+01,,
                                     8.405E+00,
                      1.237E+00,
             , NO
 C, TH-232
                                                                      0.496
                                     1.775E+01,
                                                    2.507E+01,,
                      1.244E+01,
 C, U-235
             , NO
                                                    3.488E+02,,
                                                                      0.028
                                     2.132E+02,
                      9.699E+00,
 C, U-238
             , NO
                                                    2.930E+01,,
                                                                      0.518
                                     2.073E+01,
                      1.519E+01,
```

C, AM-241

, NO



2508 Quality Lane Knoxville, TN 37931

865-690-6819 (Phone)

Work Order #: L28853 Exelon - Dresden June 21, 2006



Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

#### Case Narrative - L28853 EX001-3ESPDRES-06

06/21/2006 11:16

#### Sample Receipt

The following samples were received on June 7, 2006 in good condition, unless otherwise noted.

Cross Reference Table

	3	
Client ID	Laboratory ID	Station ID(if applicable)
WG-DN-MW-DN-102I-060106-JL-075	L28853-1	
WG-DN-MW-DN-102S-060106-JL-076	L28853-2	
WG-DN-MW-DN-105S-060106-JL-077	L28853-3	
WG-DN-DSP-DN-125-060106-JL-078	L28853-4	
	WG-DN-MW-DN-102I-060106-JL-075 WG-DN-MW-DN-102S-060106-JL-076 WG-DN-MW-DN-105S-060106-JL-077	WG-DN-MW-DN-102I-060106-JL-075 L28853-1 WG-DN-MW-DN-102S-060106-JL-076 L28853-2 WG-DN-MW-DN-105S-060106-JL-077 L28853-3

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3	TBE-2010	EPA 906.0
TOTAL SR	TBE-2018	EPA 905.0



#### Case Narrative - L28853 EX001-3ESPDRES-06

06/21/2006 11:16

#### Gamma Spectroscopy

#### **Quality Control**

Quality control samples were analyzed as WG4127.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-DN-MW-DN-102I-	L28853-1	WG4127-1
060106 H 075		

#### H-3

#### **Quality Control**

Quality control samples were analyzed as WG4122.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-DN-MW-DN-110S-	L28851-11	WG4122-3
053006-JL-067		



#### Case Narrative - L28853 EX001-3ESPDRES-06

06/21/2006 11:16

#### **TOTAL SR**

#### **Quality Control**

Quality control samples were analyzed as WG4162.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID Laboratory ID QC Sample #
STILL CREEK L28864-1 WG4162-3

#### Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

# Sample Receipt Summary

06/07/06 12:32 SR #: SR08744

## Teledyne Brown Engineering Sample Receipt Verification/Variance Report

Client: Exelon

Project #: EX001-3ESPDRES-06

LIMS #: L28851

Initiated By: BWILKERSON Init Date: 06/07/06 Receive Date: 06/07	/06
Notificat:	ion of Variance
Person Notified:	Contacted By:
Notify Date:	
Notify Method:	
Notify Comment:	
Client Resp	ponse
Person Responding:	
Response Date:	
Response Method:	
Response Comment	
Criteria	Yes No NA Comment
1 Shipping container custody seals presen and intact.	t NA
2 Sample container custody seals present and intact.	NA
3 Sample containers received in good condition	Y
4 Chain of custody received with samples	Y
5 All samples listed on chain of custody received	Y
6 Sample container labels present and legible.	Y
7 Information on container labels correspond with chain of custody	Y
8 Sample(s) properly preserved and in appropriate container(s)	Y Ph at or below 2
9 Other (Describe)	NA

L28853

CON	CONESTOGA-ROVERS & ASSOCIATES 8615 W. Bryn Mawr Avenue Chicago, Illinois 60631 (773)380-9933 phone (773)380-6421 fax CHAIN-OF-CUSTODY RECORD					REFERENCE NUMBER:				PROJECT NAME:  Dresden Generating Station														
				CORD	145	<u>136-23</u>	<u> </u>			7		OK		بَكِ	9	700	<u> </u>	111	H	<u>بر</u>	16 ) IC	<u>۱٬۱</u>		
SAMI SIGNA	PLER'S	july	Sylve	PRINTED	Sule?	WZW	SAMPI		No. OF CONTAINERS	PAF	RAM /	IETE	RS		Zy /					//	/ RI	EMARK	S	
SEQ. No.	DATE	TIME	SAMPL	E IDENTIFI	CATIO	CATION No.				PARAMETERS ST. ST. ST. ST. ST. ST. ST. ST. ST. ST														
	6/1/06	MUS	WH-DN-DW	-DM-102I-E	100106-	J-075	W	`,	<u>2</u>								_		$\perp$					
	1	1150	1.10 - MI-MI	1-011-1032-6	3-dOldak	21-0.40	M		<u>a</u>		X	X	X.L		_	_	_	_						
		1410	WG-DN-M	W-DN-1055 BR-DN-125	-D1001D	0-J1-DF7	M		2				X						_					
	<b>V</b>	1510	MG-DN-C	59-DN-125	- 0601	370-12-010	N		Q		X	X	X				_	_	_					
									-,,							_		_	4					
						AV											_							·
<u> </u>						NO													_					
															-									
																_		_	_					*****
																			_ _					
<u> </u>		,,,,,,																						
																			_					
																			_					
																			_ -					
							<u> </u>												L				····	
	.1	<u> </u>	TOTAL NUM	IBER OF CONT	AINERS				8													/ /		
RFI II	VOWISHED	BY:	0 -			DATE: (Q)	106	REC	EIVE	D BY:	6/1	A.	-/	$\int \int$							ı	ATE: <i>仏-【</i> ME: /		
(1)	Jul	2 91	Jugual	}		TIME: 154	472	<b>(2</b> )			UNU	,	$\nu$ $\nu$	الحرار								ATE:	176	
	VOUISHED	BY:	2000	1		DATE: 6-5			CEIVE	D BY:											<u> </u>	ME:		
2	7		X 4 X				45	3														ATE:		
RELINQUISHED BY:					DATE:		$\sim$	CEIVE	D BY:												IME:			
3						TIME:		(4)																
ME	METHOD OF SHIPMENT:								AIR	R BILL No.														
White -Fully Executed Copy Yellow -Receiving Laboratory Copy Pink -Shipper Copy Coldegrod -Sampler Copy				SAMPL	SAMPLE TEAM:				DATE: 6-7-06 TIME: 8 AM						12	277								

# Internal Chain of Custody

Page: L28853 9 of 42 06/21/06 11:16 Teledyne Brown Engineering

Internal Chain of Custody

*****************

Containernum 1 Sample # L28853-1

Analyst Prod

GELI DW EJ H-3

SR-90 (FAST) LCB

Received By Relinquish Date Relinquish By

Sample Custodian 099999 06/07/2006 00:00

*******************

Containernum 2 Sample # L28853-1

Analyst Prod DWGELI H-3EJ LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By

099999 Sample Custodian 06/07/2006 00:00

******************

Containernum 1 Sample # L28853-2

Analyst Prod DWGELI H-3ЕJ SR-90 (FAST) LCB

Received By Relinquish Date Relinquish By

099999 Sample Custodian 06/07/2006 00:00

*******************

Containernum 2 Sample # L28853-2

Analyst Prod GELI DW ЕJ H-3LCB SR-90 (FAST)

Received By Relinquish Date Relinquish By

099999 Sample Custodian 06/07/2006 00:00

******************

Containernum 1 Sample # L28853-3

Prod Analyst DW **GELI** ΕJ H-3SR-90 (FAST) LCB

Received By Relinquish Date Relinquish By

099999 Sample Custodian 06/07/2006 00:00

*******************

Containernum 2 Sample # L28853-3

Analyst Prod DW**GELI** ЕJ H-3SR-90 (FAST) LCB

Received By Relinquish Date Relinquish By

Sample Custodian 099999 06/07/2006 00:00

******************

Sample Custodian

Internal Chain of Custody

****************

Sample # L28853-4 Containernum 1

Prod Analyst

GELI DW

н-3 ЕЈ

SR-90 (FAST) LCB

Relinquish Date Relinquish By Received By

06/07/2006 00:00 099999 Sample Custodian

*****************

Sample # L28853-4 Containernum 2

Prod Analyst

GELI DW

H-3 EJ

SR-90 (FAST) LCB

Relinquish Date Relinquish By Received By

06/07/2006 00:00 099999

06/21/06

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L28853

*****	****	*******	*****	******
L28853-1	WG	WG-DN-MW-DN-102I-060	106-JL-075	
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KOJ	06/14/06
Count Room	H-3		KOJ	06/13/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
*****	*****	*****	*****	******
L28853-2	WG	WG-DN-MW-DN-102S-060	)106-JL-076	
Process step	Prod		Analyst	<u>Date</u>
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KPW	06/14/06
Count Room	H-3		KOJ	06/13/06
Count Room	SR-90	(FAST)	KOJ	06/21/06
*****	*****	******	*****	******
L28853-3	WG	WG-DN-MW-DN-105S-060	0106-JL-077	
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		DW	06/10/06
Aliquot	Н-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KPW	06/14/06
Count Room	H-3		KOJ	06/13/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
******	*****	******	******	********
L28853-4	WG	WG-DN-DSP-DN-125-060	0106-JL-078	
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/07/06
Aliquot	GELI		D₩	06/10/06
Aliquot	H-3		EJ	06/10/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KPW	06/14/06
Count Room	H-3		KOJ	06/13/06
	n-3		1100	00/15/00
Count Room	sR-90	(FAST)	KOJ	06/20/06

# Analytical Results Summary



#### L28853

#### Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-MW-DN-102I-060106-JL-075 Collect Start: 06/01/2006 10:45

Matrix: Ground Water

(WG)

Station: Description: Collect Stop:

Volume:

Receive Date: 06/07/2006

% Moisture:

LIMC Number: I 28853-1

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H-3	2010	1.38E+03	1.95E+02	1.93E+02	pCi/L		10	ml		06/13/06	44.74	M	+
TOTAL SR	2018	6.41E-01	8.85E-01	1.68E+00	pCi/L		450	ml	06/01/06 10:45	06/20/06	120	M	U
MN-54	2007	-5.42E-01	2.96E+00	4.82E+00	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No
CO-58	2007	-2.01E-01	3.34E+00	5.51E+00	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No
FE-59	2007	3.99E+00	7.24E+00	1.25E+01	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No
CO-60	2007	-7.05E-01	3.08E+00	4.91E+00	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No
ZN-65	2007	5.33E+00	6.86E+00	1.20E+01	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No
NB-95	2007	3.49E+00	3.37E+00	5.99E+00	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No
ZR-95	2007	-1.80E+00	5.97E+00	9.47E+00	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No
CS-134	2007	6.40E-01	3.72E+00	5.52E+00	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No
CS-137	2007	-3.33E+00	3.41E+00	5.21E+00	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No
BA-140	2007	1.09E+01	2.02E+01	3.46E+01	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No
I.A-140	2007	1.77E+00	6.36E+00	1.08E+01	pCi/L		3108.8	ml	06/01/06 10:45	06/14/06	9000	Sec	U No

#### Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery High recovery

Page 1 of 4

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted



#### L28853

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-MW-DN-102S-060106-JL-076 Collect Start: 06/01/2006 11:50

Ground Water Matrix:

(WG)

Station:

Collect Stop:

Volume:

Description:

Receive Date: 06/07/2006

% Moisture:

LIMS Number: L28853-2

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H-3	2010	4.25E+03	4.75E+02	3.09E+02	pCi/L		10	ml		06/13/06	17.94	M	+ High
TOTAL SR	2018	7.50E-01	7.33E-01	1.38E+00	pCi/L		450	ml	06/01/06 11:50	06/21/06	100	M	U
MN-54	2007	2.82E-01	2.53E+00	4.21E+00	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U No
CO-58	2007	-1.46E+00	2.81E+00	4.51E+00	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U No
FE-59	2007	5.59E-01	5.99E+00	9.98E+00	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U No
CO-60	2007	1.22E+00	2.36E+00	4.04E+00	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U No
ZN-65	2007	2.32E+00	5.68E+00	9.64E+00	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U No
NB-95	2007	3.54E-01	2.85E+00	4.77E+00	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U No
ZR-95	2007	-3.97E-01	5.10E+00	8.25E+00	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U No
CS-134	2007	6.71E+00	6.09E+00	5.16E+00	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U   No
CS-137	2007	8.56E-01	2.56E+00	4.27E+00	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U No
BA-140	2007	1.47E+01	1.78E+01	3.07E+01	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U No
LA-140	2007	6.22E+00	5.81E+00	1.04E+01	pCi/L		3083.9	ml	06/01/06 11:50	06/14/06	13342	Sec	U No

#### Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec

Low recovery

High recovery

Page 2 of 4

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted



#### L28853

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-MW-DN-105S-060106-JL-077

Collect Start: 06/01/2006 14:10

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Description:

Receive Date: 06/07/2006

% Moisture:

LIMS Number: L28853-3

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	
H-3	2010	2.14E+01	1.10E+02	1.78E+02	pCi/L		10	ml		06/13/06	60	M	U	
TOTAL SR	2018	5.90E-01	7.40E-01	1.40E+00	pCi/L		450	ml	06/01/06 14:10	06/20/06	120	M	U	
MN-54	2007	1.27E+00	2.86E+00	4.83E+00	pCi/L		3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	U No	<del></del>
CO-58	2007	-1.96E+00	2.99E+00	4.70E+00	pCi/L		3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	U No	
FE-59	2007	3.19E+00	6.59E+00	1.12E+01	pCi/L		3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	UNC	
CO-60	2007	-8.67E-02	2.77E+00	4.56E+00	pCi/L		3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	U No	<u> </u>
ZN-65	2007	7.14E+00	6.32E+00	1.12E+01	pCi/L		3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	U No	
NB-95	2007	2.13E+00	3.23E+00	5.54E+00	pCi/L		3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	U No	
ZR-95	2007	1.51E+00	5.54E+00	9.31E+00	pCi/L		3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	U No	<u> </u>
CS-134	2007	-3.79E+00	3.90E+00	5.04E+00	pCi/L		3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	U No	3
CS-137	2007	-1.70E+00	3.22E+00	4.93E+00	pCi/L		3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	U No	<b>o</b>
BA-140	2007	-3.45E+00	1.88E+01	3.08E+01	pCi/L	C. C. C. C. C. C. C. C. C. C. C. C. C. C	3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	U No	o
LA-140	2007	-5.19E-01	6.21E+00	1.00E+01	pCi/L		3075.34	ml	06/01/06 14:10	06/14/06	12473	Sec	U No	<u> </u>

Flag	Va	u
------	----	---

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec Low recovery

High recovery

Page 3 of 4

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted



#### L28853

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-DN-125-060106-JL-078 Collect Start: 06/01/2006 15:10

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Description:

Receive Date: 06/07/2006

% Moisture:

LIMS Number: L28853-4

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	Values
H-3	2010	3.20E+02	1.27E+02	1.78E+02	pCi/L		10	ml		06/13/06	60	M	+	
TOTAL SR	2018	3.70E-01	5.42E-01	1.04E+00	pCi/L		450	ml	06/01/06 15:10	06/20/06	120	M	U	
MN-54	2007	1.29E+00	2.85E+00	5.07E+00	pCi/L		3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No
CO-58	2007	5.46E-01	3.16E+00	5.54E+00	pCi/L	Į.	3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No
FE-59	2007	9.47E-01	6.56E+00	1.16E+01	pCi/L	C. C. C. C. C. C. C. C. C. C. C. C. C. C	3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No
CO-60	2007	1.29E+00	2.80E+00	5.14E+00	pCi/L		3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No
ZN-65	2007	6.16E+00	6.03E+00	1.14E+01	pCi/L		3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No
NB-95	2007	-1.74E-01	3.19E+00	5.50E+00	pCi/L		3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No
ZR-95	2007	4.35E-01	5.51E+00	9.60E+00	pCi/L		3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No
CS-134	2007	-1.10E+00	3.84E+00	5.48E+00	pCi/L		3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No
CS-137	2007	1.15E+00	3.08E+00	5.46E+00	pCi/L	İ	3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No
BA-140	2007	7.87E+00	2.13E+01	3.67E+01	pCi/L		3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No
LA-140	2007	1.11E+01	6.21E+00	1.28E+01	pCi/L		3056.25	ml	06/01/06 15:10	06/14/06	12600	Sec	U	No

FI	ag	V	al	11	6
1.1	aĸ	Y	æ	u	۱

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Spec

Low recovery

High recovery

Page 4 of 4

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

# QC Results Summary

### **QC Summary Report**

L28853 for

6/21/2006

12:19:07PM



П 3

				Н-3			
				Method Blank Summ	ary		
TBE Sample ID WG4122-1	Radionuclide H-3	<u>Matrix</u> WO	Count Date/Time 06/13/2006 20:30		Blank Result < 1.790E-02	<u>Units</u> pCi/Total	Qualifier P/F U P
				LCS Sample Summa	ary		
TBE Sample ID WG4122-2	Radionuclide H-3	Matrix WO	Count Date/Time 06/13/2006 21:33	Spike Value 5.05E+002	LCS Result 4.950E+02	UnitsSpike RecoverypCi/Total98.1	Range         Qualifier         P/F           70-130         +         P
Spike ID: 3H-04 Spike conc: 5.05E Spike Vol: 1.00E	+002					· ·	
				Duplicate Summar	y		
TBE Sample ID WG4122-3 L28851-11	Radionuclide H-3	<u>Matrix</u> WG	Count Date/Time 06/13/2006 0:34	Original Result < 1.720E+02	<u><b>DUP Result</b></u> < 1.710E+02	Units RPD pCi/L	Range Qualifier P/F <30 ** NE

_2	v	×	-	٠.
	o	o	J	•

H-3

Associated Samples for	WG4122
<b>SAMPLENUM</b>	CLIENTID
L28853-1	WG-DN-MW-DN-102I-060106-JL-075
L28853-2	WG-DN-MW-DN-102S-060106-JL-076
L28853-3	WG-DN-MW-DN-105S-060106-JL-077
1.28853-4	WG-DN-DSP-DN-125-060106-JL-078

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

Spiking level < 5 times activity

Pass Fail F

Not evaluated NE

Page: 1

### **QC Summary Report**

for

L28853

6/21/2006

12:19:07PM



#### **TOTAL SR**

				TOTALION				
				Method Blank Sumn	ary			
TBE Sample ID WG4162-1	Radionuclide TOTAL SR	<u>Matrix</u> WO	Count Date/Time 06/20/2006 20:27		Blank Result < 7.860E-01	<u>Units</u> pCi/Total		Qualifier P/F U P
				LCS Sample Summ	ary			
TBE Sample ID WG4162-2	Radionuclide TOTAL SR	<u>Matrix</u> WO	Count Date/Time 06/20/2006 20:27	Spike Value 5.84E+001	LCS Result 6.250E+01	<u>Units</u> pCi/Total	Spike Recovery 107.1	Range         Qualifier         P/F           70-130         +         P
Spike ID: 90SR- Spike conc: 2.34E Spike Vol: 2.50E	E+002							
				Duplicate Summa	r <b>y</b>			
TBE Sample ID WG4162-3	Radionuclide TOTAL SR	<u>Matrix</u> WG	Count Date/Time 06/20/2006 20:27	Original Result < 1.630E+00	<u><b>DUP Result</b></u> < 1.570E+00	<u>Units</u> pCi/L	RPD	Range Qualifier P/F <30 ** NE

L28864-1

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

Spiking level < 5 times activity ***

Pass F Fail

NE Not evaluated

## Raw Data

### Raw Data Sheet (rawdata) Jun 21 2006, 11:29 am

Work Order: L28853

Customer: Exelon

Nuclide: <u>H-3</u>	. Pi	oject : <u>EX001-3</u>	ESPDRES-06											Decay &	
bampro	Reference Date/time	Volume/ Aliquot	Scavenge Date/time	Milking Date/time	Mount Weight	Recovery		Counter ID	counts	Sample dt(min)		Bkg dt(min)	Eff.	Ingrowth Factor	Analyst EJ
L28853-1 H-3 WG-DN-MW-DN-102I-06010	0.55	10 ml			0		13-jun-06 08:46	LS7	370	44.74	1.73	60	.21	<b>4</b>	
Activity: 1.38E+03 * Error: 1 L28853-2 H-3 WG-DN-MW-DN-102S-06010		MDC: 1.93E+02  10 ml  MDC: 3.09E+02			0		13-jun-06 09:35	LS7	388	17.94	1.73	60	.21	1.	EJ
Activity: 4.25E+03 * Error: 4 L28853-3 H-3 WG-DN-MW-DN-105S-06010		10 ml MDC: 1.78E+02 *			0		13-jun-06 21:52	LS7	121	60	1.92	60	.21	1	EJ
Activity: 2.14E+01 Error: 1.  L28853-4 H-3  WG-DN-DSP-DN-125-06010  Activity: 3.2E+02 * Error: 1		10 ml MDC: 1.78E+02	411000000		0		13-jun-06 22:56	LS7	205	60	1.92	60	.21	2	EJ

Page: 1

42

#### Raw Data Sheet (rawdata) Jun 21 2006, 11:29 am

Work Order: L28853 Customer: Exelon

Nuclide: SR-90 (FAST) Project: EX001-3ESPDRES-06

Nuclide: <u>SR-90 (FAST)</u>	- PIC	5) ect : <u>Excut-31</u>	ADE DICED - C C										Decay &	
Sample ID Run Analysis Client ID #	Reference Date/time		Scavenge Milking Date/time Date/time	Mount Weight	Recovery	Count Date/time	Counter ID	counts			Bkg dt(min)		Ingrowth Factor	
L28853-1 TOTAL SR WG-DN-MW-DN-102I-06010	01-jun-06 10:45	450 ml	20-jun-06 15:00	0	58.06	20-jun-06 20:27	X2A	95	120	264	400	.35	4 .999	LCB
Activity: 6.41E-01 Error: 8 L28853-2 TOTAL SR WG-DN-MW-DN-102S-06010	01-jun-06 11:50	450 ml	20-jun-06 15:00	0	85.22	21-jun-06 00:37	YlC	97	100	300	400	.34	5 .999	LCB
Activity: 7.5E-01 Error: 7 L28853-3 TOTAL SR WG-DN-MW-DN-105S-06010 Activity: 5.9E-01 Error: 7	01-jun-06 14:10	MDC: 1.38E+00 * 450 ml MDC: 1.4E+00 *	20-jun-06 15:00	0	73.66	20-jun-06 20:27	X2C	101	120	277	400	.34		LCB
Activity: 5.9E-01 Error: 7 L28853-4 TOTAL SR WG-DN-DSP-DN-125-06010 Activity: 3.7E-01 Error: 5	01-jun-06 15:10		20-jun-06 15:00	0	104.57	20-jun-06 20:27	X2D	108	120	307	400	.34	3 .999	LCB

Page: 2

Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-JUN-2006 16:44:39.71 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 14-JUN-2006 14:14:33.98 ______

LIMS No., Customer Name, Client ID: WG L28853-1 EX DRES

Smple Date: 1-JUN-2006 10:45:00.0 : 07L28853-1 Sample ID

Geometry : 073L082504 Sample Type : WG BKGFILE : 07BG060306MT : 3.10880E+00 L Ouantity End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 02:30:00.00 MDA Constant: 0.00 Library Used: LIBD

Pk I	t	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5	1 1 1	66.36* 139.55* 584.05* 595.96 1460.83*	100 66 69 63 35	201 69 45	1.17 7.15 2.05	279.78 1169.27 1193.09	8.07E-01 2.36E+00 1.12E+00 1.10E+00 5.83E-01	7.32E-03 7.62E-03 7.01E-03	42.2 31.7 22.7	3.70E+00 7.38E+00 9.29E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

2-Sigma Uncorrected Decay Corr %Abn pCi/L pCi/L %Error %Eff Area Nuclide Energy 105.25 5.381E+01 10.67* 5.828E-01 5.381E+01 35 1460.81 K-40

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Acquisition date : 14-JUN-2006 14:14:33

Sample ID : 07L28853-1

Total number of lines in spectrum 5 Number of unidentified lines 3

Number of lines tentatively identified by NID 2 40.00%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma Decay pCi/L pCi/L 2-Sigma Error %Error Flags Nuclide Hlife 1.00 5.381E+01 5.381E+01 5.663E+01 105.25 K-40 1.28E+09Y

_____ _ _ _ _ _ _ _ _ _

Total Activity: 5.381E+01 5.381E+01

Grand Total Activity: 5.381E+01 5.381E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID: 07L28853-1

Acquisition date: 14-JUN-2006 14:14:33

0.000E+00

0.000E+00

0.000E+00

-0.273

-0.037

0.319

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff I	Flags
1	66.36 139.55 584.05 595.96	100 66 69 63	201 69	1.17 7.15	279.78 1169.27	275 1164	8 17	7.32E-03 7.62E-03	84.4 63.4	8.07E-01 2.36E+00 1.12E+00 1.10E+00	T

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 5
Number of unidentified lines 3
Number of lines tentatively identified by NID 2 40.00%

Nuclide Type : natural

 Wtd Mean
 Wtd Mean
 Wtd Mean
 Uncorrected
 Decay Corr
 Decay Corr
 2-Sigma

 Nuclide
 Hlife
 Decay
 pCi/L
 2-Sigma
 Error Flags

 K-40
 1.28E+09Y
 1.00
 5.381E+01
 5.381E+01
 5.663E+01
 105.25

 Total Activity:
 5.381E+01
 5.381E+01

Grand Total Activity: 5.381E+01 5.381E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

CO-57

CO-58

FE-59

No interference correction performed

-1.350E+00

-2.014E-01

3.989E+00

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	5.381E+01	5.663E+01	4.510E+01	0.000E+00	1.193
Non-Ide	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24	1.927E+00 -3.897E-01	2.899E+01 3.322E+00	4.740E+01 Half-Life too	0.000E+00 short	0.041
CR-51 MN-54	-2.865E+01 -5.423E-01	3.583E+01 2.958E+00	5.760E+01 4.819E+00	0.000E+00 0.000E+00	-0.497 -0.113

3.074E+00

3.340E+00

7.243E+00

4.947E+00

5.505E+00

1.251E+01

CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133	-7.048E-01 5.325E+00 -1.515E+00 2.241E+01 -2.116E+00 -1.006E-01 3.488E+00 -1.795E+00 4.380E+02 6.435E+00 -1.008E+01 -9.553E-02 1.668E+00 -7.124E+00 5.596E+00 5.254E+01 -3.425E+00 4.213E+00	3.083E+00 6.861E+00 4.414E+00 4.167E+00 3.316E+00 2.981E+00 5.971E+00 6.397E+02 3.787E+00 2.767E+01 3.135E+00 4.146E+00 4.728E+00 8.458E+00 4.377E+01 9.408E+00 4.211E+00	4.913E+00 1.203E+01 7.102E+00 8.346E+00 5.036E+00 4.854E+00 5.988E+00 9.472E+00 1.091E+03 6.753E+00 4.437E+01 5.128E+00 6.969E+00 5.723E+00 1.437E+01 7.626E+01 1.528E+01 7.291E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.143 0.443 -0.213 2.685 -0.420 -0.021 0.582 -0.189 0.402 0.953 -0.227 -0.019 0.239 -1.245 0.389 0.689 -0.224 0.578
CS-134 CS-136	6.402E-01 -4.092E-01	3.721E+00 5.618E+00	5.516E+00 9.244E+00	0.000E+00 0.000E+00	0.116 -0.044 -0.639
CS-137	-3.325E+00	3.406E+00	5.208E+00 4.809E+00	0.000E+00 0.000E+00	-0.043
CE-139	-2.083E-01	2.889E+00 2.016E+01	4.809E+00 3.459E+01	0.000E+00	0.315
BA-140	1.091E+01 1.774E+00	6.355E+00	1.078E+01	0.000E+00	0.165
LA-140 CE-141	-1.519E+00	7.455E+00	1.017E+01	0.000E+00	-0.149
CE-141 CE-144	-7.573E+00	2.824E+01	3.859E+01	0.000E+00	-0.196
EU-152	-7.022E+00	9.578E+00	1.535E+01	0.000E+00	-0.457
EU-154	6.554E-01	6.271E+00	1.028E+01	0.000E+00	0.064
RA-226	2.123E+01	7.351E+01	1.246E+02	0.000E+00	0.170
AC-228	1.422E+01	1.201E+01	2.144E+01	0.000E+00	0.663 0.062
TH-228	6.303E-01	6.037E+00	1.010E+01	0.000E+00	0.062
TH-232	1.416E+01	1.195E+01	2.135E+01	0.000E+00 0.000E+00	0.863
U-235	4.809E+00	2.586E+01	3.605E+01	0.000E+00 0.000E+00	0.133
U-238	6.100E+01	3.316E+02	5.495E+02	0.000E+00	-0.815
AM-241	-3.504E+01	3.178E+01	4.301E+01	0.0006+00	-0.013

```
,06/14/2006 16:44,06/01/2006 10:45,
                                                                 3.109E+00,WG L28853-1 EX
A,07L28853-1
                                             ,06/07/2006 09:32,073L082504
                     ,LIBD
B,07L28853-1
                     5.381E+01,
                                    5.663E+01,
                                                   4.510E+01,,
                                                                    1.193
C, K-40
           ,YES,
                                                                    0.041
C, BE-7
           , NO
                    1.927E+00,
                                    2.899E+01,
                                                   4.740E+01,,
                                    3.583E+01,
                                                   5.760E+01,,
                                                                   -0.497
                   -2.865E+01,
C, CR-51
           , NO
                    -5.423E-01,
                                                   4.819E+00,,
                                                                   -0.113
C, MN-54
           , NO
                                    2.958E+00,
                                    3.074E+00,
                                                   4.947E+00,,
                                                                   -0.273
C, CO-57
                    -1.350E+00,
           , NO
                                                                   -0.037
           , NO
                                    3.340E+00,
                                                   5.505E+00,,
C, CO-58
                    -2.014E-01,
                                                   1.251E+01,,
                                                                    0.319
                     3.989E+00,
                                    7.243E+00,
C, FE-59
           , NO
                                    3.083E+00,
                                                   4.913E+00,,
                                                                   -0.143
C, CO-60
           , NO
                    -7.048E-01,
                                                   1.203E+01,,
                                                                    0.443
                     5.325E+00,
                                    6.861E+00,
C, ZN-65
            , NO
                                                   7.102E+00,,
                                                                   -0.213
                    -1.515E+00,
                                    4.414E+00,
C, SE-75
           , NO
                                                   8.346E+00,,
                                                                    2.685
           ,NO
                                    4.167E+00,
C, SR-85
                     2.241E+01,
                                                   5.036E+00,,
                                                                   -0.420
C, Y-88
            , NO
                    -2.116E+00,
                                    3.316E+00,
                                                                   -0.021
            , NO
                                    2.981E+00,
                                                   4.854E+00,,
C, NB-94
                    -1.006E-01,
                                                   5.988E+00,,
                                                                    0.582
           , NO
                     3.488E+00,
                                    3.372E+00,
C, NB-95
C, ZR-95
            , NO
                                                   9.472E+00,,
                                                                   -0.189
                    -1.795E+00,
                                    5.971E+00,
                                                                    0.402
                     4.380E+02,
                                    6.397E+02,
                                                   1.091E+03,,
C, MO-99
            , NO
                                                   6.753E+00,,
                                                                     0.953
C, RU-103
            , NO
                     6.435E+00,
                                    3.787E+00,
                                                   4.437E+01,,
                                                                   -0.227
                    -1.008E+01,
                                    2.767E+01,
C, RU-106
            , NO
                                                                   -0.019
                    -9.553E-02,
                                    3.135E+00,
                                                   5.128E+00,,
C, AG-110m
           , NO
                                                   6.969E+00,,
                                                                     0.239
            , NO
                                    4.146E+00,
                     1.668E+00,
C, SN-113
                                                   5.723E+00,,
                                    4.728E+00,
                                                                   -1.245
C,SB-124
            ,NO
                    -7.124E+00,
            , NO
                                                   1.437E+01,,
                                                                     0.389
C,SB-125
                     5.596E+00,
                                    8.458E+00,
C, TE-129M , NO
                     5.254E+01,
                                    4.377E+01,
                                                   7.626E+01,,
                                                                     0.689
            , NO
                                                   1.528E+01,,
                                                                    -0.224
                                    9.408E+00,
C, I-131
                    -3.425E+00,
                                                   7.291E+00,,
                                                                     0.578
                     4.213E+00,
                                    4.211E+00,
C, BA-133
            , NO
                                                                     0.116
                                    3.721E+00,
                                                   5.516E+00,,
C, CS-134
            ,NO
                     6.402E-01,
                                                                    -0.044
C, CS-136
            , NO
                    -4.092E-01,
                                    5.618E+00,
                                                   9.244E+00,,
C, CS-137
                    -3.325E+00,
                                    3.406E+00,
                                                   5.208E+00,,
                                                                    -0.639
            , NO
                                                   4.809E+00,,
                                                                    -0.043
                    -2.083E-01,
                                    2.889E+00,
C, CE-139
            , NO
                     1.091E+01,
                                    2.016E+01,
                                                   3.459E+01,,
                                                                     0.315
C, BA-140
            , NO
                                                   1.078E+01,,
                                                                     0.165
                     1.774E+00,
                                    6.355E+00,
C, LA-140
            , NO
C, CE-141
            ,NO
                    -1.519E+00,
                                    7.455E+00,
                                                   1.017E+01,,
                                                                    -0.149
                                    2.824E+01,
                                                   3.859E+01,,
                                                                    -0.196
C, CE-144
            , NO
                    -7.573E+00,
                                    9.578E+00,
                                                   1.535E+01,,
                                                                    -0.457
                    -7.022E+00,
C, EU-152
            , NO
                                                                     0.064
            ,NO
                                    6.271E+00,
                                                   1.028E+01,,
C, EU-154
                     6.554E-01,
                                                                     0.170
            , NO
                     2.123E+01,
                                    7.351E+01,
                                                   1.246E+02,,
C,RA-226
C, AC-228
            , NO
                     1.422E+01,
                                    1.201E+01,
                                                   2.144E+01,,
                                                                     0.663
C, TH-228
                     6.303E-01,
                                    6.037E+00,
                                                   1.010E+01,,
                                                                     0.062
            , NO
                     1.416E+01,
                                    1.195E+01,
                                                   2.135E+01,,
                                                                     0.663
C, TH-232
            , NO
                                                   3.605E+01,,
                                                                     0.133
                                    2.586E+01,
                     4.809E+00,
C, U-235
            , NO
                                    3.316E+02,
                                                   5.495E+02,,
                                                                     0.111
C, U-238
            , NO
                     6.100E+01,
```

3.178E+01,

4.301E+01,,

-0.815

-3.504E+01,

C,AM-241

, NO

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-JUN-2006 14:06:50.39
TBE07 P-10768B HpGe ******** Aquisition Date/Time: 14-JUN-2006 10:24:15.43

LIMS No., Customer Name, Client ID: WG L28853-2 DRESDEN

Sample Type : WG Geometry : 073L082504
Quantity : 3.08390E+00 L BKGFILE : 07BG060306MT
Start Channel : 40 Energy Tol : 1.00000 Real Time : 0 03:42:24.44
End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 03:42:21.81

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8	1 1 2 1 1 1	139.93* 198.29* 241.92 351.93* 595.58 609.41* 1420.73 1461.17*	94 110 92 81 88 147 29 41	359 396 193 157 124 82 10	1.85 3.97	280.54 397.34 484.67 704.82 1192.33 1219.99 2842.49 2923.33	2.25E+00 2.04E+00 1.61E+00 1.10E+00 1.09E+00 5.94E-01 5.83E-01	7.04E-03 8.22E-03 6.88E-03 6.07E-03 6.63E-03 1.10E-02 2.15E-03 3.09E-03	39.7 29.4 35.7 30.3 16.4 26.1 40.7	1.77E+00 1.84E+00 1.67E+00 2.96E+00 1.11E+00 3.40E+00 1.54E+00
9	1	1764.71*	28	11	2.98	3530.00	5.12E-01	2.13E-03	38.6	1.12E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Siqma %Error %Eff pCi/L pCi/L Area %Abn Nuclide Energy 81.36 10.67* 5.827E-01 4.360E+01 4.360E+01 41 1460.81 K-40

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity

Acquisition date : 14-JUN-2006 10:24:15 Sample ID : 07L28853-2

9 Total number of lines in spectrum Number of unidentified lines 7

Number of lines tentatively identified by NID 2 22.22%

_____

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Decay pCi/L pCi/L 2-Sigma Error %Error Flags Nuclide Hlife

_____

4.360E+01 3.547E+01 81.36 K-40 1.28E+09Y 1.00 4.360E+01

> 4.360E+01 Total Activity: 4.360E+01

Grand Total Activity: 4.360E+01 4.360E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 07L28853-2

Page: 3
Acquisition date: 14-JUN-2006 10:24:15

22.22%

4.003E+01 0.000E+00

4.903E+01 0.000E+00

Half-Life too short

-0.013

-0.065

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	139.93	94	359	1.04	280.54	277		7.04E-03 8.22E-03		2.36E+00 2.25E+00	
1	198.29	110	396	1.44	397.34						
2	241.92	92	193	1.63	484.67			6.88E-03		2.04E+00	
1	351.93	81	157	1.37	704.82	699	10	6.07E-03	71.4	1.61E+00	
1	595.58	88	124	3.58	1192.33	1184	16	6.63E-03	60.6	1.10E+00	
1	609.41	147	82	1.85	1219.99	1214	11	1.10E-02	32.9	1.09E+00	
1	1420.73	29	10	3.97	2842.49	2837	10	2.15E-03	52.2	5.94E-01	
1	1764.71	28	11	2.98	3530.00	3521	14	2.13E-03	77.1	5.12E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 9
Number of unidentified lines 7
Number of lines tentatively identified by NID 2

Nuclide Type : natural

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags
K-40 1.28E+09Y 1.00 4.360E+01 4.360E+01 3.547E+01 81.36

Total Activity: 4.360E+01 4.360E+01

Grand Total Activity: 4.360E+01 4.360E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

BE-7

NA-24

CR-51

No interference correction performed

-5.289E-01

-5.630E-01

-3.192E+00

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	4.360E+01	3.547E+01	4.086E+01	0.000E+00	1.067
Non-Ider	ntified Nuclides	3			
Nuclide	Key-Line Activity K.L (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA

2.461E+01

2.511E+00

2.956E+01

	0.000 01	2.534E+00	4.214E+00	0.000E+00	0.067
MN-54	2.820E-01	2.534E+00	4.170E+00	0.000E+00	0.175
CO-57	7.315E-01	2.809E+00	4.507E+00	0.000E+00	-0.324
CO-58	-1.461E+00	5.986E+00	9.975E+00	0.000E+00	0.056
FE-59	5.591E-01	2.363E+00	4.039E+00	0.000E+00	0.302
CO-60	1.219E+00	5.675E+00	9.638E+00	0.000E+00	0.241
ZN-65	2.323E+00		5.944E+00	0.000E+00	0.274
SE-75	1.629E+00	3.584E+00	6.704E+00	0.000E+00	3.171
SR-85	2.126E+01	3.348E+00	4.552E+00	0.000E+00	-0.111
Y-88	-5.072E-01	2.801E+00	4.174E+00	0.000E+00	0.171
NB-94	7.120E-01	2.519E+00	4.768E+00	0.000E+00	0.074
NB-95	3.543E-01	2.850E+00	8.247E+00	0.000E+00	-0.048
ZR-95	-3.969E-01	5.102E+00	8.346E+02	0.000E+00	0.256
MO-99	2.136E+02	5.004E+02	5.335E+00	0.000E+00	0.216
RU-103	1.154E+00	3.230E+00	4.105E+01	0.000E+00	0.148
RU-106	6.096E+00	2.464E+01	4.103E+01 4.062E+00	0.000E+00	0.448
AG-110m	1.818E+00	2.372E+00	5.507E+00	0.000E+00	-0.067
SN-113	-3.676E-01	3.360E+00	4.656E+00	0.000E+00	-0.160
SB-124	-7.455E-01	6.769E+00	1.228E+01	0.000E+00	-0.102
SB-125	-1.258E+00	7.551E+00	5.990E+01	0.000E+00	-0.018
TE-129M	-1.107E+00	3.676E+01	1.247E+01	0.000E+00	-0.138
I-131	-1.719E+00	7.609E+00	6.706E+00	0.000E+00	1.380
BA-133	9.254E+00	4.291E+00	5.155E+00	0.000E+00	1.301
CS-134	6.709E+00	6.085E+00	8.167E+00	0.000E+00	0.195
CS-136	1.590E+00	4.842E+00	4.272E+00	0.000E+00	0.200
CS-137	8.561E-01	2.557E+00	4.272E+00 4.259E+00	0.000E+00	0.268
CE-139	1.139E+00	2.521E+00	3.072E+01	0.000E+00	0.479
BA-140	1.473E+01	1.781E+01	1.041E+01	0.000E+00	0.597
LA-140	6.218E+00	5.812E+00	9.063E+00	0.000E+00	0.144
CE-141	1.301E+00	6.517E+00	3.077E+01	0.000E+00	-0.609
CE-144	-1.874E+01	2.302E+01	1.255E+01	0.000E+00	-1.218
EU-152	-1.529E+01	9.796E+00		0.000E+00	0.208
EU-154	1.766E+00	5.141E+00	8.483E+00	0.000E+00	-0.153
RA-226	-1.619E+01	6.427E+01	1.057E+02	0.000E+00	0.074
AC-228	1.270E+00	1.060E+01	1.725E+01	0.000E+00	0.321
TH-228	2.749E+00	5.868E+00	8.556E+00	0.000E+00	0.074
TH-232	1.264E+00	1.056E+01	1.718E+01	0.000E+00	0.322
U-235	1.051E+01	2.323E+01	3.266E+01	0.000E+00	0.433
U-238	2.097E+02	2.828E+02	4.842E+02	0.000E+00	-1.142
AM-241	-4.227E+01	2.426E+01	3.700E+01	0.0005+00	

```
3.084E+00,WG L28853-2 DR
                     ,06/14/2006 14:06,06/01/2006 11:50,
A,07L28853-2
                                             ,06/07/2006 09:32,073L082504
                     ,LIBD
B,07L28853-2
                                                                    1.067
                                    3.547E+01,
                                                   4.086E+01,,
                     4.360E+01,
C, K-40
           ,YES,
                                                                   -0.013
                                                   4.003E+01,,
                                    2.461E+01,
C, BE-7
           , NO
                   -5.289E-01,
                                                                   -0.065
                                                   4.903E+01,,
                   -3.192E+00,
                                    2.956E+01,
           , NO
C, CR-51
                                                                    0.067
                                                   4.214E+00,,
                                    2.534E+00,
                     2.820E-01,
C, MN-54
           , NO
                                                                    0.175
                                                   4.170E+00,,
                                    2.530E+00,
           , NO
                     7.315E-01,
C, CO-57
                                                   4.507E+00,,
                                                                   -0.324
                    -1.461E+00,
                                    2.809E+00,
C, CO-58
           , NO
                                                   9.975E+00,,
                                                                    0.056
                                    5.986E+00,
                     5.591E-01,
C, FE-59
           , NO
                                                   4.039E+00,,
                                                                    0.302
                     1.219E+00,
                                    2.363E+00,
C, CO-60
            , NO
                                                                    0.241
                                                   9.638E+00,,
                                    5.675E+00,
            , NO
                     2.323E+00,
C, ZN-65
                                                                     0.274
                                                   5.944E+00,,
                                    3.584E+00,
            , NO
                     1.629E+00,
C,SE-75
                                                   6.704E+00,,
                                                                     3.171
                                    3.348E+00,
                     2.126E+01,
            , NO
C, SR-85
                                                                   -0.111
                                                   4.552E+00,,
                    -5.072E-01,
                                    2.801E+00,
C, Y-88
            , NO
                                                   4.174E+00,,
                                                                     0.171
                                    2.519E+00,
                     7.120E-01,
C, NB-94
            , NO
                                                                     0.074
                                                   4.768E+00,,
                     3.543E-01,
                                    2.850E+00,
C, NB-95
            , NO
                                                                    -0.048
                                                   8.247E+00,,
                                    5.102E+00,
                    -3.969E-01,
C, ZR-95
            , NO
                                                   8.346E+02,,
                                                                     0.256
                                    5.004E+02,
            , NO
                     2.136E+02,
C, MO-99
                                                                     0.216
                                                   5.335E+00,,
                                    3.230E+00,
                     1.154E+00,
C, RU-103
            , NO
                                                   4.105E+01,,
                                                                     0.148
                                    2.464E+01,
C, RU-106
                     6.096E+00,
            , NO
                                                   4.062E+00,,
                                                                     0.448
                                    2.372E+00,
                     1.818E+00,
            , NO
C, AG-110m
                                                                    -0.067
                                    3.360E+00,
                                                   5.507E+00,,
            , NO
                    -3.676E-01,
C,SN-113
                                                                    -0.160
                                                   4.656E+00,,
                                    6.769E+00,
            ,NO
                    -7.455E-01,
C,SB-124
                                                   1.228E+01,,
                                                                    -0.102
                    -1.258E+00,
                                    7.551E+00,
C,SB-125
            , NO
                                                                    -0.018
                                    3.676E+01,
                                                   5.990E+01,,
                    -1.107E+00,
C, TE-129M
            , NO
                                                                    -0.138
                                    7.609E+00,
                                                   1.247E+01,,
            , NO
                    -1.719E+00,
C, I-131
                                                                     1.380
                                    4.291E+00,
                                                   6.706E+00,,
                     9.254E+00,
            , NO
C,BA-133
                                                   5.155E+00,,
                                                                     1.301
                                    6.085E+00,
                     6.709E+00,
C, CS-134
            , NO
                                                                     0.195
                                                    8.167E+00,,
                                    4.842E+00,
C, CS-136
            , NO
                     1.590E+00,
                                                                     0.200
                                                    4.272E+00,,
                                    2.557E+00,
                     8.561E-01,
C, CS-137
            , NO
                                                    4.259E+00,,
                                                                     0.268
                     1.139E+00,
                                    2.521E+00,
            ,NO
C, CE-139
                                                                     0.479
                                                    3.072E+01,,
                     1.473E+01,
                                    1.781E+01,
            , NO
C,BA-140
                                                    1.041E+01,,
                                                                     0.597
                                     5.812E+00,
            , NO
                     6.218E+00,
C, LA-140
                                                                     0.144
                                                    9.063E+00,,
                                     6.517E+00,
C, CE-141
            , NO
                     1.301E+00,
                                                    3.077E+01,,
                                                                    -0.609
C, CE-144
                    -1.874E+01,
                                     2.302E+01,
            , NO
                                                    1.255E+01,,
                                                                    -1.218
                    -1.529E+01,
                                     9.796E+00,
C, EU-152
            , NO
                                                                     0.208
                                                    8.483E+00,,
            , NO
                                     5.141E+00,
                     1.766E+00,
C, EU-154
                                                                    -0.153
                                                    1.057E+02,,
                                     6.427E+01,
                    -1.619E+01,
C, RA-226
            , NO
                                                                     0.074
                                                    1.725E+01,,
                                     1.060E+01,
C, AC-228
            , NO
                     1.270E+00,
                                                                     0.321
                                                    8.556E+00,,
 C, TH-228
                      2.749E+00,
                                     5.868E+00,
            , NO
                                                                     0.074
                      1.264E+00,
                                     1.056E+01,
                                                    1.718E+01,,
 C, TH-232
            , NO
                                     2.323E+01,
                                                    3.266E+01,,
                                                                     0.322
            , NO
                      1.051E+01,
 C, U-235
                                                    4.842E+02,,
                                                                     0.433
                                     2.828E+02,
                      2.097E+02,
 C, U-238
            , NO
```

2.426E+01,

-4.227E+01,

C, AM-241

, NO

3.700E+01,,

-1.142

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-JUN-2006 14:08:51.53

TBE13 P-10727B HpGe ******* Aquisition Date/Time: 14-JUN-2006 10:40:42.69 

LIMS No., Customer Name, Client ID: WG L28853-3 DRESDEN

Smple Date: 1-JUN-2006 14:10:00.0 : 13L28853-3 Sample ID

Geometry : 133L082404 Sample Type : WG BKGFILE : 13BG060306MT Quantity : 3.07530E+00 L

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1	66.35 76.99* 140.10* 185.90* 198.42* 351.56* 582.16* 609.50* 968.39* 1765.33*	118 126 19 103 47 13 42 14 21	341 237 388 365 262 103 105 116 45	1.68 2.02	132.67 153.95 280.18 371.77 396.82 703.13 1164.46 1219.16 1937.29 3532.61	1.24E+00 2.27E+00 2.18E+00 2.12E+00 1.51E+00 1.04E+00 1.01E+00 7.02E-01	9.45E-03 1.45E-031 1.01E-02 1.49E-032 8.27E-03 3.80E-03 1.05E-031 3.36E-03 1.14E-031	147.7 32.0 223.9 32.1 46.4 189.2 61.2	9.54E-01 3.33E+00 4.07E+00 1.79E+00 3.27E+00 1.67E+00 1.86E+00 4.66E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide :	rype: nacura	i.L			Uncorrected	Decay Corr	2-Sigma
Nuclide RA-226 TH-232	Energy 186.21 583.14 911.07 969.11	Area 19 13 	%Abn 3.28* 30.25 27.70* 16.60	%Eff 2.178E+00 1.041E+00 7.361E-01 7.018E-01	pCi/L 1.829E+01 2.923E+00 Lir	pCi/L 1.829E+01 2.923E+00 ne Not Found 8.606E+00	%Error 447.85 378.40  208.94
U-235	143.76 163.35 185.71 205.31	19	10.50* 4.70 54.00 4.70	2.278E+00 2.256E+00 2.178E+00 2.093E+00	Lir 1.111E+00	ne Not Found ne Not Found 1.111E+00 ne Not Found	447.85

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID: 13L28853-3 Acquisition date: 14-JUN-2006 10:40:42

10

Total number of lines in spectrum

Number of unidentified lines 7
Number of lines tentatively identified by NID 3 30.00%

Nuclide Type : natural

 Hlife 1600.00Y 1.41E+10Y 7.04E+08Y	Decay	pCi/L 1.829E+01 2.923E+00	Decay Corr pCi/L 1.829E+01 2.923E+00 1.111E+00	Decay Corr 2-Sigma Error 8.189E+01 11.06E+00 4.974E+00	2-Sigma %Error 447.85 378.40 447.85	K
Total Act	ivity :	2.232E+01	2.232E+01			

Grand Total Activity: 2.232E+01 2.232E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 13L28853-3 Page: 3
Acquisition date: 14-JUN-2006 10:40:42

30.00%

	•										
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff ]	Flags
1	66.35	118	341	1.42	132.67	130		9.45E-03		8.29E-01	
1	76.99	18	237	0.88	153.95	148		1.45E-03		1.24E+00	
1	140.10	126	388	2.52	280.18	275	10	1.01E-02	64.1	2.27E+00	
1	198.42	103	262	1.47	396.82	393	9	8.27E-03	64.2	2.12E+00	
1	351.56	47	103	1.39	703.13	700	7	3.80E-03	92.9	1.51E+00	
1	609.50	42	116	1.68	1219.16	1213	13	3.36E-03	* * * *	1.01E+00	
1	1765.33	21	8	3.69	3532.61	3526	15	1.71E-03	92.6	4.55E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 10
Number of unidentified lines 7
Number of lines tentatively identified by NID 3

Nuclide Type : natural

Wtd Mean Wtd Mean Decay Corr 2-Siqma Uncorrected Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay 8.189E+01 447.85 1.829E+01 1600.00Y 1.00 1.829E+01 RA-226 210.16 9.420E+00 1.00 4.483E+00 4.483E+00 TH-232 1.41E+10Y _____ _ _ _ _ _ _ _ _ 2.277E+01 2.277E+01 Total Activity:

Grand Total Activity: 2.277E+01 2.277E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
RA-226 TH-232	1.829E+01 4.483E+00	8.189E+01 9.420E+00	1.074E+02 1.872E+01	0.000E+00 0.000E+00	0.170 0.239
Non-Ide	ntified Nuclides				
	Key-Line	Act error	MDA	MDA error	Act/MDA

Nuclide	Key-Line Activity K.L. (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
BE-7	1.894E+00	2.726E+01	4.432E+01	0.000E+00	0.043
NA-24	-3.723E+00	2.544E+00	Half-Life too	short	

		4 0055.01	7.770E+01	0.000E+00	0.057
K-40	4.415E+00	4.095E+01	4.958E+01	0.000E+00	-0.689
CR-51	-3.417E+01	3.109E+01	4.936E+01 4.826E+00	0.000E+00	0.263
MN-54	1.268E+00	2.857E+00	4.826E+00 4.289E+00	0.000E+00	0.200
CO-57	8.564E-01	2.591E+00	4.700E+00	0.000E+00	-0.417
CO-58	-1.962E+00	2.988E+00		0.000E+00	0.285
FE-59	3.192E+00	6.590E+00	1.121E+01	0.000E+00	-0.019
CO-60	-8.671E-02	2.766E+00	4.560E+00	0.000E+00	0.638
ZN-65	7.143E+00	6.315E+00	1.120E+01	0.000E+00	-0.347
SE-75	-2.117E+00	3.819E+00	6.095E+00		2.328
SR-85	1.607E+01	3.592E+00	6.905E+00	0.000E+00	-0.410
Y-88	-2.033E+00	3.247E+00	4.953E+00	0.000E+00	
NB-94	1.385E+00	2.723E+00	4.657E+00	0.000E+00	0.297
NB-95	2.131E+00	3.228E+00	5.540E+00	0.000E+00	0.385
ZR-95	1.507E+00	5.536E+00	9.313E+00	0.000E+00	0.162
MO-99	6.542E+01	5.308E+02	8.866E+02	0.000E+00	0.074
RU-103	-1.273E+00	3.559E+00	5.825E+00	0.000E+00	-0.219
RU-106	-2.115E+01	2.648E+01	4.131E+01	0.000E+00	-0.512
AG-110m	2.369E+00	2.844E+00	4.858E+00	0.000E+00	0.488
SN-113	2.307E+00	3.738E+00	6.310E+00	0.000E+00	0.366
SB-124	-7.033E+00	4.332E+00	5.288E+00	0.000E+00	-1.330
SB-125	4.289E+00	8.116E+00	1.358E+01	0.000E+00	0.316
TE-129M	6.227E+00	3.830E+01	6.276E+01	0.000E+00	0.099
I-131	-1.982E+00	8.022E+00	1.310E+01	0.000E+00	-0.151
BA-133	2.141E+00	4.376E+00	6.336E+00	0.000E+00	0.338
CS-134	-3.793E+00	3.904E+00	5.043E+00	0.000E+00	-0.752
CS-134	-3.287E+00	5.153E+00	8.104E+00	0.000E+00	-0.406
CS-130	-1.700E+00	3.215E+00	4.925E+00	0.000E+00	-0.345
CE-139	-2.089E-01	2.840E+00	4.566E+00	0.000E+00	-0.046
BA-140	-3.446E+00	1.881E+01	3.083E+01	0.000E+00	-0.112
LA-140	-5.191E-01	6.213E+00	1.002E+01	0.000E+00	-0.052
CE-141	7.504E+00	6.578E+00	9.607E+00	0.000E+00	0.781
CE-141 CE-144	5.126E+00	2.381E+01	3.358E+01	0.000E+00	0.153
EU-152	-8.753E+00	9.633E+00	1.375E+01	0.000E+00	-0.637
	-6.913E-01	5.363E+00	8.750E+00	0.000E+00	-0.079
EU-154 AC-228	-1.997E+00	1.195E+01	1.880E+01	0.000E+00	-0.106
	4.172E-01	5.452E+00	8.903E+00	0.000E+00	0.047
TH-228	4.1/2E-01 1.491E+00	2.432E+01	3.362E+01	0.000E+00	0.044
U-235	-2.059E+02	3.461E+02	5.340E+02	0.000E+00	-0.386
U-238		2.395E+01	3.638E+01	0.000E+00	-1.237
AM-241	-4.500E+01	Z.J99E#UI	5.0501.01	<b>.</b>	

-1.237

3.638E+01,,

```
3.075E+00,WG L28853-3 DR
                     ,06/14/2006 14:08,06/01/2006 14:10,
A,13L28853-3
                                             ,06/13/2006 09:43,133L082404
                     , LIBD
B,13L28853-3
                                                                    0.170
                                                   1.074E+02,,
                                    8.189E+01,
                     1.829E+01,
           , YES,
C, RA-226
                                                                    0.239
                                                   1.872E+01,,
                                    9.420E+00,
                     4.483E+00,
C, TH-232
           ,YES,
                                                                    0.043
                                                   4.432E+01,,
                                    2.726E+01,
                     1.894E+00,
           , NO
C, BE-7
                                                                    0.057
                                                   7.770E+01,,
                     4.415E+00,
                                    4.095E+01,
           , NO
C, K-40
                                                                   -0.689
                                                   4.958E+01,,
                                    3.109E+01,
                    -3.417E+01,
C, CR-51
           , NO
                                                                     0.263
                                                   4.826E+00,,
                                    2.857E+00,
                     1.268E+00,
            , NO
C, MN-54
                                                                     0.200
                                                   4.289E+00,,
                                    2.591E+00,
            , NO
                     8.564E-01,
C, CO-57
                                                                    -0.417
                                                   4.700E+00,,
                                    2.988E+00,
            , NO
                    -1.962E+00,
C, CO-58
                                                                     0.285
                                                   1.121E+01,,
                     3.192E+00,
                                    6.590E+00,
            , NO
C, FE-59
                                                                    -0.019
                                                   4.560E+00,,
                                    2.766E+00,
                    -8.671E-02,
C, CO-60
            , NO
                                                                     0.638
                                                   1.120E+01,,
                                    6.315E+00,
                     7.143E+00,
            , NO
C, ZN-65
                                                                    -0.347
                                                   6.095E+00,,
                                    3.819E+00,
                    -2.117E+00,
            , NO
C, SE-75
                                                                     2.328
                                                   6.905E+00,,
                                    3.592E+00,
            , NO
                     1.607E+01,
C, SR-85
                                                   4.953E+00,,
                                                                    -0.410
                                    3.247E+00,
                    -2.033E+00,
            , NO
C, Y-88
                                                   4.657E+00,,
                                                                     0.297
                                    2.723E+00,
                     1.385E+00,
            , NO
C, NB-94
                                                                     0.385
                                                    5.540E+00,,
                                    3.228E+00,
                     2.131E+00,
            , NO
C, NB-95
                                                                     0.162
                                    5.536E+00,
                                                    9.313E+00,,
                     1.507E+00,
            , NO
C, ZR-95
                                                                     0.074
                                                    8.866E+02,,
                                    5.308E+02,
                     6.542E+01,
C, MO-99
            , NO
                                                    5.825E+00,,
                                                                    -0.219
                                    3.559E+00,
                    -1.273E+00,
            , NO
C, RU-103
                                                                    -0.512
                                                    4.131E+01,,
                                     2.648E+01,
                    -2.115E+01,
            , NO
C, RU-106
                                                                     0.488
                                                    4.858E+00,,
                                     2.844E+00,
                     2.369E+00,
            , NO
 C, AG-110m
                                                                     0.366
                                                    6.310E+00,,
                                     3.738E+00,
                     2.307E+00,
            , NO
 C,SN-113
                                                                    -1.330
                                                    5.288E+00,,
                                     4.332E+00,
                    -7.033E+00
            , NO
 C,SB-124
                                                    1.358E+01,,
                                                                     0.316
                                     8.116E+00,
                     4.289E+00,
            , NO
 C,SB-125
                                                                     0.099
                                                    6.276E+01,,
                                     3.830E+01,
                      6.227E+00,
 C, TE-129M , NO
                                                                    -0.151
                                                    1.310E+01,,
                                     8.022E+00,
            , NO
                    -1.982E+00,
 C, I-131
                                                                     0.338
                                                    6.336E+00,,
                                     4.376E+00,
                      2.141E+00,
             , NO
 C,BA-133
                                                                    -0.752
                                                    5.043E+00,,
                                     3.904E+00,
                     -3.793E+00,
 C, CS-134
             , NO
                                                                    -0.406
                                                    8.104E+00,,
                                     5.153E+00,
                     -3.287E+00,
 C, CS-136
             , NO
                                                                    -0.345
                                                    4.925E+00,,
                                     3.215E+00,
                     -1.700E+00,
             ,NO
 C, CS-137
                                                                    -0.046
                                                    4.566E+00,,
                                     2.840E+00,
                     -2.089E-01,
 C, CE-139
             , NO
                                                                    -0.112
                                     1.881E+01,
                                                    3.083E+01,,
                     -3.446E+00,
             , NO
 C, BA-140
                                                                    -0.052
                                                    1.002E+01,,
                                     6.213E+00,
                     -5.191E-01,
 C, LA-140
             , NO
                                                    9.607E+00,,
                                                                      0.781
                                     6.578E+00,
             , NO
                      7.504E+00,
 C, CE-141
                                                                      0.153
                                                    3.358E+01,,
                                     2.381E+01,
                      5.126E+00,
             , NO
 C, CE-144
                                                                     -0.637
                                                    1.375E+01,,
                                     9.633E+00,
                     -8.753E+00,
 C, EU-152
             , NO
                                                    8.750E+00,,
                                                                     -0.079
                                     5.363E+00,
                     -6.913E-01,
 C, EU-154
             , NO
                                                                     -0.106
                                                    1.880E+01,,
                                     1.195E+01,
                     -1.997E+00,
             ,NO
 C, AC-228
                                                                      0.047
                                                    8.903E+00,,
                                     5.452E+00,
                      4.172E-01,
 C, TH-228
             , NO
                                                                      0.044
                                                    3.362E+01,,
                                     2.432E+01,
                      1.491E+00,
 C, U-235
             , NO
                                                                     -0.386
                                                    5.340E+02,,
                                     3.461E+02,
                     -2.059E+02,
 C, U-238
             , NO
```

2.395E+01,

-4.500E+01,

C, AM-241

, NO

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-JUN-2006 14:45:32.48

TBE23 03017322 HpGe ******* Aquisition Date/Time: 14-JUN-2006 11:13:08.64 

LIMS No., Customer Name, Client ID: WG L28853-4 DRESDEN

Smple Date: 1-JUN-2006 15:10:00.0 Sample ID : 23L28853-4

Geometry : 233L082404 Sample Type : WG BKGFILE : 23BG060306MT Quantity : 3.05620E+00 L 

Pk It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 4 2 4 3 4 4 4 5 4 6 4 7 0 8 0 9 0 10 11 0 12 0 13 0 14 0	33.74* 37.24* 39.46* 43.26* 45.91* 47.32* 185.91* 198.27* 238.44* 351.54* 583.07* 609.39* 910.95* 1765.39*	69 33 30 35 6 28 87 78 45 45 42 44 7	7 92 151 225 293 269 414 321 329 212 71 97 47	1.24 1.62 1.77 1.78 1.79 1.78 0.95 1.07 1.21 0.92 0.92 1.47 1.70 2.32	702.99 1165.84 1218.46	1.43E-01 1.92E-01 2.95E-01 3.78E-01 4.26E-01 2.17E+00 2.11E+00 1.90E+00 1.44E+00 9.71E-01 9.40E-01 7.08E-01	5.49E-03 2.64E-03 2.41E-03 2.75E-03 4.48E-04! 2.22E-03 6.93E-03 3.59E-03 3.57E-03 2.10E-03 3.34E-03 3.47E-03 5.71E-04	96.9 107.6 95.9 591.0 104.4 49.5 44.0 82.6 71.4 70.7 58.3 41.8	3.97E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide T	ype: natura	3.T			Uncorrected	Decay Corr	2-Sigma
Nuclide RA-226	Energy 186.21	Area 87	%Abn 3.28*	%Eff 2.173E+00	pCi/L 8.594E+01	pCi/L 8.594E+01	%Error 98.92
AC-228	835.50 911.07	44	1.75 27.70*	7.515E-01 7.084E-01	1.566E+01	ne Not Found 1.572E+01 3.796E+00	83.54 165.24
TH-228	238.63 240.98	45 	44.60* 3.95	1.901E+00 1.888E+00	Li	ne Not Found	141.40
TH-232	583.14 911.07 969.11	26 44 	30.25 27.70* 16.60	9.714E-01 7.084E-01 6.793E-01	· ·	6.319E+00 1.566E+01 ne Not Found	83.54

Flag: "*" = Keyline

Summary of Nuclide Activity

Page: 2

Sample ID: 23L28853-4 Acquisition date: 14-JUN-2006 11:13:08

Total number of lines in spectrum 14
Number of unidentified lines 10

Number of lines tentatively identified by NID 4 28.57%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error	%Error Flags
RA-226	1600.00Y	1.00	8.594E+01	8.594E+01	8.501E+01	98.92
AC-228	5.75Y	1.00	1.566E+01	1.572E+01	1.314E+01	83.54
TH-228	1.91Y	1.01	3.748E+00	3.796E+00	6.272E+00	165.24
TH-232	1.41E+10Y	1.00	1.566E+01	1.566E+01	1.308E+01	83.54

Total Activity : 1.210E+02 1.211E+02

Grand Total Activity: 1.210E+02 1.211E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 23L28853-4

Page: 3 Acquisition date : 14-JUN-2006 11:13:08

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff F	Flags
4 4 4 4 4 0 0	33.74 37.24 39.46 43.26 45.91 47.32 198.27 351.54 609.39	69 33 30 35 6 28 78 45 42	7 92 151 225 293 269 321 212 97	1.24 1.62 1.77 1.78 1.79 1.78 1.07 0.92 1.47	67.81 74.79 79.23 86.84 92.13 94.94 396.62 702.99 1218.46	65 65 65 65 65 393 697	35 35 35 35 35 35 35	6.21E-03	**** **** 88.0	8.18E-02 1.43E-01 1.92E-01 2.95E-01 3.78E-01 4.26E-01 2.11E+00 1.44E+00 9.40E-01	
0	1765.39	7	14	2.32	3530.69	3525	13	5.71E-04	****	4.37E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum Number of unidentified lines 10 Number of lines tentatively identified by NID 4 28.57%

Nuclide Type : natural

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Error	%Error Flags
RA-226	1600.00Y	1.00	8.594E+01	8.594E+01	8.501E+01	98.92
AC-228	5.75Y	1.00	9.338E+00	9.378E+00	15.91E+00	169.62
TH-228	1.91Y	1.01	3.748E+00	3.796E+00	6.272E+00	165.24
TH-232	1.41E+10Y	1.00	6.319E+00	6.319E+00	8.934E+00	141.40
	Total Acti	vity:	1.053E+02	1.054E+02		

Grand Total Activity: 1.053E+02 1.054E+02

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

Interfe	ring	Interfered						
Nuclide	Line	Nuclide	Line					
TH-232	911.07	AC-228	911.07					

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
RA-226	8.594E+01	8.501E+01	1.255E+02	0.000E+00	0.685
AC-228	9.378E+00	1.591E+01	1.704E+01	0.000E+00	0.550
TH-228	3.796E+00	6.272E+00	9.724E+00	0.000E+00	0.390

TH-232 6.319E+00 8.934E+00 1.927E+01 0.000E+00 0.328

---- Non-Identified Nuclides ----

Nuclide		K.L. Act error Ided	MDA (pCi/L)	MDA error	Act/MDA
BE-7	2.750E+01	2.963E+01	5.245E+01	0.000E+00	0.524
NA-24	-2.808E+00	2.365E+00	Half-Life	too short	
K-40	-2.652E+01	4.269E+01	8.438E+01	0.000E+00	-0.314
CR-51	-1.136E+01	3.524E+01	5.944E+01	0.000E+00	-0.191
MN-54	1.292E+00	2.845E+00	5.065E+00	0.000E+00	0.255
CO-57	4.660E-01	3.246E+00	5.477E+00	0.000E+00	0.085
CO-58	5.458E-01	3.164E+00	5.535E+00	0.000E+00	0.099
FE-59	9.474E-01	6.557E+00	1.163E+01	0.000E+00	0.081
CO-60	1.292E+00	2.800E+00	5.137E+00	0.000E+00	0.251
ZN-65	6.162E+00	6.030E+00	1.135E+01	0.000E+00	0.543
SE-75	-1.784E+00	4.321E+00	7.299E+00	0.000E+00	-0.244
SR-85	1.820E+01	3.835E+00	7.570E+00	0.000E+00	2.404
Y-88	1.977E+00	3.249E+00	6.195E+00	0.000E+00	0.319
NB-94	-1.100E+00	2.792E+00	4.727E+00	0.000E+00	-0.233
NB-95	-1.736E-01	3.185E+00	5.496E+00	0.000E+00	-0.032
ZR-95	4.354E-01	5.507E+00	9.603E+00	0.000E+00	0.045
MO-99	3.034E+02	5.264E+02	9.462E+02	0.000E+00	0.321
RU-103	-1.283E+00	3.683E+00	6.144E+00	0.000E+00	-0.209
RU-106	1.007E+01	2.717E+01	4.763E+01	0.000E+00	0.211
AG-110m	-2.338E-01	2.837E+00	4.910E+00	0.000E+00	-0.048
SN-113	-1.772E+00	4.122E+00	6.896E+00	0.000E+00	-0.257
SB-124	-5.751E+00	4.117E+00	5.385E+00	0.000E+00	-1.068
SB-125	2.780E-01	8.556E+00	1.459E+01	0.000E+00	0.019
TE-129M	-1.360E+01	4.215E+01	7.060E+01	0.000E+00	-0.193
I-131	-8.979E+00	8.968E+00	1.467E+01	0.000E+00	-0.612
BA-133	5.653E+00	4.792E+00	7.381E+00	0.000E+00	0.766
CS-134	-1.104E+00	3.835E+00	5.483E+00	0.000E+00	-0.201
CS-136	-5.703E+00	5.152E+00	8.248E+00	0.000E+00	-0.691
CS-137	1.149E+00	3.080E+00	5.462E+00	0.000E+00	0.210
CE-139	-2.166E+00	3.327E+00	5.474E+00	0.000E+00	-0.396
BA-140	7.866E+00	2.126E+01	3.673E+01	0.000E+00	0.214
LA-140	1.112E+01	6.213E+00	1.280E+01	0.000E+00	0.868
CE-141	-6.072E+00	7.302E+00	1.200E+01	0.000E+00	-0.506
CE-144	-2.525E+01	2.557E+01	4.197E+01	0.000E+00	-0.602
EU-152	-1.242E+01	1.215E+01	1.654E+01	0.000E+00	-0.751
EU-154	-7.881E-01	6.613E+00	1.109E+01	0.000E+00	-0.071
U-235	-1.979E+01	2.663E+01	4.275E+01	0.000E+00	-0.463
U-238	-2.375E+02	3.435E+02	5.536E+02	0.000E+00	-0.429
AM-241	7.234E+00	1.798E+01	2.999E+01	0.000E+00	0.241

```
,06/14/2006 14:45,06/01/2006 15:10,
A,23L28853-4
                                                                 3.056E+00,WG L28853-4 DR
B,23L28853-4
                     ,LIBD
                                             ,06/01/2006 10:14,233L082404
                                    8.501E+01,
           , YES,
C, RA-226
                     8.594E+01,
                                                   1.255E+02,,
                                                                    0.685
C, AC-228
                                                   1.704E+01,,
           , YES,
                                                                    0.550
                     9.378E+00,
                                    1.591E+01,
C, TH-228
           ,YES,
                     3.796E+00,
                                    6.272E+00,
                                                   9.724E+00,,
                                                                    0.390
C, TH-232
            ,YES,
                     6.319E+00,
                                    8.934E+00,
                                                   1.927E+01,,
                                                                    0.328
C, BE-7
            , NO
                     2.750E+01,
                                                   5.245E+01,,
                                    2.963E+01,
                                                                    0.524
                                                   8.438E+01,,
C, K-40
                    -2.652E+01,
                                    4.269E+01,
                                                                   -0.314
           , NO
                                                   5.944E+01,,
C, CR-51
           , NO
                    -1.136E+01,
                                    3.524E+01,
                                                                   -0.191
C, MN-54
                     1.292E+00,
                                    2.845E+00,
                                                   5.065E+00,,
                                                                    0.255
           , NO
C, CO-57
            , NO
                     4.660E-01,
                                    3.246E+00,
                                                   5.477E+00,,
                                                                    0.085
                                                                    0.099
C, CO-58
           , NO
                     5.458E-01,
                                    3.164E+00,
                                                   5.535E+00,,
                                                   1.163E+01,,
C, FE-59
                     9.474E-01,
                                    6.557E+00,
                                                                    0.081
           , NO
C, CO-60
                     1.292E+00,
                                    2.800E+00,
                                                   5.137E+00,,
                                                                    0.251
            , NO
                                                   1.135E+01,,
C, ZN-65
            , NO
                     6.162E+00,
                                    6.030E+00,
                                                                    0.543
C, SE-75
                    -1.784E+00,
                                    4.321E+00,
                                                   7.299E+00,,
                                                                   -0.244
            , NO
                                                   7.570E+00,,
C,SR-85
            , NO
                     1.820E+01,
                                    3.835E+00,
                                                                    2.404
C, Y-88
            , NO
                                                   6.195E+00,,
                                                                     0.319
                     1.977E+00,
                                    3.249E+00,
                                                   4.727E+00,,
C, NB-94
                    -1.100E+00,
                                    2.792E+00,
                                                                   -0.233
            , NO
            , NO
C, NB-95
                    -1.736E-01,
                                    3.185E+00,
                                                   5.496E+00,,
                                                                   -0.032
C, ZR-95
            , NO
                     4.354E-01,
                                    5.507E+00,
                                                   9.603E+00,,
                                                                     0.045
            , NO
                                                   9.462E+02,,
C,MO-99
                     3.034E+02,
                                    5.264E+02,
                                                                     0.321
C, RU-103
            , NO
                    -1.283E+00,
                                    3.683E+00,
                                                   6.144E+00,,
                                                                   -0.209
C, RU-106
                                                   4.763E+01,,
                     1.007E+01,
                                    2.717E+01,
                                                                     0.211
            , NO
                                                   4.910E+00,,
           , NO
C, AG-110m
                    -2.338E-01,
                                    2.837E+00,
                                                                   -0.048
                                    4.122E+00,
                                                   6.896E+00,,
C,SN-113
            , NO
                    -1.772E+00,
                                                                   -0.257
                                                   5.385E+00,,
C,SB-124
            , NO
                    -5.751E+00,
                                    4.117E+00,
                                                                   -1.068
C,SB-125
                                    8.556E+00,
                                                   1.459E+01,,
            , NO
                     2.780E-01,
                                                                     0.019
C, TE-129M
                    -1.360E+01,
                                    4.215E+01,
                                                   7.060E+01,,
                                                                   -0.193
           , NO
                                                   1.467E+01,,
C, I-131
            , NO
                    -8.979E+00,
                                    8.968E+00,
                                                                   -0.612
                                                   7.381E+00,,
C, BA-133
            , NO
                     5.653E+00,
                                    4.792E+00,
                                                                     0.766
C, CS-134
                    -1.104E+00,
                                    3.835E+00,
                                                   5.483E+00,,
                                                                   -0.201
            , NO
            , NO
C, CS-136
                    -5.703E+00,
                                    5.152E+00,
                                                   8.248E+00,,
                                                                   -0.691
                                                   5.462E+00,,
C, CS-137
            , NO
                     1.149E+00,
                                    3.080E+00,
                                                                     0.210
C, CE-139
            , NO
                    -2.166E+00,
                                    3.327E+00,
                                                   5.474E+00,,
                                                                   -0.396
C, BA-140
            , NO
                     7.866E+00,
                                    2.126E+01,
                                                   3.673E+01,,
                                                                     0.214
            , NO
                                    6.213E+00,
                                                   1.280E+01,,
C, LA-140
                     1.112E+01,
                                                                     0.868
C, CE-141
                                    7.302E+00,
                                                   1.200E+01,,
                                                                    -0.506
            , NO
                    -6.072E+00,
C, CE-144
            ,NO
                    -2.525E+01,
                                    2.557E+01,
                                                   4.197E+01,,
                                                                    -0.602
            , NO
                                                   1.654E+01,,
                                                                    -0.751
C, EU-152
                    -1.242E+01,
                                    1.215E+01,
C, EU-154
            , NO
                    -7.881E-01,
                                    6.613E+00,
                                                   1.109E+01,,
                                                                    -0.071
                                                   4.275E+01,,
C, U-235
            , NO
                    -1.979E+01,
                                    2.663E+01,
                                                                    -0.463
C, U-238
                    -2.375E+02,
                                    3.435E+02,
                                                   5.536E+02,,
                                                                    -0.429
            , NO
C, AM-241
            , NO
                     7.234E+00,
                                    1.798E+01,
                                                   2.999E+01,,
                                                                     0.241
```



A Teledyne Technologies Company

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L28821
Exelon
June 12, 2006



2508 Quality Lane Knoxville, TN 37931-3133

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

## Case Narrative - L28821 EX001-3ESPDRES-06

06/12/2006 10:35

### Sample Receipt

The following samples were received on June 2, 2006 in good condition, unless otherwise noted.

Cross Reference Table

	Cross Rejerence 11	AULC
Client ID	Laboratory ID	Station ID(if applicable)
WG-DN-DSP-121-052606-JH-014	L28821-1	
 WG-DN-DSP-117-052606-JH-015	L28821-2	
WG-DN-DSP-148-053006-JH-017	L28821-3	
WG-DN-DSP-156-053006-JH-018	L28821-4	
 WG-DN-DSP-DN-118-052506-JL-057	L28821-5	
WG-DN-DSP-DN-155-052506-JL-058	L28821-6	
WG-DN-DSP-DN-122-052506-JL-059	L28821-7	
WG-DN-DSP-DN-127-053006-JL-066	L28821-8	

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3	TBE-2010	EPA 906.0
TOTAL SR	TBE-2018	EPA 905.0



## Case Narrative - L28821 EX001-3ESPDRES-06

06/12/2006 10:35

#### Gamma Spectroscopy

#### **Quality Control**

Quality control samples were analyzed as WG4095.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID WG-DN-DSP-121-

QC Sample # Laboratory ID WG4095-3 L28821-1

052606-JH-014

#### H-3

#### **Quality Control**

Quality control samples were analyzed as WG4106.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID WG-LS-MW-LS-109S- Laboratory ID L28801-11

QC Sample # WG4106-3

052606-NK-021



## Case Narrative - L28821 EX001-3ESPDRES-06

06/12/2006 10:35

#### TOTAL SR

#### **Quality Control**

Quality control samples were analyzed as WG4133.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

Laboratory ID

QC Sample #

WG-DN-DSP-121-052606-JH-014 L28821-1

WG4133-4

#### Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

## Sample Receipt Summary

06/02/06 12:43

## Teledyne Brown Engineering Sample Receipt Verification/Variance Report

SR #: SR08689

Client: Exelon

Project #: EX001-3ESPDRES-06

LIMS #: L28821

<pre>Initiated By: PMARSHALL    Init Date: 06/02/06 Receive Date: 06/02</pre>	/06
	on of Variance
Person Notified:  Notify Date:  Notify Method:  Notify Comment:	Contacted By:
Client Resp	oonse
Person Responding:	
Response Date:	
Response Method:	
Response Comment	
Criteria	Yes No NA Comment
1 Shipping container custody seals presentant and intact.	t NA
2 Sample container custody seals present and intact.	NA **
3 Sample containers received in good condition	Y
4 Chain of custody received with samples	Y
5 All samples listed on chain of custody received	Y
6 Sample container labels present and legible.	Y
7 Information on container labels correspond with chain of custody	Y
8 Sample(s) properly preserved and in appropriate container(s)	Y Ph at or below 2
9 Other (Describe)	NA

128821

CONE	861 Chi (77:	5 W. E cago, 3)380- 3)380-	OVERS & ASSOCIATES Bryn Mawr Avenue Illinois 60631 9933 phone 6421 fax CUSTODY RECORD	REFERENCE NUMBER:				PROJECT NAME:  Dresden Generating Station												
SAMPLI SIGNATU		. /	. 101	Hoffet al	Meffet all			PA	RAN	TETE	RS OO L	300			//			REM	ARKS	
SEQ. No.	No. DATE THE SAIVIT LETERINITY			CATION No.	MA	MPLE TRIX	8	χ	\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2	2 G	MAN		//			4				$\dashv$
2 5/ 3 5/	26/06 30/06	1655	WG-DN-DSP-121-0526 WG-DN-DSP-117-0526 WG-DN-DSP-148-0536 WG-DN-DSP-156-0536	006-5H-015 006-5H-017		ter	2 	X X	X	X										
		<u> </u>	TOTAL NUMBER OF CON	TAINERS			8				lL									
RELINQUISHED BY:  RELINQUISHED BY:  RELINQUISHED BY:  RELINQUISHED BY:  TIME:  DATE:  TIME:  TIME:  TIME:  TIME:					RECEIVED BY:  RECEIVED BY:  RECEIVED BY:  RECEIVED BY:					E:	2									
	HOD OF	SHIP	MENT:				AIR	BILI	_ No											
White -Fully Executed Copy Yellow -Receiving Laboratory Copy Pink -Shipper Copy Goldenrod -Sampler Copy			SAMPLE TEAM:				DATE: 6/2/06 TIME: 1/00								69					

CONESTOGA-ROVERS & ASSOCIATES  8615 W. Bryn Mawr Avenue Chicago, Illinois 60631 (773)380-9933 phone					Bryn Mawr Avenue Illinois 60631	(Laboratory Name): Teollyne Brown																				
					6421 fax	REFERE	REFERENCE NUMBER:			PROJECT NAME:								_								
				<u> </u>	CUSTODY RECORD	1 45	45136-23 Dresden Generating Statis							115	10			$\dashv$								
SAMPLER'S SIGNATURE: PRINTED NAME:						Julie 1		No. OF CONTAINERS		PARAMETERS AND STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND CONTROL STUTE  PARAMETERS AND								R	EMAI	RKS						
SEQ. DATE TIME SAMPLE IDENTIFIC								SAMPL MATRI				//		<u> </u>		_	_	/	4	4						4
	5	251	do	1015	WG-DN-DSP-DN-118-05	SASOGO-J	<u>l-057</u>	W		$\frac{\lambda}{\lambda}$		- 4	, -	X												$\dashv$
	17	<del>~~/</del>	1	1500	WG-DN-DSP:DN-155-6	729200°	<u>71-028</u>	N		<u>බ</u>		K	X	X						-						$\dashv$
Alw.	T	V		1700	MQ-DN-DSP-DN-199-	<u>052506</u>	<u>-T-1231</u>	W		<u>ی</u>	-	X	X	X												$\dashv$
	T	****																								$\exists$
	T					Water tiller transport			_						_											$\exists$
						,																				ヿ
				,,,,,					_			,,,,,														٦
													_													
	$oldsymbol{\perp}$								_																	
	_							-	_																	
<u></u>									_																	
	_				·						1															
	_							1	-																	
	1					mer American Pro-	****		_		+-		-													
	$\perp$				TOTAL MUNICIPED OF CONT	AINEDS				6				1	<u>!</u>	i										,
					TOTAL NUMBER OF CONT		ATE:=/0	= M	RECE		D DV:				=			1	,				DATE:	5/:	25/	06
	INC	ouis	HĘD	BY:	Q., , S	U	ATE:5/2: IME: \7	45	<b>2</b> _	_IV	ום ט:	_	re	l	J	w	ul	/r				-	гімЕ:	17	4"	7
1				2	Junice		ATE:	-1-1	RECE	IVF	D BY:				<u> </u>								DATE:			
REI	_INC	ટોપીંડ	DEC	BY:			IME:		3)TIM								TIME:									
DATE							RECEIVED BY:																			
REI	RELINQUISHED BY:							4_														TIME:				
		HOD	O O	SHIP	MENT:					NIR.	BILL	. No	•													
White -Fully Executed Copy SAMPLE TI									1 -			(ED							Y:	1	278	3.3				
Yellow -Receiving Laboratory Copy Pink -Shipper Copy Goldenrod -Sampler Copy  Kendal							ζ			_ 1	DAT	E:_	6/2	2/0	6	TIM	E:	110	0							

CON	86′ Ch (77 (77	15 W. E icago, 3)380- 3)380-	OVERS & ASSOCIATES Bryn Mawr Avenue Illinois 60631 9933 phone 6421 fax	REFERENCE NUM	IBER:	Tele	PRO	ΟJΕ	CT N	IAM	<b>:</b>			<u> </u>	, C			<u> </u>	
	CHA	IN-OF-	CUSTODY RECORD	1 45130-2	Dresder Generating  PARAMETERS PRES							/							
SAMI SIGNA	PLER'S ATURE:	aly	PRINTED NAME:	Idle Luzw	No. OF CONTAINERS	PARAMETERS REMA							REMAI	RKS					
SEQ. No.	DATE	TIME	SAMPLE IDENTIFIC	CATION No.	SAMPLE MATRIX			/	33	\$\frac{1}{2}	<b>F</b> /_	//		<u>/</u>	_				
	5/3406	1055	WG-DN-DSP-DN-127-0	3006-71-0606	W	) Q		X	X	$X \mid$									
	7 10-										_								
		,,									_	-							
												-							
										_									
					<u> </u>		-			_									
							ļ				+			_					
						$\vdash$				_			-						
							+-					_							
							-					_							
							-					_							
		<u> </u>					+								<b>†</b>				
				AND			-												
				A 10.17.70		10	+			<u> </u>					1				
			TOTAL NUMBER OF CONT		161.			1	$\Rightarrow$								DATE:	6/1/	106
RELI	NOUISHED	ВҮ: 🔎		DATE: (o/i		RECEIVE	P) RL:	`.`		1,5							_ TIME:	1300	
(1)	<u> Allla</u>	60	legiol	TIME: 12			D RV	<del></del>									DATE:		
	NOUISHED	BY:		TIME:		RECEIVED BY:							_ TIME:						
2				DATE:			3)						DATE:						
REL	RELINQUISHED BY:					4											_ TIME:		
3								N				-							
ME	THOD O	F SHIP	MENT:			AIR	BILL	_ NO	•										
				SAMPLE TEAM:					DATE: 6/2/06 TIME: 100								' A		

1001-00(SOURCE)GN-CO004

le le los

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

#### ACKNOWLEDGEMENT This is not an invoice

June 06, 2006

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville, CT 06062

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on June 02, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by June 09, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865) 934-0379

Project ID: EX001-3ESPDRES-06

P.O. #:

00411203

Release #:

Contract#:

00411203

Kathy Shaw, FAX#:860-747-1900, larry.walton@exeloncorp.com

Client ID/	Laboratory ID	Vol/Units	Start Collect End Collect Date/Time Date/Time
Station	Analysis	Price	Date/11mc Pace/1-me
WG-DN-DSP-121-05260	06-JH-014 L28821-1		05/26/06:1520
WG WG WG	GELI H-3 SR-90 (FAST)	108.00 108.00 140.00	
WG-DN-DSP-117-05260	)6-JH-015 L28821-2		05/26/06:1655
WG WG WG	GELI H-3 SR-90 (FAST)	108.00 108.00 140.00	
WG-DN-DSP-148-05300	06-JH-017 L28821-3		05/30/06:1350
WG WG WG	GELI H-3 SR-90 (FAST)	108.00 108.00 140.00	
WG-DN-DSP-156-0530	06-JH-018 L28821-4		05/30/06:1550
WG WG WG	GELI H-3 SR-90 (FAST)	108.00 108.00 140.00	
WG-DN-DSP-DN-118-0	52506-JL-0 L28821-5		05/25/06:1015

Page 1

Client ID/ Station	Laboratory ID Analysis	Vol/Units Price	Start Collect End Collect Date/Time Date/Time
		108.00	
WG	GELI	108.00	
WG	H-3 SR-90 (FAST)	140.00	
WG	SR-90 (FAST)	140.00	
WG-DN-DSP-DN-155-052506	-JL-0 L28821-6		05/25/06:1500
MG-DN-DDE DI 200 00-00			
WG	GELI	108.00	
WG	H-3	108.00	
WG	SR-90 (FAST)	140.00	
			05/25/06:1700
WG-DN-DSP-DN-122-052506	-JL-0 L28821-/		
	GELI	108.00	
WG	H-3	108.00	
WG	SR-90 (FAST)	140.00	
WG	510 90 (11101)		
WG-DN-DSP-DN-127-053006	5-JL-0 L28821-8		05/30/06:1055
ng Da Da La			
WG	GELI	108.00	
WG	H-3	108.00	
WG	SR-90 (FAST)	140.00	

End of document

## Internal Chain of Custody

Sample # L28821-3

Teledyne Brown Engineering Internal Chain of Custody

1 of 4 Page:

******************************* Containernum 1 Sample # L28821-1 Analyst Prod ΕJ GELI ΕJ H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 Susan Ogletree 029709 Sample Custodian 099999 06/08/2006 13:48 Sample Custodian 099999 Susan Ogletree 029709 06/08/2006 13:52 ****************** Containernum 2 Sample # L28821-1 Analyst Prod ΕJ GELI EJH-3 LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 ************************* Containernum 1 Sample # L28821-2 Analyst Prod ΕJ GELI so H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 Susan Ogletree 029709 Sample Custodian 099999 06/08/2006 13:48 Sample Custodian 099999 Susan Ogletree 029709 06/08/2006 13:52 ************************ Containernum 2 Sample # L28821-2 Analyst Prod ΕJ GELI SO H-3 LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 ************************* Containernum 1 Sample # L28821-3 Analyst Prod ΕJ GELI SO H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 Susan Ogletree 029709 Sample Custodian 099999 06/08/2006 13:48 Sample Custodian 099999 Susan Ogletree 06/08/2006 13:52 029709 ******************

Containernum 2

Sample # L28821-6

Prod

GELI

Analyst

ΕJ

2 of 4 Page:

Internal Chain of Custody *********************** Containernum 2 Sample # L28821-3 Analyst Prod ΕJ GELI SO H-3 LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 ************************ Containernum 1 Sample # L28821-4 Analyst Prod ЕJ GELI so H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 Susan Ogletree 029709 Sample Custodian 099999 06/08/2006 13:48 Sample Custodian 099999 Susan Ogletree 029709 06/08/2006 13:52 ******************** Containernum Sample # L28821-4 Analyst Prod ΕJ GELI SO H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 *********************** Containernum 1 Sample # L28821-5 Analyst Prod ЕJ GELI SO H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 Susan Ogletree 029709 Sample Custodian 099999 06/08/2006 13:48 Sample Custodian 099999 Susan Ogletree 029709 06/08/2006 13:52 ******************* Containernum Sample # L28821-5 Analyst Prod ΕJ GELI SO H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 *********************** Containernum 1

3 of 4 Page: Teledyne Brown Engineering

Internal Chain of Custody ****************** Containernum 1 Sample # L28821-6 SO H-3SR-90 (FAST) LCB Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 Susan Ogletree 029709 Sample Custodian 099999 06/08/2006 13:48 Sample Custodian 099999 Susan Ogletree 029709 06/08/2006 13:52 ******************* Containernum 2 Sample # L28821-6 Analyst Prod ΕJ GELI SO H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 ****************************** Containernum 1 Sample # L28821-7 Analyst Prod ΕJ GELI SO H-3 LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 Susan Ogletree 029709 Sample Custodian 099999 06/08/2006 13:48 Sample Custodian 099999 Susan Ogletree 029709 06/08/2006 13:52 ******************* Containernum 2 Sample # L28821-7 Analyst Prod ΕJ GELI SO H-3 LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 *********************** Containernum 1 Sample # L28821-8 Analyst Prod ΕJ **GELI** so H-3LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/02/2006 00:00 Susan Ogletree 029709 Sample Custodian 06/08/2006 13:48 099999 Sample Custodian 099999 Susan Ogletree 029709 06/08/2006 13:52

****************** Containernum 2

Sample # L28821-8 Analyst

Prod

L2882116 of 82

4 of 4 Page:

06/12/06 10:45

Teledyne Brown Engineering Internal Chain of Custody

*******************

Sample # L28821-8

Containernum 2

GELI

ΕJ

H-3

so

SR-90 (FAST)

LCB

Relinquish Date Relinquish By

06/02/2006 00:00

Received By

099999

Sample Custodian

Page 1 of 2

## Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L28821

		L28821								
**************************************										
L28821-1	WG	WG-DN-DSP-121-052606		D. I.						
Process step	Prod		Analyst	<u>Date</u>						
Login			PMARSHALL	06/02/06 06/06/06						
Aliquot	GELI		EJ							
Aliquot	H-3		EJ	06/07/06						
Aliquot	SR-90	(FAST)	LCB	06/09/06 06/08/06						
Count Room	GELI		KPW							
Count Room	H-3		KPW	06/10/06						
	SR-90	(FAST)	KOJ	06/12/06						
*****	*****	*****	****	*******						
L28821-2	WG	WG-DN-DSP-117-05260		D - 1 -						
Process step	Prod		Analyst	<u>Date</u>						
Login			PMARSHALL	06/02/06						
Aliquot	GELI		EJ	06/06/06						
Aliquot	H-3		SO	06/07/06						
Aliquot	SR-90	(FAST)	LCB	06/09/06						
Count Room	GELI		KPW	06/08/06						
Count Room	H-3		KPW	06/10/06						
	SR-90	(FAST)	KOJ	06/12/06						
****	*****	*****	*****	*******						
L28821-3	WG	WG-DN-DSP-148-0530	06-ЈН-017							
Process step	Prod		Analyst	Date						
Login			PMARSHALL	06/02/06						
Aliquot	GELI		EJ	06/06/06						
Aliquot	H-3		SO	06/07/06						
Aliquot	SR-90	(FAST)	LCB	06/09/06						
Count Room	GELI		KPW	06/08/06						
Count Room	н-3		KPW	06/10/06						
	SR-9	0 (FAST)	KOJ	06/12/06						
*****	*****	*******	*****	*********						
L28821-4	WG	WG-DN-DSP-156-0530	06-ЈН-018							
Process step	Prod		<u>Analyst</u>	Date						
Login			PMARSHALL	06/02/06						
Aliquot	GELI		EJ	06/06/06						
Aliquot	H-3		SO	06/07/06						
Aliquot	SR-9	0 (FAST)	LCB	06/09/06						
Count Room	GELI		KPW	06/08/06						
Count Room	н-3		KPW	06/10/06						
	_	00 (FAST)	KOJ	06/12/06						
********	*****	*****	*****	********						
L28821-5	WG	WG-DN-DSP-DN-118-	052506-JL-057							
Process ste	p Proc	i	Analyst	Date						
Login		<b></b>	PMARSHALL	06/02/06						
Aliquot	GEL:	I	EJ	06/06/06						
Aliquot	н-3		SO	06/07/06						
Aliquot	SR-	90 (FAST)	LCB	06/09/06						
Count Room	GEL	·	KPW	06/08/06						
Course Room										

06/12/06

## Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L28821

L28821-5	WG	WG-DN-DSP-DN-118-05	2506-ரட-057						
Count Room	н-3		KPW	06/10/06					
	an 00	(FAST)	KOJ	06/12/06					
Count Room SR-90 (FAS1)  ***********************************									
т.28821-6	WG	WG-DN-DSP-DN-155-05	2506-JL-058						
Process step	Prod		<u>Analyst</u>	Date					
Login			PMARSHALL	06/02/06					
Aliquot	GELI		EJ	06/06/06					
Aliquot	н-3		SO	06/07/06					
Aliquot	SR-90	(FAST)	LCB	06/09/06					
Count Room	GELI	,	KPW	06/08/06					
Count Room	H-3		KPW	06/10/06					
	an 00	(FAST)	KOJ	06/12/06					
COUIL KOOM	*****	******	*****	********					
L28821-7	WG	WG-DN-DSP-DN-122-05	52506-JL-059						
	Prod		Analyst	<u>Date</u>					
Process step	1100		PMARSHALL	06/02/06					
Login	GELI		EJ	06/06/06					
Aliquot	H-3		SO	06/07/06					
Aliquot	л-3 SR-90	(FAST)	LCB	06/09/06					
Aliquot		(PADI)	KPW	06/08/06					
Count Room	GELI H-3		KPW	06/10/06					
Count Room	an 00	(E) CT \	KOJ	06/12/06					
Count Room	SR-90	(FAST)	****	********					
		WG-DN-DSP-DN-127-0	53006-JTJ-066						
L28821-8	WG	WG-DN-D3: DN 12, 0	Analyst	Date					
Process step	Prod		PMARSHALL	06/02/06					
Login			EJ	06/06/06					
Aliquot	GELI		SO	06/07/06					
Aliquot	н-3	( mm C(M)	LCB	06/09/06					
Aliquot	SR-90	) (FAST)	KPW	06/08/06					
Count Room	GELI	•	KPW	06/10/06					
Count Room	H-3		KOJ	06/12/06					
Count Room	SR-9	O (FAST)	KOU	00, 10, 00					

# Analytical Results Summary



(WG)

#### L28821

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: WG-DN-DSP-121-052606-JH-014

Station: Description:

1 20021_1

Collect Start: 05/26/2006 15:20

Collect Stop:

Receive Date: 06/02/2006

Matrix: Ground Water

Volume:

% Moisture:

LIMS Number: L2  Radionuclide	8821-1 SOP#	Activity Uncertainty Conc 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
		0.077:01 1.025:02	1.65E+02	pCi/L		10	ml		06/10/06	135	M	U
H-3	2010	9.07E+01 1.03E+02		pCi/L	1	450	ml	05/26/06 15:20	06/12/06	400	M	U
TOTAL SR	2018	1.94E-01 4.27E-01	6.91E-01		1	3467.44	ml	05/26/06 15:20	06/08/06	22620	Sec	U No
MN-54	2007	-3.26E-01 2.87E+00	4.70E+00	pCi/L			ml	05/26/06 15:20	06/08/06	22620	Sec	U No
CO-58	2007	1.08E+00   3.03E+00	5.09E+00	pCi/L		3467.44		05/26/06 15:20	06/08/06	22620	Sec	U No
FE-59	2007	3.92E+00 6.52E+00	1.12E+01	pCi/L	1	3467.44	ml	05/26/06 15:20	06/08/06	22620	Sec	U No
CO-60	2007	-1.34E+00 2.98E+00	4.68E+00	pCi/L		3467.44	ml		06/08/06	22620	Sec	U No
ZN-65	2007	9.19E+00 6.29E+00	1.13E+01	pCi/L		3467.44	ml	05/26/06 15:20		22620	Sec	U No
	2007	-1.59E+00 3.10E+00	5.01E+00	pCi/L		3467.44	ml	05/26/06 15:20	06/08/06		Sec	U No
NB-95	2007	-3.35E+00 5.37E+00	8.62E+00	pCi/L		3467.44	ml	05/26/06 15:20	06/08/06	22620		
ZR-95		6.95E+00 5.00E+00	5.19E+00	pCi/L		3467.44	ml	05/26/06 15:20	06/08/06	22620	Sec	
CS-134	2007	0.702	4.98E+00	pCi/L	1	3467.44	ml	05/26/06 15:20	06/08/06	22620	Sec	U No
CS-137	2007	1.61E+00 2.98E+00		pCi/L	1	3467.44	ml	05/26/06 15:20	06/08/06	22620	Sec	U No
BA-140	2007	-1.93E+01 1.89E+01	2.97E+01		<del> </del>	3467.44	ml	05/26/06 15:20	06/08/06	22620	Sec	U No
LA-140	2007	4.05E+00 6.00E+00	1.04E+01	pCi/L	-	3467.44	ml	05/26/06 15:20	06/08/06	22620	Sec	+ Yes
TH-232	2007	1.69E+01 8.46E+00	1.62E+01	pCi/L	1	3407.44	1111	1 03/20/00 13:20	, , , , , , , , , , , , , , , , , , , ,			

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Spec

Low recovery High recovery Page 1 of 8

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

N

#### BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28821

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: WG-DN-DSP-117-052606-JH-015

Collect Start: 05/26/2006 16:55

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Description:

Receive Date: 06/02/2006

% Moisture:

LIMS Number: L2  Radionuclide	8821-2 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Valu	ues
				4.655+02	pCi/L	1	10	ml		06/10/06	135	M	U	
H-3	2010	6.81E+01	1.02E+02	1.65E+02		1	450	ml	05/26/06 16:55	06/12/06	400	M	U	
TOTAL SR	2018	3.06E-01	4.57E-01	7.33E-01	pCi/L		3477.39	ml	05/26/06 16:55	06/08/06	21813	Sec	U	No
MN-54	2007	-1.50E-01	1.98E+00	3.37E+00	pCi/L		1 -	ml	05/26/06 16:55	06/08/06	21813	Sec	U	No
CO-58	2007	-2.71E-01	2.28E+00	3.87E+00	pCi/L		3477.39		05/26/06 16:55	06/08/06	21813	Sec	U	No
FE-59	2007	3.64E-01	4.27E+00	7.49E+00	pCi/L		3477.39	ml	05/26/06 16:55	06/08/06	21813	Sec	U	No
CO-60	2007	-2.36E-01	2.05E+00	3.54E+00	pCi/L		3477.39	l ml		06/08/06	21813	Sec	U	No
	2007	3.95E+00		7.97E+00	pCi/L		3477.39	ml	05/26/06 16:55		21813	Sec	U	No
ZN-65	2007	3.49E-01	-1	3.90E+00	pCi/L		3477.39	ml	05/26/06 16:55	06/08/06		Sec	U	No
NB-95		-5.57E-01		7.04E+00	pCi/L		3477.39	ml	05/26/06 16:55	06/08/06	21813		U	No
ZR-95	2007		2.49E+00	3.66E+00	pCi/L		3477.39	ml	05/26/06 16:55	06/08/06	21813	Sec		
CS-134	2007	6.30E-01	1	3.72E+00	pCi/L	-	3477.39	ml	05/26/06 16:55	06/08/06	21813	Sec	U	No
CS-137	2007	1.85E-01	2.15E+00		pCi/L		3477.39	ml	05/26/06 16:55	06/08/06	21813	Sec	U	No
BA-140	2007	1.24E+01		2.61E+01		1	3477.39	ml	05/26/06 16:55	06/08/06	21813	Sec	U	No
LA-140	2007	1.20E+00	4.46E+00	8.03E+00	pCi/L	1	1 3477.37	1 3222						

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Spec

Low recovery

High recovery

Page 2 of 8

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

N

#### BROWN ENGINEERING, INC. A Teledyne Technologies Company

#### L28821

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

WG-DN-DSP-148-053006-JH-017 Sample ID:

Collect Start: 05/30/2006 13:50

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Receive Date: 06/02/2006

% Moisture:

Description:

LIMS Number: L2	8821-3 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Valu	ues
			1.115.102	1.64E+02	pCi/L		10	ml		06/10/06	135	M	+	
H-3	2010	3.56E+02		1	pCi/L		450	ml	05/30/06 13:50	06/12/06	400	M	U	
TOTAL SR	2018	6.47E-01	4.41E-01	6.84E-01	pCi/L		3524.81	ml	05/30/06 13:50	06/08/06	8726	Sec	U	No
MN-54	2007	3.30E-01	3.05E+00	5.07E+00	pCi/L pCi/L		3524.81	ml	05/30/06 13:50	06/08/06	8726	Sec	U	No
CO-58	2007	-1.97E+00		5.01E+00	pCi/L	1	3524.81	ml	05/30/06 13:50	06/08/06	8726	Sec	U	No
FE-59	2007	4.14E+00		1.09E+01			3524.81	ml	05/30/06 13:50	06/08/06	8726	Sec	U	No
CO-60	2007	-3.31E+00		4.32E+00	pCi/L	1	3524.81	ml	05/30/06 13:50	06/08/06	8726	Sec	U	No
ZN-65	2007	3.56E+00	6.49E+00	1.12E+01	pCi/L		3524.81	ml	05/30/06 13:50	06/08/06	8726	Sec	U	No
NB-95	2007	2.84E+00		5.75E+00	pCi/L		3524.81	ml	05/30/06 13:50	06/08/06	8726	Sec	U	No
ZR-95	2007	-1.31E+00		9.28E+00	pCi/L	-	3524.81	ml	05/30/06 13:50	06/08/06	8726	Sec	U*	No
CS-134	2007	1.23E+01	5.49E+00	6.10E+00	pCi/L			<del></del>	05/30/06 13:50	06/08/06	8726	Sec	U	No
CS-137	2007	-1.35E+00	<u> </u>	5.33E+00	pCi/L	-	3524.81	l ml	05/30/06 13:50	06/08/06	8726	Sec	U	No
BA-140	2007	-4.79E+00		2.60E+01	pCi/L		3524.81	ml	05/30/06 13:50	06/08/06	8726	Sec	Ū	No
LA-140	2007	-1.25E+00	5.53E+00	8.85E+00	pCi/L		3524.81	l ml	103/30/00 13.30	1 00/00/00	0120	, 500	. • .	

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Spec

Low recovery

High recovery

Page 3 of 8

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

Ñ

## Report of Analysis

06/12/06 09:58

#### BROWN ENGINEERING, INC. A Teledyne Technologies Company

#### L28821

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: WG-DN-DSP-156-053006-JH-018

Collect Start: 05/30/2006 15:50

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

Description:

Receive Date: 06/02/2006

% Moisture:

LIMS Number: L28821-4

LIMS Number: L2  Radionuclide	8821-4 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	/alues
				1.675:00	pCi/L		10	ml		06/10/06	135	M	+	
H-3	2010	1.77E+02		1.67E+02		1	450	ml	05/30/06 15:50	06/12/06	400	M	U	
TOTAL SR	2018	8.33E-01	7.07E-01	1.11E+00	pCi/L	1		ml	05/30/06 15:50	06/08/06	11278	Sec	U	No
MN-54	2007	1.91E+00	3.02E+00	5.17E+00	pCi/L		3522.43		05/30/06 15:50	06/08/06	11278	Sec	U	No
CO-58	2007	-1.15E+00	3.13E+00	4.96E+00	pCi/L	-	3522.43	ml	05/30/06 15:50	06/08/06	11278	Sec	U	No
FE-59	2007	4.45E+00	6.50E+00	1.13E+01	pCi/L		3522.43	ml		06/08/06	11278	Sec	U	No
CO-60	2007	-4.10E-01	3.58E+00	5.77E+00	pCi/L		3522.43	ml	05/30/06 15:50	06/08/06	11278	Sec	U	No
ZN-65	2007	5.50E+00	6.64E+00	1.16E+01	pCi/L		3522.43	ml	05/30/06 15:50		11278	Sec	U	No
	2007	1.07E+00		5.36E+00	pCi/L		3522.43	ml	05/30/06 15:50	06/08/06		Sec	III	No
NB-95	2007	-5.00E+00		8.52E+00	pCi/L		3522.43	ml	05/30/06 15:50	06/08/06	11278		TI	No
ZR-95		6.21E+00		5.59E+00	pCi/L		3522.43	ml	05/30/06 15:50	06/08/06	11278	Sec	U	
CS-134	2007		3.19E+00	5.38E+00	pCi/L		3522.43	ml	05/30/06 15:50	06/08/06	11278	Sec	U	No
CS-137	2007	7.71E-01		2.64E+01	pCi/L	1	3522.43	ml	05/30/06 15:50	06/08/06	11278	Sec	U	No
BA-140	2007	-2.35E+00			pCi/L		3522.43	ml	05/30/06 15:50	06/08/06	11278	Sec	U	No
LA-140	2007	4.22E+00		9.26E+00		-	3522.43	ml	05/30/06 15:50	06/08/06	11278	Sec	+	Yes
RA-226	2007	1.21E+02	6.84E+01	1.13E+02	pCi/L	!	1 3322.73	1						

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

= Spec Low recovery

High recovery

Page 4 of 8

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

N



#### L28821

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: WG-DN-DSP-DN-118-052506-JL-057

Collect Start: 05/25/2006 10:15

Matrix: Ground Water

(WG)

Station:

Volume:

Collect Stop:

% Moisture:

Description:

Receive Date: 06/02/2006

LIMS Number: L2	8821-5 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
	2010	7.79E+01	1.03E+02	1.66E+02	pCi/L		10	ml		06/10/06	135	M	U
H-3	2010	9.54E-01		1.06E+00	pCi/L		450	ml	05/25/06 10:15	06/12/06	400	M	U
TOTAL SR	2018	-2.52E-01	2.57E+00	4.23E+00	pCi/L		3633.1	ml	05/25/06 10:15	06/08/06	11005	Sec	U No
MN-54	2007	1.54E-01	2.80E+00	4.65E+00	pCi/L		3633.1	ml	05/25/06 10:15	06/08/06	11005	Sec	U No
CO-58	2007	4.73E+00		1.05E+01	pCi/L		3633.1	ml	05/25/06 10:15	06/08/06	11005	Sec	U No
FE-59	2007	1.09E+00		4.82E+00	pCi/L		3633.1	ml	05/25/06 10:15	06/08/06	11005	Sec	U No
CO-60	2007	6.32E+00	,	1.03E+01	pCi/L		3633.1	ml	05/25/06 10:15	06/08/06	11005	Sec	U No
ZN-65	2007	-6.23E-01	2.69E+00	4.40E+00	pCi/L		3633.1	ml	05/25/06 10:15	06/08/06	11005	Sec	U No
NB-95	2007	1.02E-01	5.03E+00	8.17E+00	pCi/L		3633.1	ml	05/25/06 10:15	06/08/06	11005	Sec	U No
ZR-95	2007	9.47E+00	1	4.93E+00	pCi/L		3633.1	ml	05/25/06 10:15	06/08/06	11005	Sec	U* No
CS-134	2007	5.84E-01	2.88E+00	4.78E+00	pCi/L	<del></del>	3633.1	ml	05/25/06 10:15	06/08/06		Sec	U No
CS-137	2007			2.86E+01	pCi/L	i	3633.1	ml	05/25/06 10:15	06/08/06	11005	Sec	U No
BA-140	2007	-2.20E+01					3633.1	ml	05/25/06 10:15	06/08/06	11005	Sec	U No
LA-140	2007	1.98E+00	6.65E+00	1.12E+01	pCi/L		3033.1	1111	03/23/00 10:13	1 00,00,00			ATTENDED TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

----Spec Low recovery

High recovery

Page 5 of 8

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

N

#### BROWN ENGINEERING, INC. A Teledyne Technologies Company

#### L28821

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: WG-DN-DSP-DN-155-052506-JL-058

Collect Start: 05/25/2006 15:00

Matrix: Ground Water

(WG)

Station:

Collect Stop:

Volume:

% Moisture:

Description:

Receive Date: 06/02/2006

Elivis italilos.	28821-6 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag V	alues
Radionuclide	SOI#	Conc	2 Sigina				10	ml		06/10/06	135	M	U	
I-3	2010	1.47E+02	1.06E+02	1.67E+02	pCi/L		10		05/25/06 15:00	06/12/06	400	M	+	
OTAL SR	2018	6.67E-01	4.30E-01	6.63E-01	pCi/L	-	450	ml ml	05/25/06 15:00	06/08/06	12642	Sec	U	No
1N-54	2007	2.15E-01	3.21E+00	5.32E+00	pCi/L		3631.16	mi	05/25/06 15:00	06/08/06	12642	Sec	U	No
O-58	2007	-3.75E+00	3.50E+00	5.34E+00	pCi/L		3631.16	ml	05/25/06 15:00	06/08/06	12642	Sec	U	No
E-59	2007	7.96E+00	7.23E+00	1.30E+01	pCi/L		3631.16	ml   ml	05/25/06 15:00	06/08/06	12642	Sec	U	No
CO-60	2007	-1.02E+00	3.10E+00	4.91E+00	pCi/L		3631.16	ml	05/25/06 15:00	06/08/06	12642	Sec	U	No
N-65	2007	8.49E+00	7.95E+00	1.25E+01	pCi/L		3631.16	ml —1	05/25/06 15:00	06/08/06	12642	Sec	U	No
NB-95	2007	4.34E+00	3.61E+00	6.42E+00	pCi/L		3631.16	ml	05/25/06 15:00	06/08/06	12642	Sec	U	No
ZR-95	2007	-4.21E+00		9.78E+00	pCi/L		3631.16	ml	05/25/06 15:00	06/08/06	12642	Sec	U	No
CS-134	2007	5.10E+00		5.53E+00	pCi/L		3631.16	ml	05/25/06 15:00	06/08/06	12642	Sec	U	No
CS-137	2007	3.80E+00		5.61E+00	pCi/L		3631.16	mi	05/25/06 15:00	06/08/06	12642	Sec	U	No
3A-140	2007	-1.74E+01		3.71E+01	pCi/L		3631.16	ml	05/25/06 15:00	06/08/06	12642	Sec	U	No
A-140 A-140	2007	7.10E+00		1.40E+01	pCi/L	1	3631.16	ml	103/23/00 13:00	1 00/00/00				

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

Spec Low recovery

High recovery

Page 6 of 8

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

#### BROWN ENGINEERING, INC. A Teledyne Technologies Company

(WG)

#### L28821

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: WG-DN-DSP-DN-122-052506-JL-059

Collect Start: 05/25/2006 17:00

Volume:

Matrix: Ground Water

Collect Stop:

Receive Date: 06/02/2006

% Moisture:

LIMS Number: L28821-7

Station:

Description:

LIMS Number: L2  Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
Kaulonuchue	501		9	1 (25) 02	-0://		10	ml		06/10/06	135	M	+
H-3	2010	1.44E+03		1.63E+02	pCi/L	1	450	ml	05/25/06 17:00	06/12/06	400	M	U
TOTAL SR	2018	2.80E-01	4.74E-01	7.62E-01	pCi/L		3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
MN-54	2007	3.12E+00		5.24E+00	pCi/L	-	3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
CO-58	2007	-9.99E-01	3.39E+00	5.44E+00	pCi/L	1	3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
FE-59	2007	-9.01E+00		1.03E+01	pCi/L	1	3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
CO-60	2007	1.19E+00	3.39E+00	5.24E+00	pCi/L	1	3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
ZN-65	2007	4.75E+00		1.27E+01	pCi/L		3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
NB-95	2007	-1.84E+00		5.62E+00	pCi/L		3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
ZR-95	2007	-2.15E+00	4	9.76E+00	pCi/L	1	3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
CS-134	2007	-2.15E-01	4.43E+00	6.19E+00	pCi/L	1	3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
CS-137	2007	-1.59E+00		5.36E+00	pCi/L	1	3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
BA-140	2007	3.85E+00		3.58E+01	pCi/L pCi/L	1	3633.3	ml	05/25/06 17:00	06/08/06	12362	Sec	U No
LA-140	2007	-3.40E+00	7.23E+00	1.14E+01	pci/L	1	3033.3	1 ****					

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification

Spec Low recovery

High recovery

Page 7 of 8

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

#### L28821

BROWN ENGINEERING, INC. A Teledyne Technologies Company

(WG)

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-DN-127-053006-JL-066

Collect Start: 05/30/2006 10:55

Collect Stop:

Matrix: Ground Water

Volume:

Station: Description:

Receive Date: 06/02/2006

% Moisture:

LIMS Number: L2  Radionuclide	8821-8 SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	Values
11110110111111			1 207 . 00	1 (25:02	pCi/L	1	10	ml		06/10/06	135	M	U	
H-3	2010	8.53E+01	1.02E+02	1.63E+02		1	450	ml	05/30/06 10:55	06/12/06	400	M	U	
TOTAL SR	2018	4.18E-01	5.39E-01	8.63E-01	pCi/L	1	2849.81	ml	05/30/06 10:55	06/08/06	48036	Sec	U	No
MN-54	2007	-1.87E-01		3.12E+00	pCi/L		2849.81	ml	05/30/06 10:55	06/08/06	48036	Sec	U	No
CO-58	2007	-2.79E+00	2.00E+00	3.12E+00	pCi/L	-	2849.81	ml	05/30/06 10:55	06/08/06	48036	Sec	U	No
FE-59	2007	4.23E+00	4.12E+00	7.07E+00	pCi/L			1	05/30/06 10:55	06/08/06	48036	Sec	U	No
CO-60	2007	-2.41E-01	1.93E+00	3.14E+00	pCi/L	1	2849.81	l ml	05/30/06 10:55	06/08/06	48036	Sec	U	No
ZN-65	2007	4.88E+00	4.96E+00	7.24E+00	pCi/L		2849.81	ml	05/30/06 10:55	06/08/06	48036	Sec	U	No
NB-95	2007	-1.86E-02	2.04E+00	3.34E+00	pCi/L		2849.81	l ml	,	06/08/06	48036	Sec	U	No
ZR-95	2007	-8.57E-01		6.05E+00	pCi/L		2849.81	ml	05/30/06 10:55		48036	Sec	U	No
CS-134	2007	3.81E+00		3.58E+00	pCi/L		2849.81	ml	05/30/06 10:55	06/08/06	48036	Sec	U	No
	2007	1.97E+00		3.51E+00	pCi/L		2849.81	ml	05/30/06 10:55	06/08/06			U	No
CS-137	2007	-4.31E-01		1.77E+01	pCi/L		2849.81	ml	05/30/06 10:55	06/08/06	48036	Sec	TIT	No
BA-140 LA-140	2007	2.90E+00		5.90E+00	pCi/L		2849.81	ml	05/30/06 10:55	06/08/06	48036	Sec	U	I NO I

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only) =

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High MDC exceeds customer technical specification =

Spec Low recovery

High recovery

Page 8 of 8

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

Ñ

# QC Results Summary

L28821 for

6/12/2006

10:01:43AM



H-3

Method Blank Summary

TBE Sample ID

WG4106-1

Radionuclide H-3

Matrix WO

Count Date/Time 06/10/2006 3:12

Blank Result < 1.680E+00

Units pCi/Total

Qualifier P/F U

LCS Sample Summary

TBE Sample ID

WG4106-2

Radionuclide

Matrix WO

Count Date/Time 06/10/2006 4:15

Spike Value 5.05E+002

LCS Result 4.990E+02

Units

pCi/Total

Spike Recovery 98.9

Range Qualifier P/F 70-130

P

Spike ID: 3H-041706-1 Spike conc: 5.05E+002

Spike Vol: 1.00E+000

**Duplicate Summary** 

TBE Sample ID WG4106-3

Radionuclide H-3

H-3

Matrix WG

Count Date/Time

**Original Result** < 1.700E+02

**DUP** Result

Units

RPD

Range Qualifier P/F

NE

L28801-11

06/10/2006 4:34

< 1.710E+02

pCi/L

<30

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC U

< 5 times the MDC are not evaluated

Nuclide not detected **

Spiking level < 5 times activity ***

P Pass Fail F

Not evaluated NE

Page: 1

L28821 for

A Teledyne Technologies Company

6/12/2006

10:01:43AM

L28821

H-3

Associated Samples for	WG4106
SAMPLENUM	<u>CLIENTID</u>
1.28821-1	WG-DN-DSP-121-052606-JH-014
L28821-2	WG-DN-DSP-117-052606-JH-015
L28821-3	WG-DN-DSP-148-053006-JH-017
L28821-4	WG-DN-DSP-156-053006-JH-018
L28821-5	WG-DN-DSP-DN-118-052506-JL-057
L28821-6	WG-DN-DSP-DN-155-052506-JL-058
L28821-7	WG-DN-DSP-DN-122-052506-JL-059
L28821-8	WG-DN-DSP-DN-127-053006-JL-066

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

Spiking level < 5 times activity ***

Pass P Fail F

Not evaluated NE

Page: 2

L28821 for

6/12/2006

10:01:43AM



				TOTAL SR			
				Method Blank Summ	ary		
TBE Sample ID WG4133-1	Radionuclide TOTAL SR	<u>Matrix</u> WO	Count Date/Time 06/12/2006 8:10		Blank Result < 4.830E-01	<u>Units</u> pCi/Total	<u>Qualifier</u> <u>P/F</u> U P
				LCS Sample Summa	ıry		
TBE Sample ID WG4133-2	<u>Radionuclide</u> TOTAL SR	<u>Matrix</u> WO	Count Date/Time 06/11/2006 23:28	Spike Value 5.84E+001	LCS Result 6.620E+01	<u>Units</u> <u>Spike Recovery</u> pCi/Total 113.4	Range Qualifier P/F 70-130 + P
Spike ID: 90SR-6 Spike conc: 2.34E Spike Vol: 2.50E	+002						
				Duplicate Summa	<b>Ty</b>		
TBE Sample ID WG4133-4 L28821-1	<u>Radionuclide</u> TOTAL SR	<u>Matrix</u> WG	Count Date/Time 06/12/2006 8:10	Original Result < 6.910E-01	DUP Result 1.110E+00	<u>Units</u> <u>RPD</u> pCi/L	Range Qualifier P/F <30 * NE

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

Spiking level < 5 times activity ***

Pass Fail F

Not evaluated NE

L28821 for

6/12/2006

10:01:43AM

L28821

SR-90 (FAST)

Associated Samples for	WG4133
SAMPLENUM	CLIENTID
L28821-1	WG-DN-DSP-121-052606-JH-014
L28821-2	WG-DN-DSP-117-052606-JH-015
L28821-3	WG-DN-DSP-148-053006-JH-017
L28821-4	WG-DN-DSP-156-053006-JH-018
1.28821-5	WG-DN-DSP-DN-118-052506-JL-057
L28821-6	WG-DN-DSP-DN-155-052506-JL-058
L28821-7	WG-DN-DSP-DN-122-052506-JL-059
L28821-8	WG-DN-DSP-DN-127-053006-JL-066
D20021 0	



Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

Spiking level < 5 times activity ***

Pass Fail F

Not evaluated NE

Page: 4

# Raw Data

## Raw Data Sheet (rawdata) Jun 12 2006, 10:12 am

Customer: Exelon Work Order: L28821

Project : EX001-3ESPDRES-06 Nuclide: H-3

Decay &

Page: 1

Samble ID Run Imagina	ference te/time	Volume/ Aliquot	Scavenge Date/time	Milking Date/time	Mount Weight	Count Recovery Date/time 10-jun-06 00:09	Counter ID LS5	Total counts 495	Sample dt(min) 135	Bkg counts 3.27	Bkg <u>dt (min)</u> 135	Eff. .19	Ingrowth Factor 9	Analyst EJ
WG-DN-DSP-121-052606-J Activity: 9.07E+01 Error: 1.03 L28821-2 H-3	E+02	10 ml MDC: 1.65E+02 *			0	10-jun-06 02:27	LS5	482	135	3.27	135	.19	9	so
WG-DN-DSP-117-052606-J Activity: 6.81E+01 Error: 1.02 L28821-3 H-3	E+02	10 ml MDC: 1.65E+02 *			0	10-jun-06 04:45	LS5	653	135	3.27	135	.19	19	so
WG-DN-DSP-148-053006-J <u>Activity: 3.56E+02 * Error: 1.1</u> L28821-4 H-3	L1E+02	MDC: 1.64E+02			0	10-jun-06 07:03	LS5	545	135	3.27	135	.19	96	so
WG-DN-DSP-156-053006-J <u>Activity: 1.77E+02 * Error: 1.0</u> L28821-5 H-3	07E+02	MDC: 1.67E+02			0	10-jun-06 09:22	LS5	487	135	3.27	135	.19	97	so
WG-DN-DSP-DN-118-05250 Activity: 7.79E+01 Error: 1.03 L28821-6 H-3	3E+02	MDC: 1.66E+02 *	*		0	10-jun-06 11:40	LS5	528	135	3.27	135	.1	96	SO
WG-DN-DSP-DN-155-05250 Activity: 1.47E+02 Error: 1.0 L28821-7 H-3	6E+02	MDC: 1.67E+02	*		0	10-jun-06 13:58	LS5	1305	135	3.27	7 135	. 2	01	so
WG-DN-DSP-DN-122-05250 Activity: 1.44E+03 * Error: 1. L28821-8 H-3	39E+02	MDC: 1.63E+02			0	10-jun-00 16:17	5 LS5	493	135	5 3.2	7 135	. 2	01	so
WG-DN-DSP-DN-127-05300 Activity: 8.53E+01 Error: 1.0	2E+02	MDC: 1.63E+02	*				<u></u>							-

## Raw Data Sheet (rawdata) Jun 12 2006, 10:12 am

Customer: Exelon Work Order: L28821

Page: 2

Nuclide: <u>SR-90 (FAST)</u>	Pr	oject : <u>EX001-3</u>	ESPDRES-06					w 17	Sample	Bkq	Bkq		Decay & Ingrowth	Analyst
Sample ID Run Analysis I	Reference	Volume/	Scavenge Milking	Mount		00000	Counter	Total counts	dt (min)	_	dt (min)		Factor	
Sample in kun mariare	Date/time	Aliquot	Date/time Date/time	Weight	Recovery	Date/time		331	400	308	400	.340	.999	LCB
Client ID # I L28821-1 TOTAL SR	26-may-06	5	11-jun-06	0	05 55	12-jun-06 08:10	VIV	332						
WG-DN-DSP-121-052606-J	15:20	450 ml	13:00		85.75	00:10								
Activity: 1.94E-01 Error: 4.	27E-01	MDC: 6.91E-01 *		0		12-jun-06	X1B	378	400	342	400	.34	3 .999	LCB
L28821-2 TOTAL SR	26-may-06		11-jun-06	U	85.75	08:10								
WG-DN-DSP-117-052606-J	16:55	450 ml	13:00		03.75	••••								LCB
Activity: 3.06E-01 Error: 4.		MDC: 7.33E-01 *	77 06	0		12-jun-06	X1C	364	400	289	400	.35	4 .999	псь
L28821-3 TOTAL SR	30-may-06		11-jun-06 13:00	·	81.99	08:10								
WG-DN-DSP-148-053006-J	13:50	450 ml								0.64	400	35	4 .999	LCB
Activity: 6.47E-01 Error: 4.		MDC: 6.84E-01 *	11-jun-06	0		12-jun-06	X2A	321	400	264	400		4 .,,,,	
L28821-4 TOTAL SR	30-may-0	450 ml	13:00		48.39	08:10								
WG-DN-DSP-156-053006-J	15:50	MDC: 1.11E+00 *						250	400	289	400	.34	5 .999	LCB
Activity: 8.33E-01 Error: 7.	25-may-0		11-jun-06	0		12-jun-06	X2B	360	400	200				
220022	10:15	450 ml	13:00		54.03	08:10								
WG-DN-DSP-DN-118-05250		MDC: 1,06E+00 *					X2C	355	400	277	400	.34	4 .999	LCB
Activity: 9.54E-01 Error: 6.  L28821-6 TOTAL SR			11-jun-06	0		12-jun-06 08:10	AZC	223						
WG-DN-DSP-DN-155-05250	15:00	450 ml	13:00		85.22	08:10								
Activity: 6.67E-01 * Error: 4	1.3E-01	MDC: 6.63E-01				12-jun-06	X2D	337	400	307	400	.34	3 .999	LCB
L28821-7 TOTAL SR	25-may-0		11-jun-06	U	78.23	08:10	,							
WG-DN-DSP-DN-122-05250	17:00	450 ml	13:00		70.23	00.20								LCB
Activity: 2.8E-01 Error: 4.		MDC: 7.62E-01		0		12-jun-06	X3A	406	400	363	400	.33	15 .999	псв
L28821-8 TOTAL SR			11-jun-06 13:00	Ū	76.88	08:10								
WG-DN-DSP-DN-127-05300	10:55	450 ml												
Activity: 4.18E-01 Error: 5.	.39E-01	MDC: 8.63E-01												

Sec. Review: Analyst: LIMS: ___

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 8-JUN-2006 16:21:58.59

TBE15 P-10635B HpGe ******* Aquisition Date/Time: 8-JUN-2006 10:04:49.05

LIMS No., Customer Name, Client ID: WG L28821-1 DRESDEN

Smple Date: 26-MAY-2006 15:20:00. Geometry : 1535L090104 : 15L28821-1

Sample ID BKGFILE : 15BG060306MT : WG Sample Type Energy Tol : 1.50000 Real Time : 0 06:17:02.80 Quantity : 3.46740E+00 L End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 06:17:00.47 MDA Constant: 0.00 Library Used: LIBD

111112	00110									
			7.202	Bkand	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
Pk 1 2 3 4 5 6 7	1 1 1 1 1 1	Energy  66.59 139.77 198.07 238.47* 351.58* 583.93 595.63 608.50 910.54	175 117 131 117 59 89 84 145	8kgnd 639 564 435 436 233 193 178 140 71	1.45 1.47 1.27 2.30 1.31	120.65 267.82 385.06 466.31 693.74 1160.80 1184.32 1210.19 1817.12	4.42E-01 1.48E+00 1.37E+00 1.23E+00 9.16E-01 6.07E-01 5.97E-01 5.87E-01 4.23E-01 2.91E-01	7.72E-03 5.17E-03 5.78E-03 5.16E-03 2.59E-03 3.96E-03 3.71E-03 6.43E-03 2.56E-03 2.53E-03	26.2 36.5 28.9 39.4 54.9 38.5 35.5 20.3 32.9	9.37E-01 7.63E-01
10 11 12	) 1 L 1	1459.79* 1702.20 1763.92	57 37 42	36 32 26	6.39	3406.75 3530.62	2.60E-01 2.54E-01	1.85E-03	36.3	1.48E+00
						1	na cunitat	ノレエン**		

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide T Nuclide K-40 AC-228 TH-228	Energy 1460.81 835.50 911.07 238.63 240.98 583.14 911.07 969.11	Area 57  58 117  89 58	%Abn 10.67* 1.75 27.70* 44.60* 3.95 30.25 27.70* 16.60	%Eff 2.909E-01 4.539E-01 4.233E-01 1.225E+00 1.217E+00 6.069E-01	1.698E+01 1.706E+01 7.365E+00 7.460E+00 Line Not Found 1.680E+01 1.680E+01 1.698E+01 1.698E+01	2-Sigma %Error 73.03  65.78 78.88  77.06 65.78
--------------------------------------------------	-----------------------------------------------------------------------------------------	---------------------------------------------	--------------------------------------------------------------------------------	------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------

Flag: "*" = Keyline

Page: 2

Acquisition date : 8-JUN-2006 10:04:49 Summary of Nuclide Activity Sample ID : 15L28821-1

12 Total number of lines in spectrum 8 Number of unidentified lines 4 33.33% Number of lines tentatively identified by NID

Nuclide Type : natural

Nuclide	1 y p c . 11010	Uncorrected	Decay Corr	Decay Corr	2-Sigma	മിച്ച
Nuclide K-40 AC-228 TH-228 TH-232	1.28E+09Y 1. 5.75Y 1. 1.91Y 1.	ay pCi/L 00 6.357E+01 00 1.698E+01 01 7.365E+00 00 1.698E+01	pCi/L 6.357E+01 1.706E+01 7.460E+00 1.698E+01	2-Sigma Error 4.643E+01 1.122E+01 5.884E+00 1.117E+01	%Error I 73.03 65.78 78.88 65.78	r Lays

Grand Total Activity: 1.049E+02 1.051E+02

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 15L28821-1

Page: 3° Acquisition date : 8-JUN-2006 10:04:49

Samp	le ID :	15L28821-1	L		1100				0.77	%Eff	Flags
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec			_
1 1 1 1 1	66.59 139.77 198.07 351.58 595.63 608.50 1702.20	117 131 59 84 145	639 564 435 233 178 140 32 26	1.45 1.47 1.27 1.31 1.66 2.85 6.39 1.81	1210.19	1177 1203	8 9 14 16	7.72E-03 5.17E-03 5.78E-03 2.59E-03 3.71E-03 6.43E-03 1.64E-03	73.1 57.7 **** 71.0 40.7 72.6	4.42E-0 1.48E+0 1.37E+0 9.16E-0 5.97E-0 5.87E-0 2.60E-0 2.54E-0	0 0 1 )1 )1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

12 Total number of lines in spectrum Number of unidentified lines 8
Number of lines tentatively identified by NID 4 33.33%

Nuclide Type : natural

Nuclide	Type : natural	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma %Error Flags
Nuclide K-40 TH-228 TH-232	Hlife Decay 1.28E+09Y 1.00 1.91Y 1.01 1.41E+10Y 1.00  Total Activity:	pCi/L 6.357E+01 7.365E+00 1.690E+01	pCi/L 6.357E+01 7.460E+00 1.690E+01  8.794E+01	2-Sigma Error 4.643E+01 5.884E+00	73.03 78.88 50.03

Grand Total Activity: 8.784E+01 8.794E+01

"M" = Manually accepted

Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Interfe	ring	Interfered			
 Nuclide	Line	Nuclide	Line		
TH-232	911.07	AC-228	911.07		

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Identı	fied Nuclides				Act/MDA
	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	ACC/ MDM
Nuclide K-40 TH-228 TH-232	6.357E+01 7.460E+00 1.690E+01	4.643E+01 5.884E+00 8.458E+00	4.394E+01 7.660E+00 1.621E+01	0.000E+00 0.000E+00 0.000E+00	1.447 0.974 1.043

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nucriae	(P 0 = /			0.000E+00	-0.305
BE-7	-1.297E+01	2.611E+01	4.258E+01		
NA-24	-4.750E+00	2.581E+00	Half-Life too	0.000E+00	-0.367
CR-51	-1.894E+01	3.181E+01	5.166E+01	0.000E+00	-0.069
MN-54	-3.263E-01	2.873E+00	4.702E+00	0.000E+00	-0.209
CO-57	-8.842E-01	2.739E+00	4.234E+00	0.000E+00	0.213
CO-58	1.084E+00	3.026E+00	5.090E+00	0.000E+00	0.351
FE-59	3.921E+00	6.523E+00	1.117E+01	0.000E+00	-0.286
CO-60	-1.340E+00	2.977E+00	4.678E+00	0.000E+00	0.815
ZN-65	9.189E+00	6.286E+00	1.127E+01	0.000E+00	-0.364
SE-75	-2.231E+00	3.865E+00	6.135E+00	0.000E+00	2.632
SR-85	1.725E+01	3.419E+00	6.553E+00	0.000E+00	-0.163
Y-88	-8.327E-01	3.165E+00	5.111E+00	0.000E+00	0.221
NB-94	9.981E-01	2.729E+00	4.511E+00 5.007E+00	0.000E+00	-0.317
NB-95	-1.589E+00	3.104E+00		0.000E+00	-0.388
ZR-95	-3.346E+00	5.374E+00	8.615E+00 8.689E+02	0.000E+00	-0.015
MO-99	-1.286E+01	5.240E+02	5.877E+00	0.000E+00	0.062
RU-103	3.627E-01	3.527E+00	4.523E+01	0.000E+00	0.379
RU-106	1.714E+01	2.684E+01	4.523E+01 4.452E+00	0.000E+00	-0.322
AG-110m	-1.433E+00	2.804E+00	6.456E+00	0.000E+00	0.725
SN-113	4.679E+00	3.779E+00	4.947E+00	0.000E+00	0.647
SB-124	3.199E+00	6.138E+00	1.313E+01	0.000E+00	0.279
SB-125	3.659E+00	7.926E+00	6.827E+01	0.000E+00	0.217
TE-129M	1.485E+01	4.157E+01	1.311E+01	0.000E+00	-0.184
I-131	-2.412E+00	8.071E+00	6.136E+00	0.000E+00	0.777
BA-133	4.770E+00	4.146E+00	5.188E+00	0.000E+00	1.340
CS-134	6.953E+00	4.997E+00	8.781E+00	0.000E+00	0.119
CS-136	1.044E+00	5.267E+00	4.982E+00	0.000E+00	0.323
CS-137	1.609E+00	2.976E+00	4.430E+00	0.000E+00	-0.181
CE-139	-8.001E-01	2.698E+00	2.972E+01	0.000E+00	-0.649
BA-140	-1.928E+01	1.887E+01	1.042E+01	0.000E+00	0.389
LA-140	4.053E+00	5.996E+00	8.973E+00	0.000E+00	0.272
CE-141	2.439E+00	6.225E+00	3.305E+01	0.000E+00	0.071
CE-144	2.352E+00	2.305E+01	1.356E+01	0.000E+00	-0.913
EU-152	-1.238E+01	9.952E+00	8.685E+00	0.000E+00	-0.209
EU-154	-1.818E+00	5.619E+00	1.077E+02	0.000E+00	-0.565
RA-226	-6.082E+01	7.061E+01	1.822E+01	0.000E+00	0.936
AC-228	1.706E+01	1.122E+01 2.213E+01	3.168E+01	0.000E+00	0.124
U-235	3.922E+00	2.213E+01 3.127E+02	5.514E+02	0.000E+00	0.784
U-238	4.326E+02	3.12/E+02 3.233E+01	4.998E+01	0.000E+00	-0.520
AM-241	-2.600E+01	3.∠33E+UI	1.550.00		

```
3.467E+00,WG L28821-1 DR
                     ,06/08/2006 16:21,05/26/2006 15:20,
                                             ,06/06/2006 10:43,1535L090104
A,15L28821-1
                     ,LIBD
                                                                    1.447
                                                   4.394E+01,,
B,15L28821-1
                                    4.643E+01,
                     6.357E+01,
                                                                    0.974
            ,YES,
                                                   7.660E+00,,
C, K-40
                                    5.884E+00,
                     7.460E+00,
                                                                    1.043
            , YES,
                                                   1.621E+01,,
C, TH-228
                                    8.458E+00,
                     1.690E+01,
                                                                    -0.305
                                                   4.258E+01,,
            , YES,
C, TH-232
                                    2.611E+01,
                    -1.297E+01,
                                                                    -0.367
                                                   5.166E+01,,
            ,NO,
C, BE-7
                                    3.181E+01,
                    -1.894E+01,
                                                                    -0.069
                                                   4.702E+00,,
            , NO
C, CR-51
                                    2.873E+00,
                    -3.263E-01,
                                                                    -0.209
                                                   4.234E+00,,
            , NO
C, MN-54
                                    2.739E+00,
                    -8.842E-01,
                                                                     0.213
            , NO
                                                    5.090E+00,,
C, CO-57
                                    3.026E+00,
                     1.084E+00,
                                                                     0.351
                                                    1.117E+01,,
            , NO
C, CO-58
                                    6.523E+00,
                     3.921E+00,
                                                                    -0.286
            , NO
                                                    4.678E+00,,
C, FE-59
                                     2.977E+00,
                    -1.340E+00,
                                                                     0.815
                                                    1.127E+01,,
            , NO
C, CO-60
                                     6.286E+00,
                      9.189E+00,
                                                                    -0.364
            , NO
                                                    6.135E+00,,
 C, ZN-65
                                     3.865E+00,
                     -2.231E+00,
                                                                     2.632
             , NO
                                                    6.553E+00,,
 C, SE-75
                                     3.419E+00,
                      1.725E+01,
                                                                    -0.163
                                                    5.111E+00,,
             , NO
 C, SR-85
                                     3.165E+00,
                     -8.327E-01,
                                                                      0.221
                                                    4.511E+00,,
 C, Y-88
             , NO
                                     2.729E+00,
                      9.981E-01,
                                                                    -0.317
                                                    5.007E+00,,
             , NO
 C, NB-94
                                     3.104E+00,
                     -1.589E+00,
                                                                     -0.388
                                                    8.615E+00,,
             , NO
 C, NB-95
                                     5.374E+00,
                     -3.346E+00,
                                                                     -0.015
                                                    8.689E+02,,
             , NO
 C, ZR-95
                                     5.240E+02,
                     -1.286E+01,
                                                                      0.062
                                                     5.877E+00,,
             , NO
 C, MO-99
                                     3.527E+00,
                      3.627E-01,
                                                                      0.379
                                                     4.523E+01,,
             , NO
 C, RU-103
                                      2.684E+01,
                      1.714E+01,
                                                                     -0.322
             , NO
                                                     4.452E+00,,
 C, RU-106
                                      2.804E+00,
                     -1.433E+00,
                                                                      0.725
                                                     6.456E+00,,
             , NO
 C, AG-110m
                                      3.779E+00,
                      4.679E+00,
                                                                      0.647
             , NO
                                                     4.947E+00,,
  C,SN-113
                                      6.138E+00,
                       3.199E+00,
                                                                      0.279
                                                     1.313E+01,,
  C,SB-124
              ,NO
                                      7.926E+00,
                       3.659E+00,
                                                                      0.217
              , NO
                                                     6.827E+01,,
  C,SB-125
                                      4.157E+01,
                       1.485E+01,
                                                                     -0.184
                                                     1.311E+01,,
  C, TE-129M
              , NO
                                      8.071E+00,
                      -2.412E+00,
                                                                       0.777
                                                     6.136E+00,,
              , NO
  C, I-131
                                      4.146E+00,
                       4.770E+00,
                                                                       1.340
              , NO
                                                     5.188E+00,,
  C,BA-133
                                      4.997E+00,
                       6.953E+00,
                                                                       0.119
                                                     8.781E+00,,
              , NO
  C, CS-134
                                      5.267E+00,
                       1.044E+00,
                                                                       0.323
              , NO
                                                     4.982E+00,,
  C, CS-136
                                      2.976E+00,
                       1.609E+00,
                                                                      -0.181
                                                     4.430E+00,,
              , NO
  C, CS-137
                                      2.698E+00,
                      -8.001E-01,
                                                                      -0.649
              , NO
                                                      2.972E+01,,
  C, CE-139
                                      1.887E+01,
                      -1.928E+01,
                                                                       0.389
                                                      1.042E+01,,
              , NO
  C, BA-140
                                       5.996E+00,
                        4.053E+00,
                                                                       0.272
                                                      8.973E+00,,
              , NO
   C, LA-140
                                       6.225E+00,
                        2.439E+00,
                                                                       0.071
                                                      3.305E+01,,
               , NO
   C, CE-141
                                       2.305E+01,
                        2.352E+00,
                                                                      -0.913
                                                      1.356E+01,,
   C, CE-144
               , NO
                                       9.952E+00,
                       -1.238E+01,
                                                                      -0.209
                                                      8.685E+00,,
               , NO
   C, EU-152
                                       5.619E+00,
                       -1.818E+00,
                                                                       -0.565
               , NO
                                                      1.077E+02,,
   C, EU-154
                                       7.061E+01,
                       -6.082E+01,
                                                                        0.936
               , NO
                                                      1.822E+01,,
   C, RA-226
                                       1.122E+01,
                        1.706E+01,
                                                                        0.124
                                                      3.168E+01,,
               , NO
   C, AC-228
                                       2.213E+01,
                        3.922E+00,
                                                                        0.784
                                                      5.514E+02,,
               , NO
   C, U-235
                                       3.127E+02,
                        4.326E+02,
                                                                       -0.520
                                                      4.998E+01,,
   C, U-238
               , NO
                                       3.233E+01,
                       -2.600E+01,
               , NO
   C, AM-241
```

LIMS: Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 8-JUN-2006 16:22:10.02 TBE23 03017322 HpGe ******* Aquisition Date/Time: 8-JUN-2006 10:18:10.59 

LIMS No., Customer Name, Client ID: WG L28821-2 DRESDEN

Smple Date: 26-MAY-2006 16:55:00. : 23L28821-2

Geometry : 2335L090704 Sample ID BKGFILE : 23BG060306MT Sample Type : WG Quantity : 3.47740E+00 L

Start Channel: 50 Energy Tol: 1.50000 Real Time: 0 06:03:48.22 End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 06:03:33.10 MDA Constant: 0.00 Library Used: LIBD

Pk It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec		Fit
1 7 2 7 3 7 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0	33.58* 36.27* 39.95* 64.06* 92.72* 139.65* 198.06* 238.35* 351.77* 499.42 582.62* 594.96 911.08* 1460.63*	25 9 64 243 57 167 152 38 85 27 105 28 8	31 163 431 1452 1019 844 684 437 272 259 158 188 74 40	0.92 1.84 2.36 3.88 1.32 1.58 1.18 1.65 1.71 1.83 4.79 2.33 1.74		1.35E-01 2.12E-01 9.66E-01 1.70E+00 2.05E+00 1.90E+00 1.73E+00 1.32E+00 1.00E+00 8.89E-01 8.75E-01 6.38E-01	1.26E-03 4.81E-03	78.9 78.9 37.8 117.7 35.6 36.4 115.1 454.7 43.4 108.3 30.8 75.2	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natura	al			Uncorrected Decay Corr	2-Sigma %Error
Nuclide K-40 AC-228	Energy 1460.81 835.50 911.07	Area 8  28	%Abn 10.67* 1.75 27.70*	%Eff 4.595E-01 6.790E-01 6.383E-01	pCi/L pCi/L 5.474E+00 5.474E+00 Line Not Found 5.669E+00 5.693E+00 1.747E+00 1.769E+00	637.18  150.32 230.23
TH-228	238.63 240.98	38	44.60* 3.95	1.726E+00 1.714E+00	1.747E+00 Line Not Found 3.630E+00 3.630E+00	216.59
TH-232	583.14 911.07 969.11	27 28 	30.25 27.70* 16.60	8.890E-01 6.383E-01 6.111E-01	5.669E+00 5.669E+00	150.32

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity

Acquisition date: 8-JUN-2006 10:18:10 Sample ID : 23L28821-2

14 Total number of lines in spectrum 10 Number of unidentified lines

Number of lines tentatively identified by NID 4 28.57%

Nuclide Type : natural

Nuclide Hlife Decay pCi/L K-40 1.28E+09Y 1.00 5.474E+00 AC-228 5.75Y 1.00 5.669E+00 TH-228 1.91Y 1.01 1.747E+00 TH-232 1.41E+10Y 1.00 5.669E+00 Total Activity: 1.856E+01	pCi/L 5.474E+00 5.693E+00 1.769E+00 5.669E+00 	8.558E+00 4.073E+00	637.18 150.32 230.23 150.32	
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------	------------------------	--------------------------------------	--

1.860E+01 Grand Total Activity : 1.856E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 23L28821-2

Page: 3 Acquisition date: 8-JUN-2006 10:18:10

io ormit										0 77 C C	מסכום
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
7 7 0 0 0 0 0	33.58 36.27 39.95 64.06 92.72 139.65 198.06 351.77 499.42 594.96	25 9 64 243 57 167 152 8 85	31 163 431 1452 1019 844 684 272 259 188	0.92 1.84 2.36 3.88 1.32 1.29 1.58 1.65 1.71	67.49 72.87 80.22 128.40 185.68 279.47 396.22 703.45 998.59 1189.61	64 120 181 274 391 698 993	26 26 17 10 10 11 10	2.63E-03 7.67E-03 6.98E-03 3.62E-04 3.90E-03	**** 75.6 *** 71.3 72.8 *** 86.9	9.07E-0 1.35E-0 2.12E-0 9.66E-0 1.70E+0 2.05E+0 1.90E+0 1.32E+0 1.00E+0 8.75E-0	1 1 0 0 0 0 0

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 14 Number of unidentified lines 10
Number of lines tentatively identified by NID 4 28.57%

Nuclide Type : natural

Nuclide	Type : natural	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma %Error Flags
AC-228 TH-228	Hlife Decay 1.28E+09Y 1.00 5.75Y 1.00 1.91Y 1.01 1.41E+10Y 1.00  Total Activity:	5.474E+00 2.039E+00 1.747E+00 3.630E+00	pCi/L 5.474E+00 2.048E+00 1.769E+00 3.630E+00  1.292E+01	2-Sigma Error 34.88E+00 11.64E+00 4.073E+00 7.861E+00	637.18 568.53 230.23 216.59

Grand Total Activity: 1.289E+01 1.292E+01

"M" = Manually acceptedFlags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Interfe	ring	Interfered			
Nuclide	Line	Nuclide	Line		
TH-232	911.07	AC-228	911.07		

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	5.474E+00	3.488E+01	3.336E+01	0.000E+00	0.164
AC-228	2.048E+00	1.164E+01	1.284E+01	0.000E+00	0.159
TH-228	1.769E+00	4.073E+00	6.810E+00	0.000E+00	0.260

TH-232 3.630E+00 7.861E+00 1.387E+01 0.000E+00 0.262

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide  BE-7  NA-24  CR-51  MN-54  CO-57  CO-58  FE-59  CO-60  ZN-65  SE-75  SR-85  Y-88	110011-1	2.042E+01 1.631E+00 2.465E+01 1.977E+00 2.414E+00 2.276E+00 4.273E+00 2.051E+00 4.377E+00 3.086E+00 2.658E+00 2.316E+00 2.043E+00	3.392E+01 Half-Life too 4.150E+01 3.372E+00 3.995E+00 3.870E+00 7.488E+00 3.535E+00 7.974E+00 5.296E+00 5.148E+00 3.961E+00 3.440E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.225 -0.150 -0.044 -0.420 -0.070 0.049 -0.067 0.495 0.218 2.771 -0.222 -0.234 0.089
NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-136	3.485E-01 -5.569E-01 -9.279E+01 3.365E+00 -1.858E+01 1.039E-01 1.229E+00 -5.930E+00 -1.339E+00 -2.124E+01 -2.700E+00 4.413E+00 6.298E-01 1.109E-01 1.853E-01	2.258E+00 4.135E+00 3.759E+02 3.082E+00 2.039E+01 1.991E+00 2.983E+00 2.969E+00 6.111E+00 3.073E+01 6.470E+00 3.400E+00 2.487E+00 3.771E+00 2.152E+00	3.897E+00 7.036E+00 6.375E+02 4.644E+00 3.373E+01 3.436E+00 5.105E+00 3.795E+00 1.024E+01 5.047E+01 1.081E+01 5.156E+00 3.660E+00 6.472E+00 3.718E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.079 -0.146 0.725 -0.551 0.030 0.241 -1.563 -0.131 -0.421 -0.250 0.856 0.172 0.017 0.050 -0.243
CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 RA-226 U-235 U-238 AM-241	-9.864E-01 1.243E+01 1.201E+00 4.798E+00 -1.427E+01 -7.664E+00 -4.146E+00 8.888E+00 1.031E+00 2.603E+01 2.853E+01	2.452E+00 1.504E+01 4.461E+00 5.956E+00 2.182E+01 8.257E+00 4.928E+00 6.358E+01 2.233E+01 2.409E+02 1.438E+01	4.051E+00 2.611E+01 8.025E+00 8.626E+00 3.044E+01 1.135E+01 8.133E+00 9.895E+01 3.057E+01 3.943E+02 2.130E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.476 0.150 0.556 -0.469 -0.675 -0.510 0.090 0.034 0.066 1.340

```
3.477E+00,WG L28821-2 DR
                     ,06/08/2006 16:22,05/26/2006 16:55,
A,23L28821-2
                                             ,06/01/2006 10:14,2335L090704
                     ,LIBD
B,23L28821-2
                                                                    0.164
                                                   3.336E+01,,
                                    3.488E+01,
                     5.474E+00,
           ,YES,
C, K-40
                                                                    0.159
                                                   1.284E+01,,
                                    1.164E+01,
                     2.048E+00,
           , YES,
C, AC-228
                                                                    0.260
                                                   6.810E+00,,
                                    4.073E+00,
            , YES,
                     1.769E+00,
C, TH-228
                                                                    0.262
                                                   1.387E+01,,
                                    7.861E+00,
                     3.630E+00,
C, TH-232
            ,YES,
                                                   3.392E+01,,
                                                                   -0.225
                                    2.042E+01,
                    -7.629E+00,
            , NO
C, BE-7
                                                   4.150E+01,,
                                                                   -0.150
                                    2.465E+01,
                    -6.224E+00,
            , NO
C, CR-51
                                                                    -0.044
                                                   3.372E+00,,
                                    1.977E+00,
                    -1.500E-01,
            , NO
C, MN-54
                                                                   -0.420
                                                   3.995E+00,,
                                    2.414E+00,
                    -1.680E+00,
            , NO
C, CO-57
                                                                    -0.070
                                                   3.870E+00,,
                                    2.276E+00,
                    -2.707E-01,
C,CO-58
            , NO
                                                                     0.049
                                                   7.488E+00,,
                                    4.273E+00,
                     3.641E-01,
            , NO
C, FE-59
                                                   3.535E+00,,
                                                                    -0.067
                                    2.051E+00,
                    -2.356E-01,
            , NO
C, CO-60
                                                                     0.495
                                                   7.974E+00,,
                                    4.377E+00,
                     3.951E+00,
            , NO
C, ZN-65
                                                                     0.218
                                                   5.296E+00,,
                                    3.086E+00,
                     1.156E+00,
            , NO
C, SE-75
                                                                     2.771
                                                   5.148E+00,,
                                    2.658E+00,
                     1.426E+01,
            , NO
C,SR-85
                                                                    -0.222
                                                   3.961E+00,,
                                    2.316E+00,
                    -8.805E-01,
C, Y-88
            , NO
                                                                    -0.234
                                                    3.440E+00,,
                                    2.043E+00,
                    -8.037E-01,
            , NO
C, NB-94
                                                                     0.089
                                                    3.897E+00,,
                                    2.258E+00,
                     3.485E-01,
            , NO
C, NB-95
                                                                    -0.079
                                                    7.036E+00,,
                                    4.135E+00,
                    -5.569E-01,
            , NO
C, ZR-95
                                                                    -0.146
                                                    6.375E+02,,
                                     3.759E+02,
                    -9.279E+01,
            , NO
 C,MO-99
                                                                     0.725
                                                    4.644E+00,,
                                     3.082E+00,
                     3.365E+00,
            , NO
 C, RU-103
                                                                    -0.551
                                                    3.373E+01,,
                                     2.039E+01,
                     -1.858E+01,
 C, RU-106
            , NO
                                                    3.436E+00,,
                                                                     0.030
                                     1.991E+00,
                      1.039E-01,
            , NO
 C, AG-110m
                                                                     0.241
                                                    5.105E+00,,
                                     2.983E+00,
                      1.229E+00,
             , NO
 C, SN-113
                                                                    -1.563
                                                    3.795E+00,,
                                     2.969E+00,
                     -5.930E+00,
             , NO
 C,SB-124
                                                                    -0.131
                                                    1.024E+01,,
                                     6.111E+00,
                     -1.339E+00,
             , NO
 C,SB-125
                                                                    -0.421
                                                    5.047E+01,,
                                     3.073E+01,
                     -2.124E+01,
 C, TE-129M
             , NO
                                                                    -0.250
                                                    1.081E+01,,
                                     6.470E+00,
                     -2.700E+00,
             , NO
 C, I-131
                                                                     0.856
                                                    5.156E+00,,
                                     3.400E+00,
                      4.413E+00,
             , NO
 C, BA-133
                                                                      0.172
                                                    3.660E+00,,
                                     2.487E+00,
                      6.298E-01,
             , NO
 C, CS-134
                                                                      0.017
                                                    6.472E+00,,
                                     3.771E+00,
                      1.109E-01,
             , NO
 C, CS-136
                                                                      0.050
                                                    3.718E+00,,
                                     2.152E+00,
                      1.853E-01,
 C, CS-137
             , NO
                                                                     -0.243
                                                    4.051E+00,,
                                     2.452E+00,
                     -9.864E-01,
 C, CE-139
             , NO
                                                                      0.476
                                                    2.611E+01,,
                                     1.504E+01,
                      1.243E+01,
             , NO
 C, BA-140
                                                                      0.150
                                                    8.025E+00,,
                                     4.461E+00,
                      1.201E+00,
             , NO
 C, LA-140
                                                                      0.556
                                                    8.626E+00,,
                                     5.956E+00,
                      4.798E+00,
             , NO
 C, CE-141
                                                                     -0.469
                                                    3.044E+01,,
                                     2.182E+01,
                     -1.427E+01,
             , NO
 C, CE-144
                                                                     -0.675
                                                    1.135E+01,,
                                     8.257E+00,
                     -7.664E+00,
             ,NO
 C, EU-152
                                                                     -0.510
                                                     8.133E+00,,
                                     4.928E+00,
                     -4.146E+00,
             , NO
 C, EU-154
                                                                      0.090
                                                     9.895E+01,,
                                     6.358E+01,
                      8.888E+00,
             , NO
  C, RA-226
                                                                      0.034
                                                     3.057E+01,,
                                      2.233E+01,
                      1.031E+00,
             ,NO
  C, U-235
                                                                      0.066
                                                     3.943E+02,,
                       2.603E+01,
                                      2.409E+02,
             , NO
  C, U-238
                                                     2.130E+01,,
                                                                      1.340
                                      1.438E+01,
                       2.853E+01,
              ,NO ,
```

C, AM-241

LIMS: Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 8-JUN-2006 14:39:41.06 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 8-JUN-2006 12:14:05.20 ______

LIMS No., Customer Name, Client ID: WG L28821-3 DRESDEN

Smple Date: 30-MAY-2006 13:50:00. : 07L28821-3 Sample ID

Geometry : 0735L090904 Sample Type : WG BKGFILE : 07BG060306MT : 3.52840E+00 L Start Channel: 40 Energy Tol: 1.00000 Real Time: 0 02:25:27.59

End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 02:25:25.83 MDA Constant: 0.00 Library Used: LIBD

Pk It	Ener	gy Area	ı Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 1 2 1 3 1 4 1 5 1	241. 296. 596.	70 54 19 83 78 82 22* 4	136 3 230 2 86 7 64	1.43 7.36 0.88 1.65		1.60E+00 9.95E-01 9.81E-01	6.20E-03 9.48E-03 9.43E-03 5.41E-03	41.4 43.2 24.5 41.3	1.28E+00 3.69E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Summary of Nuclide Activity

Page: 2 Acquisition date : 8-JUN-2006 12:14:05

Sample ID : 07L28821-3

Total number of lines in spectrum

6 5

Number of unidentified lines
Number of lines tentatively identified by NID 16.67% 1

**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted

"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 07L28821-3

Page: 3 Acquisition date : 8-JUN-2006 12:14:05

Samp	le ID :	07L2882I-3	3		•	•			9.T22020	%Eff	Flags
It	Energy	Area	Bkgnd	FWHM	Channel					0 22 2	
1 1 1 1	140.25 241.70 296.19 596.78 609.22 1294.10	97 54 83 82 47 32	247 136 230 86 64 22	1.65	1219 61	474 586 1188 1215	16 17 13 12	1.12E-02 6.20E-03 9.48E-03 9.43E-03 5.41E-03 3.62E-03	82.8 86.4 49.1 82.6	2.09E+00 1.80E+00 1.60E+00 9.95E-01 9.81E-01 5.62E-03	) T ) L L

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

6 Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified by NID 5 16.67% 1 **** There are no nuclides meeting summary criteria ****

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Non-Iden	tified Nuclides				
Munit do	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide  BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124	1.357E+01 -1.245E-03 4.904E+01 1.373E+00 3.298E-01 2.136E+00 -1.966E+00 4.136E+00 -3.309E+00 3.563E+00 -1.033E+00 -1.033E+00 1.929E+01 -2.251E+00 4.276E-02 2.844E+00 -1.314E+00 9.501E+00 6.266E-01 -3.601E+01 8.186E-01 5.835E-01 -3.400E+00	2.907E+01 3.392E-02 4.267E+01 2.993E+01 3.045E+00 3.125E+00 3.172E+00 6.211E+00 3.030E+00 6.492E+00 4.172E+00 3.927E+00 3.927E+00 3.927E+00 3.274E+00 5.813E+00 2.210E+02 3.759E+01 3.123E+00 4.023E+00 8.794E+00	4.859E+01 Half-Life too 8.281E+01 4.994E+01 5.071E+00 5.225E+00 5.005E+00 1.087E+01 4.323E+00 1.123E+01 6.736E+00 7.785E+00 5.127E+00 4.738E+00 5.754E+00 9.278E+00 3.606E+02 6.163E+00 4.764E+01 5.207E+00 6.677E+00 5.624E+00	0.000E+00 short 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.279 0.592 0.028 0.065 0.409 -0.393 0.380 -0.765 0.317 -0.153 2.478 -0.439 0.009 0.494 -0.142 0.026 0.102 -0.756 0.157 0.087 -0.604

CS-137	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.184 -0.141 0.053 -0.052 -1.352 0.251 0.805 0.248 0.416 0.248 0.459 -0.087 -0.858
--------	--------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------

```
3.528E+00,WG L28821-3 DR
                     ,06/08/2006 14:39,05/30/2006 13:50,
A,07L28821-3
                                             ,06/07/2006 09:32,0735L090904
                     ,LIBD
B,07L28821-3
                                                                    0.279
                                                   4.859E+01,,
                     1.357E+01,
                                    2.907E+01,
           , NO
C, BE-7
                                                                    0.592
                                                   8.281E+01,,
           ,NO
                                    4.267E+01,
                     4.904E+01,
C, K-40
                                                                     0.028
                                                   4.994E+01,,
                     1.373E+00,
                                    2.993E+01,
           ,NO
C, CR-51
                                                                     0.065
                                    3.045E+00,
                                                   5.071E+00,,
           ,NO
                     3.298E-01,
C, MN-54
                                                   5.225E+00,,
                                                                     0.409
                                    3.125E+00,
                     2.136E+00,
            , NO
C, CO-57
                                                   5.005E+00,,
                                                                   -0.393
                                    3.172E+00,
                    -1.966E+00,
C, CO-58
            , NO
                                                                     0.380
                                                   1.087E+01,,
                     4.136E+00,
                                    6.211E+00,
            , NO
C, FE-59
                                                                    -0.765
                                                   4.323E+00,,
                                    3.030E+00,
                    -3.309E+00,
C, CO-60
            , NO
                                                                     0.317
                                                   1.123E+01,,
                                    6.492E+00,
            , NO
                     3.563E+00,
C, ZN-65
                                                                    -0.153
                                                   6.736E+00,,
                                    4.172E+00,
                    -1.033E+00,
C, SE-75
            , NO
                                                   7.785E+00,,
                                                                     2.478
                                    3.927E+00,
            , NO
                     1.929E+01,
C,SR-85
                                                                    -0.439
                                                   5.127E+00,,
                    -2.251E+00,
                                    3.382E+00,
            , NO
C, Y-88
                                                                     0.009
                                                   4.738E+00,,
                     4.276E-02,
                                    2.900E+00,
C, NB-94
            , NO
                                                   5.754E+00,,
                                                                     0.494
                     2.844E+00,
                                    3.274E+00,
C, NB-95
            , NO
                                                                    -0.142
                                                   9.278E+00,,
                                    5.813E+00,
            , NO
                    -1.314E+00,
C, ZR-95
                                                                     0.026
                                                   3.606E+02,,
                                    2.210E+02,
                     9.501E+00,
C, MO-99
            , NO
                                                                     0.102
                                                   6.163E+00,,
                                    3.759E+00,
                     6.266E-01,
            , NO
C, RU-103
                                                                    -0.756
                                                   4.764E+01,,
                                    3.219E+01,
                    -3.601E+01,
            , NO
C, RU-106
                                                                     0.157
                                    3.123E+00,
                                                   5.207E+00,,
                     8.186E-01,
            ,NO
C, AG-110m
                                                                     0.087
                                                   6.677E+00,,
                     5.835E-01,
                                    4.023E+00,
            , NO
C, SN-113
                                                                    -0.604
                                    8.794E+00,
                                                   5.624E+00,,
            , NO
                    -3.400E+00,
C,SB-124
                                                                     0.329
                                                    1.480E+01,,
                                     8.763E+00,
            , NO
                     4.873E+00,
C,SB-125
                                                    6.442E+01,,
                                                                    -0.484
                                     4.130E+01,
                    -3.117E+01,
C, TE-129M
            , NO
                                                                    -0.025
                                     6.518E+00,
                                                    1.076E+01,,
                    -2.642E-01,
            , NO
C, I-131
                                                                     0.811
                                                    7.884E+00,,
                                     4.485E+00,
                     6.393E+00,
            , NO
C, BA-133
                                                                     2.018
                                                    6.095E+00,,
                                     5.489E+00,
                     1.230E+01,
C, CS-134
            , NO
                                                                     0.055
                                                    7.669E+00,,
                                     4.603E+00,
                      4.193E-01,
            , NO
C, CS-136
                                                                    -0.253
                                                    5.333E+00,,
                                     3.348E+00,
                    -1.350E+00,
 C, CS-137
            , NO
                                                                     0.573
                                                    5.312E+00,,
                                     3.083E+00,
                      3.042E+00,
 C, CE-139
            , NO
                                                                    -0.184
                                                    2.603E+01,,
                                     1.599E+01,
                     -4.788E+00,
 C, BA-140
            , NO
                                                    8.854E+00,,
                                                                    -0.141
                                     5.529E+00,
                     -1.246E+00,
            , NO
 C, LA-140
                                                                     0.053
                                                    9.497E+00,,
                                     6.858E+00,
                      5.071E-01,
             , NO
 C, CE-141
                                                                    -0.052
                                                    3.847E+01,,
                                     2.787E+01,
             , NO
                     -2.019E+00,
 C, CE-144
                                                    1.548E+01,,
                                                                    -1.352
                                     1.027E+01,
                     -2.092E+01,
             ,NO
 C, EU-152
                                                                     0.251
                                                    1.072E+01,,
                                     6.468E+00,
                      2.687E+00,
 C, EU-154
             , NO
                                                    1.378E+02,,
                                                                      0.805
                      1.110E+02,
                                     7.866E+01,
             , NO
 C, RA-226
                                                                      0.248
                                                    2.032E+01,,
                                     1.192E+01,
             , NO
                      5.038E+00,
 C, AC-228
                                                                      0.416
                                                    1.019E+01,,
                                     6.790E+00,
                      4.236E+00,
             , NO
 C, TH-228
                                                                      0.248
                                     1.188E+01,
                                                    2.026E+01,,
                      5.023E+00,
 C, TH-232
             , NO
                                                                      0.459
                                                    3.794E+01,,
                                     2.655E+01,
                      1.740E+01,
 C, U-235
             , NO
                                                                     -0.087
                                                    5.823E+02,,
                                     3.610E+02,
             , NO
                     -5.083E+01,
 C, U-238
                                                                     -0.858
                                                    4.614E+01,,
```

3.010E+01,

-3.956E+01,

, NO

C, AM-241

LIMS: Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 8-JUN-2006 18:25:45.18

TBE07 P-10768B HpGe ****** Aquisition Date/Time: 8-JUN-2006 12:14:05.20 

LIMS No., Customer Name, Client ID: WG L28821-3 DRESDEN

Smple Date: 30-MAY-2006 13:50:00. : 07L28821-3

Geometry : 0735L090904 Sample ID BKGFILE : 07BG060306MT Sample Type : WG Energy Tol : 1.00000 Real Time : 0 02:25:27.59 : 3.52840E+00 L Quantity Pk Srch Sens: 5.00000 Live time: 0 02:25:25.83 Start Channel: 40

End Channel : 4090 Library Used: LIBD MDA Constant : 0.00

Fit Cts/Sec %Err %Eff FWHM Channel Bkgnd Area Energy Pk It 2.09E+00 1.12E-02 33.3 2.35E+00 1.58 281.18 1.80E+00 6.20E-03 41.4 1.28E+00 247 97 140.25* 1 1.43 484.24 1.60E+00 9.48E-03 43.2 3.69E+00 136 54 241.70 2 1 7.36 593.27 9.95E-01 9.43E-03 24.5 1.84E+01 230 83 296.19 1 3 86 0.88 1194.73 9.81E-01 5.41E-03 41.3 1.44E+00 82 596.78 1 1.65 1219.61 5.62E-01 3.62E-03 35.5 1.97E+00 64 47 609.22* 5 1 5.99 2589.33 22 32 1294.10 1

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Summary of Nuclide Activity Sample ID : 07L28821-3

Page: 2 Acquisition date: 8-JUN-2006 12:14:05

Total number of lines in spectrum Number of unidentified lines 6 5 Number of lines tentatively identified by NID 1 16.67% **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found

"E" = Manually edited

"M" = Manually accepted "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 07L28821-3 Page: 3
Acquisition date: 8-JUN-2006 12:14:05

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1	140.25 241.70 296.19 596.78 609.22 1294.10	97 54 83 82 47 32	136 230 86 64	1.65	593.27 1194.73 1219.61	474 586 1188 1215	16 17 13 12	6.20E-03 9.48E-03 9.43E-03 5.41E-03	82.8 86.4 49.1 82.6	2.09E+00 1.80E+00 1.60E+00 9.95E-01 9.81E-01 5.62E-01	Т

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 6
Number of unidentified lines 5
Number of lines tentatively identified by NID 1 16.67%
**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	1.357E+01	2.907E+01	4.859E+01	0.000E+00	0.279
NA-24	-1.245E-03	3.392E-02	Half-Life		
K-40	4.904E+01	4.267E+01	8.281E+01	0.000E+00	0.592
CR-51	1.373E+00	2.993E+01	4.994E+01	0.000E+00	0.028
MN-54	3.298E-01	3.045E+00	5.071E+00	0.000E+00	0.065
CO-57	2.136E+00	3.125E+00	5.225E+00	0.000E+00	0.409
CO-58	-1.966E+00	3.172E+00	5.005E+00	0.000E+00	-0.393
FE-59	4.136E+00	6.211E+00	1.087E+01	0.000E+00	0.380
CO-60	-3.309E+00	3.030E+00	4.323E+00	0.000E+00	-0.765
ZN-65	3.563E+00	6.492E+00	1.123E+01	0.000E+00	0.317
SE-75	-1.033E+00	4.172E+00	6.736E+00	0.000E+00	-0.153
SR-85	1.929E+01	3.927E+00	7.785E+00	0.000E+00	2.478
Y-88	-2.251E+00	3.382E+00	5.127E+00	0.000E+00	-0.439
NB-94	4.276E-02	2.900E+00	4.738E+00	0.000E+00	0.009
NB-95	2.844E+00	3.274E+00	5.754E+00	0.000E+00	0.494
ZR-95	-1.314E+00	5.813E+00	9.278E+00	0.000E+00	-0.142
MO-99	9.501E+00	2.210E+02	3.606E+02	0.000E+00	0.026
RU-103	6.266E-01	3.759E+00	6.163E+00	0.000E+00	0.102
RU-106	-3.601E+01	3.219E+01	4.764E+01	0.000E+00	-0.756
AG-110m	8.186E-01	3.123E+00	5.207E+00	0.000E+00	0.157
SN-113	5.835E-01	4.023E+00	6.677E+00	0.000E+00	0.087
SB-124	-3.400E+00	8.794E+00	5.624E+00	0.000E+00	-0.604

SB-125       4.873E+00       8.763E+00         TE-129M       -3.117E+01       4.130E+01         I-131       -2.642E-01       6.518E+00         BA-133       6.393E+00       4.485E+00         CS-134       1.230E+01       5.489E+00         CS-136       4.193E-01       4.603E+00         CS-137       -1.350E+00       3.348E+00         CE-139       3.042E+00       3.083E+00         BA-140       -4.788E+00       1.599E+01         LA-140       -1.246E+00       5.529E+00         CE-141       5.071E-01       6.858E+00         CE-144       -2.019E+00       2.787E+01         EU-152       2.092E+01       1.027E+01         EU-154       2.687E+00       6.468E+00         RA-226       1.110E+02       7.866E+01         AC-228       5.038E+00       1.192E+01         TH-232       5.023E+00       1.188E+01         U-235       1.740E+01       2.655E+01         U-238       -5.083E+01       3.610E+02         AM-241       -3.956E+01       3.010E+01	1.480E+01 6.442E+01 1.076E+01 7.884E+00 6.095E+00 7.669E+00 5.333E+00 2.603E+01 8.854E+00 9.497E+00 3.847E+01 1.548E+01 1.072E+01 1.378E+02 2.032E+01 1.019E+01 2.026E+01 3.794E+01 5.823E+02 4.614E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.484 -0.025 0.811 2.018 0.055 -0.253 0.573 -0.184 -0.141 0.053 -0.052 -1.352 0.251 0.805 0.248 0.416 0.248 0.459 -0.087 -0.858
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------

```
3.528E+00,WG L28821-3 DR
                     ,06/08/2006 18:25,05/30/2006 13:50,
A,07L28821-3
                                             ,06/07/2006 09:32,0735L090904
                     ,LIBD
B,07L28821-3
                                                                     0.279
                                                   4.859E+01,,
                                    2.907E+01,
                     1.357E+01,
           , NO
C, BE-7
                                                                     0.592
                                                   8.281E+01,,
                                    4.267E+01,
                     4.904E+01,
           , NO
C, K-40
                                                                     0.028
                                                   4.994E+01,,
                                    2.993E+01,
                     1.373E+00,
C, CR-51
            , NO
                                                                     0.065
                                                   5.071E+00,,
                                    3.045E+00,
                     3.298E-01,
            , NO
C, MN-54
                                                                     0.409
                                                   5.225E+00,,
                                    3.125E+00,
            , NO
                     2.136E+00,
C, CO-57
                                                                    -0.393
                                                   5.005E+00,,
                                    3.172E+00,
                    -1.966E+00,
            , NO
C, CO-58
                                                                     0.380
                                                   1.087E+01,,
                                    6.211E+00,
                     4.136E+00,
            , NO
C, FE-59
                                                                    -0.765
                                                   4.323E+00,,
                                    3.030E+00,
                    -3.309E+00,
            , NO
C,CO-60
                                                                     0.317
                                                   1.123E+01,,
                                    6.492E+00,
                     3.563E+00,
C, ZN-65
            , NO
                                                                    -0.153
                                                   6.736E+00,,
                                    4.172E+00,
                    -1.033E+00,
            ,NO
C, SE-75
                                                                     2.478
                                                   7.785E+00,,
                                    3.927E+00,
                     1.929E+01,
            , NO
C, SR-85
                                                                    -0.439
                                                   5.127E+00,,
                                    3.382E+00,
                    -2.251E+00,
            , NO
C, Y-88
                                                                     0.009
                                                   4.738E+00,,
                                    2.900E+00,
                     4.276E-02,
            , NO
C, NB-94
                                                                     0.494
                                                   5.754E+00,,
                                    3.274E+00,
                     2.844E+00,
            , NO
C, NB-95
                                                                    -0.142
                                    5.813E+00,
                                                    9.278E+00,,
                    -1.314E+00,
            , NO
C, ZR-95
                                                                     0.026
                                                    3.606E+02,,
                                     2.210E+02,
                     9.501E+00,
            , NO
C, MO-99
                                                                     0.102
                                                    6.163E+00,,
                                     3.759E+00,
                     6.266E-01,
C, RU-103
            , NO
                                                                    -0.756
                                                    4.764E+01,,
                                     3.219E+01,
                    -3.601E+01,
            , NO
C, RU-106
                                                                     0.157
                                                    5.207E+00,,
                                     3.123E+00,
                      8.186E-01,
            , NO
C, AG-110m
                                                                     0.087
                                                    6.677E+00,,
                                     4.023E+00,
            , NO
                      5.835E-01,
 C, SN-113
                                                    5.624E+00,,
                                                                    -0.604
                                     8.794E+00,
                     -3.400E+00,
            , NO
 C,SB-124
                                                                     0.329
                                                    1.480E+01,,
                                     8.763E+00,
                      4.873E+00,
             , NO
 C,SB-125
                                                                    -0.484
                                                    6.442E+01,,
                                     4.130E+01,
                     -3.117E+01,
            , NO
 C, TE-129M
                                                                    -0.025
                                                    1.076E+01,,
                                     6.518E+00,
                     -2.642E-01,
             , NO
 C, I-131
                                                                      0.811
                                                    7.884E+00,,
                                     4.485E+00,
                      6.393E+00,
             , NO
 C, BA-133
                                                                      2.018
                                                    6.095E+00,,
                                     5.489E+00,
                      1.230E+01,
             ,NO
 C, CS-134
                                                                      0.055
                                                    7.669E+00,,
                                     4.603E+00,
                      4.193E-01,
             ,NO
 C, CS-136
                                                                     -0.253
                                                    5.333E+00,,
                                     3.348E+00,
                     -1.350E+00,
             , NO
 C, CS-137
                                                                      0.573
                                                    5.312E+00,,
                                     3.083E+00,
                      3.042E+00,
             , NO
 C, CE-139
                                                                     -0.184
                                                    2.603E+01,,
                                     1.599E+01,
                     -4.788E+00,
             , NO
 C, BA-140
                                                                     -0.141
                                                    8.854E+00,,
                                     5.529E+00,
                     -1.246E+00,
             , NO
 C, LA-140
                                                    9.497E+00,,
                                                                      0.053
                                     6.858E+00,
                      5.071E-01,
             , NO
 C, CE-141
                                                                     -0.052
                                                    3.847E+01,,
                                     2.787E+01,
                     -2.019E+00,
             , NO
 C, CE-144
                                                                     -1.352
                                                    1.548E+01,,
                                     1.027E+01,
                     -2.092E+01,
             , NO
 C, EU-152
                                                                      0.251
                                                    1.072E+01,,
                                     6.468E+00,
                      2.687E+00,
             ,NO
 C, EU-154
                                                                      0.805
                                                     1.378E+02,,
                                     7.866E+01,
                      1.110E+02,
             , NO
 C, RA-226
                                                                      0.248
                                                     2.032E+01,,
                                      1.192E+01,
                      5.038E+00,
 C, AC-228
             , NO
                                                                      0.416
                                                     1.019E+01,,
                                      6.790E+00,
                      4.236E+00,
  C, TH-228
             , NO
                                                                      0.248
                                                     2.026E+01,,
                                      1.188E+01,
                      5.023E+00,
             , NO
  C, TH-232
                                                                      0.459
                                                     3.794E+01,,
                                      2.655E+01,
                       1.740E+01,
             , NO
  C, U-235
                                                                     -0.087
                                                     5.823E+02,,
                                      3.610E+02,
                      -5.083E+01,
             , NO
  C, U-238
                                                                     -0.858
                                                     4.614E+01,,
                                      3.010E+01,
                      -3.956E+01,
  C, AM-241
             ,NO,
```

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 8-JUN-2006 17:56:31.58 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 8-JUN-2006 14:48:24.56 

LIMS No., Customer Name, Client ID: WG L28821-4 DRESDEN

Smple Date: 30-MAY-2006 15:50:00.

Sample ID : 04L28821-4 Geometry : 0435L090804 Sample Type : WG BKGFILE : 04BG060306MT

Quantity : 3.52240E+00 L Start Channel: 90 Energy Tol: 1.00000 Real Time: 0 03:07:59.53 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 03:07:57.58
MDA Constant : 0.00 Library Used: LIBD

Pk It	: E	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 1 2 3 4 5 6 7 8 9 10	L L : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	66.33* 139.82 186.68 198.35* 238.54* 294.67 352.03* 582.95* 596.13 608.90* 968.66	32 89 101 44 6 76 15 6 51 39 29 41 42	301 351 199 186 170 136 167 65 82 70 33 12	0.91 1.34 2.23 1.46 1.10 2.21 1.55 1.62 2.19 2.39 6.30 3.33	1218.03 1937.25 2322.12	1.82E+00 1.72E+00 1.68E+00 1.52E+00	1.32E-03 5.27E-04 4.52E-03 3.44E-03 2.55E-03 3.60E-03	42.6 28.2 62.9 426.8 31.1 187.6 283.0 36.9 54.0 50.1 20.7	2.48E+00 6.56E-01 3.77E+00 2.03E+00 2.91E+00 1.54E+00 1.06E+00 1.41E+00 3.30E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide '	Type: natura	ıl			Uncorrected Decay Corr	2-Sigma %Error
Nuclide K-40 RA-226 TH-228	Energy 1460.81 186.21 238.63	Area 42 101 6	%Abn 10.67* 3.28* 44.60* 3.95	%Eff 3.920E-01 1.723E+00 1.521E+00 1.511E+00	Line Not Four	67.56 2 56.36 L 853.62 ad
TH-232	240.98 583.14 911.07 969.11	6  29	30.25 27.70* 16.60	7.995E-01 5.657E-01 5.391E-01	1.674E+00 1.674E+00 Line Not Four 2.184E+01 2.184E+01	nd 1 100.29
U-235	143.76 163.35 185.71 205.31	101	10.50* 4.70 54.00 4.70	1.822E+00 1.796E+00 1.723E+00 1.652E+00	7.376E+00 7.376E+0	nd 0 56.36

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID: 04L28821-4 Acquisition date : 8-JUN-2006 14:48:24

13 Total number of lines in spectrum Number of unidentified lines 8

Number of lines tentatively identified by NID 5 38.46%

Nuclide Type : natural

RA-226 TH-228 TH-232	Hlife 1.28E+09Y 1600.00Y 1.91Y 1.41E+10Y 7.04E+08Y	Decay 1.00 1.00 1.01 1.00	pCi/L 6.822E+01 1.214E+02 5.765E-01 1.674E+00	Decay Corr pCi/L 6.822E+01 1.214E+02 5.817E-01 1.674E+00 7.376E+00	2-Sigma Error 4.609E+01 0.684E+02 49.65E-01	2-Sigma %Error 67.56 56.36 853.62 566.06 56.36	Flags K
U-235	7.04E+08Y	1.00	7.370B+00				

Total Activity: 1.993E+02 1.993E+02

Grand Total Activity: 1.993E+02 1.993E+02

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 04L28821-4

Page: 3 Acquisition date : 8-JUN-2006 14:48:24

Samp	le ID : (	04128821-4	±			•				077.5	Flags
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	riags
1 1 1 1 1 1	66.33 139.82 198.35 294.67 352.03 596.13 608.90 1161.19	32 89 44 76 15 51 39	301 351 186 136 167 82 70 12	0.91 1.34 1.46 2.21 1.55 1.62 2.19 6.30	1218 03	394 585 700 1186 1213	11 8 10 12 11	7.85E-03	**** 62.2 **** 73.9 ****	6.48E-0 1.82E+0 1.68E+0 1.32E+0 1.17E+0 7.86E-0 7.73E-0 4.67E-0	0 0 0 0 1 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

13 Total number of lines in spectrum Number of unidentified lines 8 Number of lines tentatively identified by NID 5 38.46%

Nuclide Type : natural

Nuclide	Type : natural	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr 2-Sigma Error	2-Sigma %Error Flags
Nuclide K-40 RA-226 TH-228 TH-232	Hlife Decay 1.28E+09Y 1.00 1600.00Y 1.00 1.91Y 1.01 1.41E+10Y 1.00 Total Activity	6.822E+01 1.214E+02 5.765E-01 4.851E+00	pCi/L 6.822E+01 1.214E+02 5.817E-01 4.851E+00  1.951E+02	4.609E+01 0.684E+02 49.65E-01 8.695E+00	67.56 56.36 853.62 179.22

1.951E+02 Grand Total Activity : 1.951E+02

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

# ---- Identified Nuclides ----

Identi.	ried Nacriaco				Act/MDA
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	ACC/ PIDIT
K-40 RA-226 TH-228 TH-232	6.822E+01 1.214E+02 5.817E-01 4.851E+00	4.609E+01 6.844E+01 4.965E+00 8.695E+00	4.123E+01 1.128E+02 8.392E+00 2.017E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	1.655 1.076 0.069 0.241

---- Non-Identified Nuclides ----

Key-Line

Nuclide	Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
NUCLIUS	· <u>-</u>		4.061E+01	0.000E+00	-0.320
BE-7	-1.300E+01	2.537E+01	Half-Life too		
NA-24	-2.937E-02	3.593E-02	5.008E+01	0.000E+00	-0.371
CR-51	-1.858E+01	3.126E+01	5.165E+00	0.000E+00	0.369
MN-54	1.907E+00	3.020E+00	4.463E+00	0.000E+00	-0.122
CO-57	-5.426E-01	2.683E+00	4.964E+00	0.000E+00	-0.232
CO-58	-1.154E+00	3.128E+00	1.126E+01	0.000E+00	0.395
FE-59	4.446E+00	6.497E+00	5.774E+00	0.000E+00	-0.071
CO-60	-4.097E-01	3.579E+00	1.161E+01	0.000E+00	0.474
ZN-65	5.502E+00	6.635E+00	6.474E+00	0.000E+00	-0.625
SE-75	-4.043E+00	4.053E+00	7.633E+00	0.000E+00	2.299
SR-85	1.755E+01	3.940E+00	6.131E+00	0.000E+00	0.186
Y-88	1.139E+00	3.612E+00	4.916E+00	0.000E+00	0.142
NB-94	6.983E-01	2.930E+00	5.357E+00	0.000E+00	0.200
NB-95	1.072E+00	3.185E+00	8.520E+00	0.000E+00	-0.586
ZR-95	-4.995E+00	5.570E+00	3.370E+02	0.000E+00	-0.209
MO-99	-7.060E+01	2.100E+02	5.701E+00	0.000E+00	0.244
RU-103	1.391E+00	3.378E+00	4.388E+01	0.000E+00	-0.215
RU-106	-9.418E+00	2.861E+01 3.015E+00	4.959E+00	0.000E+00	-0.087
AG-110m	-4.334E-01	3.015E+00 3.911E+00	6.255E+00	0.000E+00	-0.181
SN-113	-1.131E+00	4.751E+00	5.372E+00	0.000E+00	1.647
SB-124	8.845E+00	7.875E+00	1.285E+01	0.000E+00	-0.213
SB-125	-2.735E+00	3.818E+01	6.339E+01	0.000E+00	0.021
TE-129M	1.341E+00	6.318E+00	1.007E+01	0.000E+00	-0.280
I-131	-2.818E+00	4.475E+00	6.820E+00	0.000E+00	0.865
BA-133	5.897E+00	4.475E+00 4.728E+00	5.588E+00	0.000E+00	1.111
CS-134	6.209E+00	4.447E+00	7.006E+00	0.000E+00	-0.271
CS-136	-1.900E+00	3.189E+00	5.377E+00	0.000E+00	0.143
CS-137	7.714E-01	2.934E+00	4.685E+00	0.000E+00	-0.604
CE-139	-2.828E+00	1.627E+01	2.643E+01	0.000E+00	-0.089
BA-140	-2.348E+00	5.108E+00	9.256E+00	0.000E+00	0.456
LA-140	4.219E+00	6.410E+00	9.103E+00	0.000E+00	-0.003
CE-141	-2.771E-02	2.465E+01	3.609E+01	0.000E+00	0.372
CE-144	1.344E+01	1.093E+01	1.451E+01	0.000E+00	-0.846
EU-152	-1.227E+01	5.603E+00	9.348E+00	0.000E+00	-0.060
EU-154	-5.565E-01	1.247E+01	2.023E+01	0.000E+00	-0.181
AC-228	-3.652E+00	2.434E+01	3.506E+01	0.000E+00	0.189
U-235	6.627E+00	3.282E+02	5.927E+02	0.000E+00	0.654
U-238	3.875E+02	2.626E+01	3.941E+01	0.000E+00	-0.868
AM-241	-3.420E+01	2.0201101	-		

```
3.522E+00,WG L28821-4 DR
                     ,06/08/2006 17:56,05/30/2006 15:50,
A,04L28821-4
                                             ,06/02/2006 09:04,0435L090804
                     ,LIBD
B,04L28821-4
                                                                    1.655
                                                   4.123E+01,,
                                    4.609E+01,
                     6.822E+01,
           , YES,
C, K-40
                                                                    1.076
                                                   1.128E+02,,
                                    6.844E+01,
           , YES,
                     1.214E+02,
C, RA-226
                                                                     0.069
                                                   8.392E+00,,
                                    4.965E+00,
                     5.817E-01,
            ,YES,
C, TH-228
                                                                     0.241
                                                   2.017E+01,,
                                    8.695E+00,
                     4.851E+00,
            , YES,
C, TH-232
                                                                    -0.320
                                                   4.061E+01,,
                                    2.537E+01,
                    -1.300E+01,
            , NO
C, BE-7
                                                                    -0.371
                                                   5.008E+01,,
                                    3.126E+01,
                    -1.858E+01,
C, CR-51
            , NO
                                                                     0.369
                                                   5.165E+00,,
                                    3.020E+00,
            , NO
                     1.907E+00,
C, MN-54
                                                                    -0.122
                                                   4.463E+00,,
                                    2.683E+00,
                    -5.426E-01,
            ,NO
C, CO-57
                                                                    -0.232
                                                   4.964E+00,,
                    -1.154E+00,
                                    3.128E+00,
C, CO-58
            , NO
                                                                     0.395
                                                   1.126E+01,,
                                    6.497E+00,
                     4.446E+00,
            , NO
C, FE-59
                                                                    -0.071
                                                    5.774E+00,,
                                    3.579E+00,
                    -4.097E-01,
            , NO
C, CO-60
                                                                     0.474
                                                    1.161E+01,,
                                    6.635E+00,
                     5.502E+00,
            , NO
C, ZN-65
                                                                    -0.625
                                                    6.474E+00,,
                                    4.053E+00,
                    -4.043E+00,
            , NO
C, SE-75
                                                    7.633E+00,,
                                                                     2.299
                                     3.940E+00,
                     1.755E+01,
C, SR-85
            , NO
                                                                     0.186
                                                    6.131E+00,,
                                     3.612E+00,
                     1.139E+00,
            , NO
 C, Y-88
                                                                     0.142
                                                    4.916E+00,,
                                     2.930E+00,
                     6.983E-01,
            , NO
 C, NB-94
                                                                     0.200
                                                    5.357E+00,,
                                     3.185E+00,
                     1.072E+00,
            , NO
 C, NB-95
                                                                    -0.586
                                                    8.520E+00,,
                                     5.570E+00,
                    -4.995E+00,
            , NO
 C, ZR-95
                                                                    -0.209
                                                    3.370E+02,,
                                     2.100E+02,
                     -7.060E+01,
            , NO
 C, MO-99
                                                                     0.244
                                                    5.701E+00,,
                      1.391E+00,
                                     3.378E+00,
            , NO
 C, RU-103
                                                                    -0.215
                                                    4.388E+01,,
                                     2.861E+01,
                     -9.418E+00,
             , NO
 C, RU-106
                                                                    -0.087
                                                    4.959E+00,,
                                     3.015E+00,
                     -4.334E-01,
            , NO
 C, AG-110m
                                                                    -0.181
                                                    6.255E+00,,
                                     3.911E+00,
                     -1.131E+00,
 C, SN-113
             , NO
                                                                      1.647
                                                    5.372E+00,,
                                     4.751E+00,
                      8.845E+00,
             , NO
 C,SB-124
                                                                    -0.213
                                                    1.285E+01,,
                     -2.735E+00,
                                     7.875E+00,
 C,SB-125
             , NO
                                                                      0.021
                                                    6.339E+01,,
                                     3.818E+01,
                      1.341E+00,
             , NO
 C, TE-129M
                                                                     -0.280
                                                    1.007E+01,,
                                     6.318E+00,
             ,NO
                     -2.818E+00,
 C, I-131
                                                                      0.865
                                                    6.820E+00,,
                                     4.475E+00,
                      5.897E+00,
             , NO
 C, BA-133
                                                                      1.111
                                                    5.588E+00,,
                                     4.728E+00,
                      6.209E+00,
             , NO
 C, CS-134
                                                    7.006E+00,,
                                                                     -0.271
                                     4.447E+00,
                     -1.900E+00,
 C, CS-136
             ,NO
                                                                      0.143
                                                    5.377E+00,,
                                     3.189E+00,
                      7.714E-01,
             ,NO
 C, CS-137
                                                                     -0.604
                                     2.934E+00,
                                                    4.685E+00,,
                     -2.828E+00,
             , NO
 C,CE-139
                                                                     -0.089
                                                    2.643E+01,,
                                     1.627E+01,
             , NO
                     -2.348E+00,
 C,BA-140
                                                                      0.456
                                                    9.256E+00,,
                                     5.108E+00,
                      4.219E+00,
             ,NO
 C, LA-140
                                                                     -0.003
                                                     9.103E+00,,
                                     6.410E+00,
                     -2.771E-02,
 C, CE-141
             , NO
                                                                      0.372
                                                     3.609E+01,,
                                     2.465E+01,
                      1.344E+01,
 C, CE-144
             , NO
                                                                     -0.846
                                                     1.451E+01,,
                                     1.093E+01,
                     -1.227E+01,
             , NO
  C, EU-152
                                                                     -0.060
                                                     9.348E+00,,
                                      5.603E+00,
                     -5.565E-01,
             , NO
  C, EU-154
                                                                     -0.181
                                                     2.023E+01,,
                                      1.247E+01,
                     -3.652E+00,
  C, AC-228
              , NO
                                                                      0.189
                                                     3.506E+01,,
                                      2.434E+01,
                      6.627E+00,
  C, U-235
              , NO
                                                                      0.654
                                                     5.927E+02,,
                                      3.282E+02,
              , NO
                       3.875E+02,
  C, U-238
                                                                     -0.868
                                                     3.941E+01,,
```

2.626E+01,

-3.420E+01,

,NO ,

C, AM-241

Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 8-JUN-2006 17:52:03.07 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 8-JUN-2006 14:48:32.10

LIMS No., Customer Name, Client ID: WG L28821-5 DRESDEN

Smple Date: 25-MAY-2006 10:15:00. : 07L28821-5 Sample ID

Geometry : 0735L090904 Sample Type : WG BKGFILE : 07BG060306MT Quantity : 3.63310E+00 L

End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 03:03:24.89 MDA Constant: 0.00 Library Used: LIBD

Pk It	Energy	Area	Bkgnd	FWHM Channel	%Eff	Cts/Sec	%Err	Fit
1 1 2 1 3 1 4 1	66.39* 139.98* 596.20 609.14*	84 85 70 43	333	1.52 133.36 1.12 280.65 2.54 1193.56 1.59 1219.47	2.09E+00 9.96E-01	7.69E-03 6.35E-03	43.7	9.95E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Summary of Nuclide Activity Sample ID : 07L28821-5

Page: 2 Acquisition date: 8-JUN-2006 14:48:32

Total number of lines in spectrum

4 4

Number of unidentified lines Number of lines tentatively identified by NID

0.00% 0

**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 07L28821-5

Page: 3 Acquisition date : 8-JUN-2006 14:48:32

тТ.											7
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1	66.39 139.98 596.20 609.14	84 85 70 43	333	1.12	280.65 1193.56	275 1188	10 13	7.61E-03 7.69E-03 6.35E-03 3.88E-03	87.4 59.4	9.96E-01	1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

4 Total number of lines in spectrum Number of unidentified lines 4 Number of lines tentatively identified by NID 0.00% 0 **** There are no nuclides meeting summary criteria ****

"M" = Manually accepted

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manuarry accepted "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Non-Identified Nuclides										
Nuclide	Key-Line Activity K.L. (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA					
BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106	2.612E+00 -2.207E+01 3.620E+01 -2.608E+01 -2.517E-01 8.776E-01 1.535E-01 4.725E+00 1.091E+00 6.318E+00 -1.888E+00 1.970E+01 -4.436E-01 9.322E-01 -6.230E-01 1.024E-01 9.184E+01 -1.301E+00 -1.838E+00	2.609E+01 1.037E+01 3.845E+01 3.062E+01 2.574E+00 2.679E+00 2.796E+00 6.014E+00 2.855E+00 5.778E+00 3.865E+00 3.576E+00 2.934E+00 2.731E+00 2.688E+00 5.026E+00 7.102E+02 3.419E+00 2.508E+01 2.678E+00	4.271E+01 Half-Life to 7.197E+01 4.922E+01 4.922E+00 4.424E+00 4.647E+00 1.054E+01 4.819E+00 1.031E+01 6.192E+00 7.093E+00 4.775E+00 4.544E+00 4.396E+00 8.173E+00 1.165E+03 5.441E+00 4.108E+01 4.551E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.061 0.503 -0.530 -0.060 0.198 0.033 0.448 0.226 0.613 -0.305 2.778 -0.093 0.205 -0.142 0.013 0.079 -0.239 -0.045 0.365					
AG-110m SN-113 SB-124 SB-125 TE-129M	1.662E+00 -1.012E+00 5.158E+00 2.740E+00 1.473E+01	3.736E+00 5.565E+00 7.813E+00 3.885E+01	6.077E+00 4.869E+00 1.302E+01 6.465E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.166 1.060 0.211 0.228					

```
3.633E+00,WG L28821-5 DR
                     ,06/08/2006 17:52,05/25/2006 10:15,
A,07L28821-5
                                             ,06/07/2006 09:32,0735L090904
                     ,LIBD
B,07L28821-5
                                                                     0.061
                                                   4.271E+01,,
                                    2.609E+01,
                     2.612E+00,
            , NO
C, BE-7
                                                                     0.503
                                                   7.197E+01,,
                                    3.845E+01,
                     3.620E+01,
            , NO
C, K-40
                                                                    -0.530
                                                   4.922E+01,,
                    -2.608E+01,
                                    3.062E+01,
C, CR-51
            , NO
                                                                    -0.060
                                                   4.225E+00,,
                                    2.574E+00,
                    -2.517E-01,
C, MN-54
            , NO
                                                                     0.198
                                                   4.424E+00,,
                                    2.679E+00,
                     8.776E-01,
            , NO
C, CO-57
                                                                     0.033
                                                   4.647E+00,,
                                    2.796E+00,
                     1.535E-01,
            , NO
C,CO-58
                                                                     0.448
                                                   1.054E+01,,
                                    6.014E+00,
                     4.725E+00,
            , NO
C, FE-59
                                                                     0.226
                                                   4.819E+00,,
                                    2.855E+00,
                     1.091E+00,
            ,NO
C,CO-60
                                                                     0.613
                                                   1.031E+01,,
                                    5.778E+00,
                     6.318E+00,
            , NO
C, ZN-65
                                                                    -0.305
                                                   6.192E+00,,
                                    3.865E+00,
                    -1.888E+00,
C, SE-75
            , NO
                                                                     2.778
                                                   7.093E+00,,
                                    3.576E+00,
                     1.970E+01,
            ,NO
C, SR-85
                                                                    -0.093
                                                   4.775E+00,,
                                    2.934E+00,
                    -4.436E-01,
C, Y-88
            , NO
                                                                     0.205
                                                   4.544E+00,,
                                     2.731E+00,
                     9.322E-01,
            , NO
C, NB-94
                                                                    -0.142
                                                    4.396E+00,,
                                     2.688E+00,
                    -6.230E-01,
            , NO
C, NB-95
                                                                     0.013
                                                    8.173E+00,,
                                     5.026E+00,
                     1.024E-01,
            , NO
C, ZR-95
                                                                     0.079
                                                    1.165E+03,,
                                     7.102E+02,
                      9.184E+01,
            , NO
C, MO-99
                                                                    -0.239
                                                    5.441E+00,,
                                     3.419E+00,
                    -1.301E+00,
            , NO
C, RU-103
                                                    4.108E+01,,
                                                                    -0.045
                                     2.508E+01,
                     -1.838E+00,
 C, RU-106
            , NO
                                                                     0.365
                                                    4.551E+00,,
                                     2.678E+00,
                      1.662E+00,
            , NO
 C, AG-110m
                                                                    -0.166
                                                    6.077E+00,,
                                     3.736E+00,
                     -1.012E+00,
            , NO
 C, SN-113
                                                                      1.060
                                     5.565E+00,
                                                    4.869E+00,,
                      5.158E+00,
             , NO
 C,SB-124
                                                                      0.211
                                                    1.302E+01,,
                                     7.813E+00,
                      2.740E+00,
 C,SB-125
             , NO
                                                                      0.228
                                                    6.465E+01,,
                                     3.885E+01,
            , NO
                      1.473E+01,
 C, TE-129M
                                                                      0.075
                                                    1.444E+01,,
                                     8.685E+00,
                      1.088E+00,
             , NO
 C, I-131
                                                                      0.811
                                                    6.434E+00,,
                                     3.673E+00,
                      5.219E+00,
             , NO
 C, BA-133
                                                                      1.920
                                                    4.934E+00,,
                                     4.734E+00,
                      9.473E+00,
             , NO
 C, CS-134
                                                                     -0.406
                                                    8.140E+00,,
                                     5.152E+00,
                     -3.303E+00,
             , NO
 C, CS-136
                                                    4.777E+00,,
                                                                      0.122
                                     2.880E+00,
             , NO
                      5.839E-01,
 C,CS-137
                                                    4.396E+00,,
                                                                     -0.007
                                     2.636E+00,
                     -3.138E-02,
             , NO
 C, CE-139
                                                                     -0.767
                                                    2.863E+01,,
                                     1.854E+01,
                     -2.196E+01,
 C, BA-140
             , NO
                                                                      0.176
                                                    1.123E+01,,
                                     6.651E+00,
             , NO
                      1.976E+00,
 C, LA-140
                                                                      0.353
                                                    9.832E+00,,
                                     6.965E+00,
                      3.474E+00,
             , NO
 C, CE-141
                                                                     -0.185
                                                    3.358E+01,,
                                     2.453E+01,
                     -6.202E+00,
 C, CE-144
             , NO
                                                     1.283E+01,,
                                                                     -1.046
                                      8.305E+00,
                     -1.343E+01,
 C, EU-152
             , NO
                                                                      0.284
                                                     9.090E+00,,
                                      5.483E+00,
                      2.582E+00,
             , NO
 C, EU-154
                                                                     -0.545
                                                     1.068E+02,,
                                      6.577E+01,
                     -5.825E+01,
  C, RA-226
             , NO
                                                                      0.039
                                                     1.709E+01,,
                                      1.041E+01,
                      6.651E-01,
             , NO
  C, AC-228
                                                                      0.189
                                                     8.340E+00,,
                                      4.978E+00,
                       1.579E+00,
             , NO
  C, TH-228
                                                                      0.039
                                                     1.701E+01,,
                                      1.036E+01,
                       6.620E-01,
             ,NO
  C, TH-232
                                                                      0.419
                                                     3.413E+01,,
                                      2.407E+01,
                       1.429E+01,
              , NO
  C, U-235
                                                                     -0.463
                                                     4.323E+02,,
                                      2.813E+02,
                      -2.001E+02,
              , NO
  C, U-238
                                                                     -1.072
                                                     3.793E+01,,
                                      2.722E+01,
                      -4.068E+01,
              ,NO,
```

C, AM-241

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 8-JUN-2006 18:19:33.94 TBE10 12892256 HpGe ******* Aquisition Date/Time: 8-JUN-2006 14:48:38.19 

LIMS No., Customer Name, Client ID: WG L28821-6 DRESDEN

Smple Date: 25-MAY-2006 15:00:00.

Sample ID : 10L28821-6 Geometry : 1035L091004 Sample Type : WG BKGFILE : 10BG060306MT Quantity : 3.63120E+00 L

Start Channel: 80 Energy Tol: 1.00000 Real Time: 0 03:30:43.89 End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 03:30:41.63 MDA Constant: 0.00 Library Used: LIBD

Pk It	Energy	Area	Bkgnd	FWHM Channe	l %Eff	Cts/Sec	%Err	Fit
1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1	66.46* 92.77* 139.47 596.21 609.50* 911.09* 1120.26* 1461.19*	92 7 62 73 42 13 24 27	377 423 285 53 58 37 11 21	1.27 132.0 1.42 184.6 0.89 278.1 1.45 1192.1 1.67 1218.7 2.56 1822.3 2.40 2241.0 2.89 2923.5	1.30E+00 1.68E+00 0 7.06E-01 0 6.94E-01 5.07E-01 4.33E-01	7.26E-03 5.32E-046 4.93E-03 5.80E-03 3.29E-03 1.05E-03 1.87E-03 2.12E-03	501.2 45.0 22.1 49.4 102.5 41.3	7.24E-01 1.63E+00 1.29E+00 1.08E+00 1.79E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natura	al			Uncorrected		2-Sigma
Nuclide K-40 AC-228	Energy 1460.81 835.50 911.07	Area 27  13	1.75	5.422E-01	pCi/L 4.158E+01 Lir 5.578E+00	pCi/L 4.158E+01 ne Not Found 5.604E+00	%Error 114.02  205.09

Flag: "*" = Keyline

Summary of Nuclide Activity

Page: 2 Acquisition date :  $8-JUN-2006\ 1\overline{4}:48:38$ Sample ID : 10L28821-6

6

Total number of lines in spectrum Number of unidentified lines

Number of lines tentatively identified by NID 25.00% 2

Nuclide Type : natural

	1.28E+09Y	Decay 1.00	Uncorrected pCi/L 4.158E+01 5.578E+00	Decay Corr pCi/L 4.158E+01 5.604E+00	DCCG, CC=	2-Sigma %Error Flags 114.02 205.09
AC-228	5.75Y	1.00	5.578E+00	5.6046+00	11.400	20011

Total Activity: 4.716E+01 4.718E+01

Grand Total Activity : 4.716E+01 4.718E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

0.470

-0.687

0.000E+00

0.000E+00

Unidentified Energy Lines Sample ID : 10L28821-6

Page: 3 Acquisition date :  $8-JUN-2006\ 1\overline{4}:48:38$ 

Danie	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-									
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1	66.46 92.77 139.47 596.21 609.50 1120.26	92 7 62 73 42 24	58	1 67	1218 70	180 275 1186 1212	9 6 10 15	7.26E-03 5.32E-04 4.93E-03 5.80E-03 3.29E-03 1.87E-03	**** 90.0 44.3 98.9	7.06E-0 6.94E-0	0 0 1 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

8 Total number of lines in spectrum 6 Number of unidentified lines 25.00% Number of lines tentatively identified by NID 2

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Decay Corr Uncorrected Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Hlife Decay Nuclide 114.02 4.741E+01 4.158E+01 4.158E+01 1.00 K-40 1.28E+09Y 205.09 11.49E+00 5.604E+00 5.578E+00 5.75Y 1.00 AC-228 _____ _____ 4.718E+01 4.716E+01 Total Activity :

Grand Total Activity: 4.716E+01 4.718E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

BE-7

NA-24

CR-51

No interference correction performed

2.694E+01

-7.261E-01

-4.158E+01

Combined Activity-MDA Report

# ---- Identified Nuclides ----

Identii	red Nuclides				_
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 AC-228	4.158E+01 5.604E+00	4.741E+01 1.149E+01	5.186E+01 1.810E+01	0.000E+00 0.000E+00	0.802 0.310
Non-Ide	ntified Nuclides	5			
Nuclide	Key-Line Activity K.L (pCi/L) Ide		MDA (pCi/L)	MDA error	Act/MDA

3.328E+01

1.029E+01

3.843E+01

5.727E+01

6.054E+01

Half-Life too short

Unidentified Energy Lines Sample ID : 10L28821-6 Page: 3
Acquisition date: 8-JUN-2006 14:48:38

5.727E+01 0.000E+00

6.054E+01 0.000E+00

Half-Life too short

0.470

-0.687

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1	66.46 92.77 139.47 596.21 609.50 1120.26	92 7 62 73 42 24	285 53 58	1.67	1218.70	180 275 1186 1212	9 6 10 15	7.26E-03 5.32E-04 4.93E-03 5.80E-03 3.29E-03 1.87E-03	**** 90.0 44.3 98.9	7.06E-01 6.94E-01	) ) L L

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 8

Number of unidentified lines 6

Number of lines tentatively identified by NID 2 25.00%

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Hlife Decay Nuclide 4.158E+01 4.741E+01 114.02 1.00 4.158E+01 K-40 1.28E+09Y 11.49E+00 205.09 5.604E+00 5.75Y 1.00 5.578E+00 AC-228 _____ 4.718E+01 Total Activity: 4.716E+01

Grand Total Activity: 4.716E+01 4.718E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

BE-7

NA-24

CR-51

No interference correction performed

2.694E+01

-7.261E-01

-4.158E+01

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA	
K-40 AC-228	4.158E+01 5.604E+00	4.741E+01 1.149E+01	5.186E+01 1.810E+01	0.000E+00 0.000E+00	0.802 0.310	
Non-Identified Nuclides						
Nuclide	Key-Line Activity K.L. (pCi/L) Ided		MDA (pCi/L)	MDA error	Act/MDA	

3.328E+01

1.029E+01

3.843E+01

				0.000E+00	0.040
MN-54	2.145E-01	3.209E+00	5.320E+00	0.000E+00	-0.373
CO-57	-2.131E+00	3.509E+00	5.717E+00	0.000E+00	-0.702
CO-58	-3.748E+00	3.496E+00	5.337E+00	0.000E+00	0.612
FE-59	7.956E+00	7.231E+00	1.300E+01		-0.208
CO-60	-1.019E+00	3.098E+00	4.908E+00	0.000E+00	0.681
ZN-65	8.487E+00	7.953E+00	1.247E+01	0.000E+00	-0.299
SE-75	-2.198E+00	4.510E+00	7.351E+00	0.000E+00	2.413
SR-85	2.000E+01	4.283E+00	8.290E+00	0.000E+00	-0.075
Y-88	-4.873E-01	4.025E+00	6.506E+00	0.000E+00	-0.283
NB-94	-1.387E+00	3.099E+00	4.894E+00	0.000E+00	0.676
NB-95	4.340E+00	3.609E+00	6.424E+00	0.000E+00	-0.431
ZR-95	-4.212E+00	6.177E+00	9.777E+00	0.000E+00	0.410
MO-99	5.424E+02	7.599E+02	1.322E+03	0.000E+00	0.487
RU-103	3.523E+00	4.201E+00	7.231E+00	0.000E+00	-0.084
RU-106	-4.038E+00	3.151E+01	4.816E+01	0.000E+00	-0.204
AG-110m	-9.944E-01	3.057E+00	4.881E+00	0.000E+00	-0.312
SN-113	-2.255E+00	4.538E+00	57.230E+00	0.000E+00	0.320
SB-124	1.770E+00	7.460E+00	5.534E+00	0.000E+00	-0.438
SB-125	-6.602E+00	9.605E+00	1.507E+01	0.000E+00	-0.346
TE-129M	-2.562E+01	4.584E+01	7.405E+01	0.000E+00	0.130
I-131	2.244E+00	1.042E+01	1.721E+01	0.000E+00	0.823
BA-133	6.620E+00	4.651E+00	8.047E+00	0.000E+00	0.922
CS-134	5.101E+00	5.022E+00	5.530E+00	0.000E+00	0.401
CS-136	4.503E+00	6.493E+00	1.122E+01	0.000E+00 0.000E+00	0.401
CS-137	3.804E+00	3.185E+00	5.608E+00	0.000E+00	0.058
CE-139	3.310E-01	3.472E+00	5.702E+00	0.000E+00 0.000E+00	-0.470
BA-140	-1.743E+01	2.345E+01	3.705E+01	0.000E+00	0.507
LA-140	7.099E+00	7.788E+00	1.399E+01	0.000E+00	0.565
CE-141	7.111E+00	8.740E+00	1.259E+01	0.000E+00	-0.210
CE-144	-9.112E+00	3.130E+01	4.337E+01	0.000E+00	-0.730
EU-152	-1.235E+01	1.080E+01	1.691E+01	0.000E+00	0.186
EU-154	2.200E+00	7.118E+00	1.186E+01	0.000E+00	-0.351
RA-226	-4.651E+01	8.397E+01	1.325E+02	0.000E+00	0.054
TH-228	5.623E-01	6.302E+00	1.037E+01	0.000E+00	0.276
TH-232		+ 1.144E+01	2.024E+01		0.604
U-235	2.620E+01	3.003E+01	4.336E+01	0.000E+00 0.000E+00	-0.041
U-238	-2.172E+01	3.283E+02	5.331E+02	0.000E+00 0.000E+00	-0.711
AM-241	-3.348E+01	3.396E+01	4.712E+01	0.0005+00	0./11

```
3.631E+00,WG L28821-6 DR
                     ,06/08/2006 18:19,05/25/2006 15:00,
A,10L28821-6
                                             ,06/07/2006 09:32,1035L091004
                     ,LIBD
B,10L28821-6
                                                                    0.802
                                                   5.186E+01,,
                                    4.741E+01,
                     4.158E+01,
           ,YES,
C, K-40
                                                                    0.310
                                                   1.810E+01,,
                                    1.149E+01,
                     5.604E+00,
           , YES,
C, AC-228
                                                                     0.470
                                                   5.727E+01,,
                                    3.328E+01,
                     2.694E+01,
            ,NO
C, BE-7
                                                                    -0.687
                                                   6.054E+01,,
                                    3.843E+01,
                    -4.158E+01,
            , NO
C, CR-51
                                                                     0.040
                                                   5.320E+00,,
                                    3.209E+00,
                     2.145E-01,
            , NO
C, MN-54
                                                                    -0.373
                                                   5.717E+00,,
                                    3.509E+00,
                    -2.131E+00,
            , NO
C, CO-57
                                                                    -0.702
                                                   5.337E+00,,
                                    3.496E+00,
                    -3.748E+00,
            , NO
C, CO-58
                                                                     0.612
                                                   1.300E+01,,
                                    7.231E+00,
                     7.956E+00,
            , NO
C, FE-59
                                                                    -0.208
                                                   4.908E+00,,
                                    3.098E+00,
                    -1.019E+00,
            , NO
C, CO-60
                                                                     0.681
                                                   1.247E+01,,
                                    7.953E+00,
                     8.487E+00,
            , NO
C, ZN-65
                                                                    -0.299
                                                   7.351E+00,,
                                    4.510E+00,
                    -2.198E+00,
C, SE-75
            , NO
                                                                     2.413
                                                    8.290E+00,,
                                    4.283E+00,
                     2.000E+01,
C, SR-85
            , NO
                                                                    -0.075
                                                    6.506E+00,,
                                    4.025E+00,
                    -4.873E-01,
            , NO
C,Y-88
                                                                    -0.283
                                                    4.894E+00,,
                                     3.099E+00,
                    -1.387E+00,
            , NO
C, NB-94
                                                                     0.676
                                                    6.424E+00,,
                                     3.609E+00,
                     4.340E+00,
            , NO
 C, NB-95
                                                                    -0.431
                                                    9.777E+00,,
                                     6.177E+00,
                    -4.212E+00,
 C, ZR-95
            , NO
                                                                     0.410
                                                    1.322E+03,,
                                     7.599E+02,
                     5.424E+02,
            , NO
 C, MO-99
                                                                     0.487
                                                    7.231E+00,,
                                     4.201E+00,
                      3.523E+00,
            , NO
 C, RU-103
                                                                    -0.084
                                                    4.816E+01,,
                                     3.151E+01,
                     -4.038E+00,
            ,NO
 C, RU-106
                                                                    -0.204
                                                    4.881E+00,,
                                     3.057E+00,
                     -9.944E-01,
 C, AG-110m
            , NO
                                                                    -0.312
                                                    7.230E+00,,
                                     4.538E+00,
                     -2.255E+00,
             , NO
 C,SN-113
                                                                      0.320
                                                    5.534E+00,,
                      1.770E+00,
                                     7.460E+00,
             , NO
 C,SB-124
                                                                    -0.438
                                                    1.507E+01,,
                                     9.605E+00,
                     -6.602E+00,
             , NO
 C,SB-125
                                                                    -0.346
                                                    7.405E+01,,
                                     4.584E+01,
             , NO
                     -2.562E+01,
 C, TE-129M
                                                                      0.130
                                                    1.721E+01,,
                                     1.042E+01,
                      2.244E+00,
             , NO
 C, I-131
                                                                      0.823
                                                    8.047E+00,,
                                     4.651E+00,
                      6.620E+00,
 C, BA-133
             , NO
                                                                      0.922
                                                    5.530E+00,,
                                     5.022E+00,
                      5.101E+00,
             , NO
 C, CS-134
                                                                      0.401
                                                    1.122E+01,,
                                     6.493E+00,
                      4.503E+00,
             , NO
 C, CS-136
                                                                      0.678
                                                    5.608E+00,,
                                     3.185E+00,
                      3.804E+00,
             , NO
 C, CS-137
                                                                      0.058
                                                    5.702E+00,,
                                     3.472E+00,
                      3.310E-01,
             , NO
 C, CE-139
                                                                     -0.470
                                                    3.705E+01,,
                                     2.345E+01,
                     -1.743E+01,
 C, BA-140
             , NO
                                                                      0.507
                                                    1.399E+01,,
                                     7.788E+00,
                      7.099E+00,
             , NO
 C, LA-140
                                                                      0.565
                                                    1.259E+01,,
                                     8.740E+00,
                      7.111E+00,
             ,NO
 C, CE-141
                                                                     -0.210
                                                    4.337E+01,,
                                     3.130E+01,
                     -9.112E+00,
             , NO
 C, CE-144
                                                                     -0.730
                                                    1.691E+01,,
                                     1.080E+01,
                     -1.235E+01,
             , NO
  C, EU-152
                                                                      0.186
                                                     1.186E+01,,
                                      7.118E+00,
                      2.200E+00,
             , NO
  C, EU-154
                                                                     -0.351
                                                     1.325E+02,,
                                      8.397E+01,
                     -4.651E+01,
             , NO
  C, RA-226
                                                                      0.054
                                                     1.037E+01,,
                                      6.302E+00,
                      5.623E-01,
              , NO
  C, TH-228
                                                                      0.276
                                                     2.024E+01,,
                                      1.144E+01,
                       5.578E+00,
              , NO
  C, TH-232
                                                                      0.604
                                                     4.336E+01,,
                                      3.003E+01,
                       2.620E+01,
              , NO
  C, U-235
                                                                     -0.041
                                                     5.331E+02,,
                      -2.172E+01,
                                      3.283E+02,
              , NO
  C, U-238
                                                     4.712E+01,,
                                                                     -0.711
                      -3.348E+01,
                                      3.396E+01,
```

C, AM-241

,NO ,

Sec. Review: Analyst: LIMS:

_______ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 8-JUN-2006 18:14:50.69

TBE11 P-20610B HpGe ****** Aquisition Date/Time: 8-JUN-2006 14:48:40.21 

LIMS No., Customer Name, Client ID: WG L28821-7 DRESDEN

Smple Date: 25-MAY-2006 17:00:00. : 11L28821-7 Sample ID

Geometry : 1135L090204 Sample Type : WG BKGFILE : 11BG060306MT Quantity : 3.63330E+00 L 

Pk I	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
2	0 0 0 0 0 0 0 0 0 0	93.13* 139.62* 185.56* 198.42 239.31* 351.68* 609.50* 912.66 966.49 1323.58 1461.04*	53 119 15 86 6 104 69 69 46 14 37	321 322 268 315 373 146 101 45 55 6	1.36	185.43 278.67 370.80 396.60 478.58 703.82 1220.26 1826.92 1934.56 2648.14 2922.57	1.57E+00 1.42E+00 1.08E+00 7.02E-01 5.13E-01 4.91E-01 3.83E-01	9.61E-03 1.21E-032 6.98E-03 5.10E-047 8.44E-03 5.59E-03 5.61E-03	31.3 216.2 40.2 708.8 27.9 36.2 26.5 43.6 38.5	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type: natura	al			Uncorrected	Decay Corr	2-Sigma
Nuclide K-40 RA-226 TH-228	Energy 1460.81 186.21 238.63 240.98	Area 37 15 6	%Abn 10.67* 3.28* 44.60* 3.95	%Eff 3.539E-01 1.616E+00 1.419E+00 1.413E+00	pCi/L 5.922E+01 1.705E+01 6.001E-01	pCi/L 5.922E+01 1.705E+01 6.084E-01 ne Not Found	
U-235	143.76 163.35 185.71 205.31	15	10.50* 4.70 54.00 4.70	1.695E+00 1.678E+00 1.616E+00 1.546E+00	Li 1.035E+00	ne Not Found ne Not Found 1.035E+00 ne Not Found	432.49

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity Sample ID: 11L28821-7 Acquisition date: 8-JUN-2006 14:48:40

11

Total number of lines in spectrum Number of unidentified lines 8
Number of lines tentatively identified by NID 3

27.27%

Nuclide Type : natural

RA-226	Hlife 1.28E+09Y 1600.00Y 1.91Y	Decay 1.00 1.00 1.01	pCi/L 5.922E+01 1.705E+01 6.001E-01	Decay Corr pCi/L 5.922E+01 1.705E+01 6.084E-01	00.232 02	89.01 432.49 1417.52	Flags
TH-228 U-235	1.91Y 7.04E+08Y			1.035E+00	4.478E+00	432.49	K
				7 7017.01			

Total Activity: 7.791E+01 7.791E+01

Grand Total Activity: 7.791E+01 7.791E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 11L28821-7

Page: 3 Acquisition date: 8-JUN-2006 14:48:40

Samp	)TE TD . T	1120021	,		•	-					
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0 0 0 0 0	93.13 139.62 198.42 351.68 609.50 912.66 966.49 1323.58	53 119 86 104 69 69 46 14	321 322 315 146 101 45 55	2.11 1.61 1.40 1.15 1.69 1.73 4.80 1.36	1826.92	392 697 1214 1817 1921	10 10 13 15 20 22	4.31E-03 9.61E-03 6.98E-03 8.44E-03 5.59E-03 5.61E-03 3.72E-03 1.13E-03	62.6 80.3 55.7 72.4 53.1 87.3	1.28E+0 1.69E+0 1.57E+0 1.08E+0 7.02E-0 5.13E-0 4.91E-0 3.83E-0	0 0 0 1 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

11 Total number of lines in spectrum Number of unidentified lines 8
Number of lines tentatively identified by NID 3 27.27%

Nuclide Type : natural

Nuclide	Type: natura		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	7
Nuclide K-40 RA-226 TH-228	Hlife I 1.28E+09Y 1600.00Y 1.91Y	1.00 1.00 1.01	pCi/L 5.922E+01 1.705E+01 6.001E-01	pCi/L 5.922E+01 1.705E+01 6.084E-01  7.688E+01	2-Sigma Error 5.272E+01 7.372E+01 86.25E-01	%Error 89.01 432.49 1417.52	Flags

Grand Total Activity: 7.687E+01 7.688E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

# ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	5.922E+01	5.272E+01	5.044E+01	0.000E+00	1.174
RA-226	1.705E+01	7.372E+01	1.238E+02	0.000E+00	0.138
TH-228	6.084E-01	8.625E+00	9.289E+00	0.000E+00	0.066

# ---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide	(bcr/n/	Idea		· <del>-</del>		

	1 707F.01	3.171E+01	5.321E+01	0.000E+00	0.324
BE-7	1.727E+01	8.849E+00	Half-Life too	short	
NA-24	-5.056E+00	3.777E+01	6.193E+01	0.000E+00	-0.140
CR-51	-8.651E+00	2.971E+00	5.244E+00	0.000E+00	0.594
MN-54	3.116E+00	3.181E+00	5.254E+00	0.000E+00	0.040
CO-57	2.087E-01	3.181E+00	5.444E+00	0.000E+00	-0.183
CO-58	-9.985E-01	7.022E+00	1.032E+01	0.000E+00	-0.873
FE-59	-9.012E+00	3.392E+00	5.244E+00	0.000E+00	0.227
CO-60	1.188E+00	7.315E+00	1.268E+01	0.000E+00	0.375
ZN-65	4.750E+00		6.961E+00	0.000E+00	-0.842
SE-75	-5.862E+00	4.397E+00	8.156E+00	0.000E+00	2.305
SR-85	1.880E+01	4.272E+00	6.247E+00	0.000E+00	-0.041
Y-88	-2.580E-01	3.823E+00	4.975E+00	0.000E+00	-0.330
NB-94	-1.640E+00	3.116E+00	5.621E+00	0.000E+00	-0.328
NB-95	-1.842E+00	3.546E+00	9.760E+00	0.000E+00	-0.221
ZR-95	-2.153E+00	6.087E+00	9.760E+00 1.197E+03	0.000E+00	-0.112
MO-99	-1.340E+02	7.369E+02		0.000E+00	0.544
RU-103	3.732E+00	4.011E+00	6.858E+00	0.000E+00	0.561
RU-106	2.906E+01	3.109E+01	5.177E+01	0.000E+00	-0.252
AG-110m	-1.240E+00	3.059E+00	4.928E+00	0.000E+00	0.259
SN-113	1.872E+00	4.316E+00	7.237E+00	0.000E+00	-0.371
SB-124	-2.281E+00	4.565E+00	6.149E+00	0.000E+00	-0.146
SB-125	-2.123E+00	8.975E+00	1.453E+01	0.000E+00	-0.077
TE-129M	-5.803E+00	4.634E+01	7.522E+01	0.000E+00	0.280
I-131	4.818E+00	1.022E+01	1.720E+01	0.000E+00	0.806
BA-133	6.163E+00	5.092E+00	7.646E+00		-0.035
CS-134	-2.148E-01	4.428E+00	6.189E+00	0.000E+00	0.049
CS-134	4.897E-01	6.116E+00	1.009E+01	0.000E+00	-0.296
CS-137	-1.586E+00	3.341E+00	5.359E+00	0.000E+00	-0.601
CE-139	-3.168E+00	3.313E+00	5.268E+00	0.000E+00	0.107
BA-140	3.845E+00	2.178E+01	3.578E+01	0.000E+00	-0.299
LA-140	-3.403E+00	7.230E+00	1.137E+01	0.000E+00	0.237
CE-141	2.668E+00	7.977E+00	1.127E+01	0.000E+00	-0.219
CE-141 CE-144	-8.819E+00	2.922E+01	4.029E+01	0.000E+00	-0.219 -0.735
EU-152	-1.111E+01	1.156E+01	1.512E+01	0.000E+00	
	3.543E-01	6.495E+00	1.072E+01	0.000E+00	0.033
EU-154	9.217E+00	1.453E+01	2.143E+01	0.000E+00	0.430
AC-228	9.175E+00	1.447E+01	2.133E+01	0.000E+00	0.430
TH-232	1.363E+01	2.800E+01	3.983E+01	0.000E+00	0.342
U-235	7.995E+01	3.224E+02	5.468E+02	0.000E+00	0.146
U-238	-3.773E+01	4.196E+01	6.652E+01	0.000E+00	-0.567
AM-241	-3.//36+01	1,1701.01			

```
3.633E+00,WG L28821-7 DR
                     ,06/08/2006 18:14,05/25/2006 17:00,
A,11L28821-7
                                             ,06/07/2006 09:40,1135L090204
                     ,LIBD
B,11L28821-7
                                                                    1.174
                                                   5.044E+01,,
                                    5.272E+01,
                     5.922E+01,
           , YES,
C, K-40
                                                                    0.138
                                                   1.238E+02,,
                                    7.372E+01,
                     1.705E+01,
           , YES,
C, RA-226
                                                                    0.066
                                                   9.289E+00,,
                                    8.625E+00,
                     6.084E-01,
            , YES,
C, TH-228
                                                                    0.324
                                                   5.321E+01,,
                     1.727E+01,
                                    3.171E+01,
C, BE-7
            , NO
                                                                   -0.140
                                                   6.193E+01,,
                                    3.777E+01,
                    -8.651E+00,
            , NO
C, CR-51
                                                                     0.594
                                                   5.244E+00,,
                                    2.971E+00,
                     3.116E+00,
            , NO
C, MN-54
                                                                     0.040
                                                   5.254E+00,,
                                    3.181E+00,
                     2.087E-01,
            ,NO
C, CO-57
                                                                    -0.183
                                                   5.444E+00,,
                                    3.394E+00,
                    -9.985E-01,
            , NO
C, CO-58
                                                                    -0.873
                                                   1.032E+01,,
                                    7.022E+00,
                    -9.012E+00,
C, FE-59
            , NO
                                                                     0.227
                                                   5.244E+00,,
                                    3.392E+00,
                     1.188E+00,
            , NO
C, CO-60
                                                                     0.375
                                                   1.268E+01,,
                                    7.315E+00,
                     4.750E+00,
            , NO
C, ZN-65
                                                                    -0.842
                                                   6.961E+00,,
                                    4.397E+00,
            , NO
                    -5.862E+00,
C, SE-75
                                                   8.156E+00,,
                                                                     2.305
                                    4.272E+00,
                     1.880E+01,
C, SR-85
            , NO
                                                                    -0.041
                                                   6.247E+00,,
                    -2.580E-01,
                                    3.823E+00,
            ,NO
C, Y-88
                                                                    -0.330
                                                   4.975E+00,,
                                    3.116E+00,
                    -1.640E+00,
            , NO
C, NB-94
                                                                    -0.328
                                                    5.621E+00,,
                                     3.546E+00,
                    -1.842E+00,
            ,NO
C, NB-95
                                                                    -0.221
                                                    9.760E+00,,
                                     6.087E+00,
                    -2.153E+00,
            , NO
 C, ZR-95
                                                                    -0.112
                                                    1.197E+03,,
                                     7.369E+02,
                    -1.340E+02,
            , NO
 C,MO-99
                                                                     0.544
                                                    6.858E+00,,
                                     4.011E+00,
                      3.732E+00,
            , NO
 C, RU-103
                                                                     0.561
                                                    5.177E+01,,
                                     3.109E+01,
                      2.906E+01,
            , NO
 C, RU-106
                                                                    -0.252
                                                    4.928E+00,,
                                     3.059E+00,
                     -1.240E+00,
 C, AG-110m , NO
                                                                     0.259
                                                    7.237E+00,,
                                     4.316E+00,
                      1.872E+00,
             , NO
 C, SN-113
                                                                    -0.371
                                                    6.149E+00,,
                                     4.565E+00,
                     -2.281E+00,
             , NO
 C,SB-124
                                                                    -0.146
                                                    1.453E+01,,
                                     8.975E+00,
                     -2.123E+00,
             , NO
 C,SB-125
                                                                    -0.077
                                                    7.522E+01,,
                                     4.634E+01,
                     -5.803E+00,
 C, TE-129M
            , NO
                                                                      0.280
                                                    1.720E+01,,
                                     1.022E+01,
                      4.818E+00,
             , NO
 C, I-131
                                                                      0.806
                                                    7.646E+00,,
                                     5.092E+00,
                      6.163E+00,
             , NO
 C,BA-133
                                                                     -0.035
                                                    6.189E+00,,
                                     4.428E+00,
                     -2.148E-01,
             , NO
 C, CS-134
                 ,
                                                                      0.049
                                                    1.009E+01,,
                      4.897E-01,
                                     6.116E+00,
 C, CS-136
             , NO
                                                                     -0.296
                                                    5.359E+00,,
                                     3.341E+00,
                     -1.586E+00,
             ,NO
 C, CS-137
                                                                     -0.601
                                                    5.268E+00,,
                                     3.313E+00,
             , NO
                     -3.168E+00,
 C, CE-139
                                                                      0.107
                                                    3.578E+01,,
                                     2.178E+01,
             , NO
                      3.845E+00,
 C, BA-140
                                                                     -0.299
                                                    1.137E+01,,
                                     7.230E+00,
                     -3.403E+00,
             , NO
 C, LA-140
                                                                      0.237
                                                    1.127E+01,,
                                     7.977E+00,
                      2.668E+00,
             , NO
 C, CE-141
                                                    4.029E+01,,
                                                                     -0.219
                                     2.922E+01,
                     -8.819E+00,
             , NO
 C, CE-144
                                                                     -0.735
                                                     1.512E+01,,
                                     1.156E+01,
                     -1.111E+01,
             ,NO
 C, EU-152
                                                                      0.033
                                                     1.072E+01,,
                                      6.495E+00,
                      3.543E-01,
             , NO
  C, EU-154
                                                                      0.430
                                                     2.143E+01,,
                                      1.453E+01,
                      9.217E+00,
             , NO
  C, AC-228
                                                                      0.430
                                                     2.133E+01,,
                                      1.447E+01,
                      9.175E+00,
              , NO
  C, TH-232
                                                                      0.342
                                                     3.983E+01,,
                                      2.800E+01,
                       1.363E+01,
  C, U-235
              , NO
                                                     5.468E+02,,
                                                                      0.146
                                      3.224E+02,
                       7.995E+01,
             , NO
  C, U-238
                                                                     -0.567
                                                     6.652E+01,,
                                      4.196E+01,
                      -3.773E+01,
              ,NO
  C, AM-241
```

LIMS: V Analyst: Sec. Review:

_______

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 9-JUN-2006 04:09:46.18 TBE13 P-10727B HpGe ******** Aquisition Date/Time: 8-JUN-2006 14:48:43.23 ______

LIMS No., Customer Name, Client ID: WG L28821-8 DRESDEN

Smple Date: 30-MAY-2006 10:55:00. : 13L28821-8

Sample ID Geometry : 1335L090904 Sample Type : WG BKGFILE : 13BG060306MT : 2.84980E+00 L Quantity Start Channel: 25 Energy Tol: 1.00000 Real Time: 0 13:20:49.34 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 13:20:35.61 MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.40*	375	2224	2.52	92.93	1.43E-01	7.81E-03		2.30E+00
2	2	63.55*	156	1485	1.36	127.20	6.29E-01	3.25E-03		4.39E+00
3	2	66.27	375	1420	1.37	132.65	7.23E-01	7.81E-03	18.6	
4	3	77.17*	41	1023	0.96	154.42	1.09E+00	8.61E-04		
5	1	139.66*	272	1794	1.02	279.34	2.02E+00	5.66E-03		
6	1	185.71*	103	1364	1.13	371.37	1.95E+00	2.14E-03		6.63E-01
7	1	198.39*	345	1390	1.06	396.73	1.90E+00	7.18E-03		1.65E+00
8	1	238.43*	109	1627	1.25	476.77	1.73E+00	2.27E-03		
9	1	295.04*	35	956	1.14	589.96	1.52E+00			1.06E+00
10	1	351.82*	168	770	1.58	703.48		3.50E-03		
11	1	583.06*	50	335	1.99	1165.98	9.26E-01	1.03E-03		
12	1	595.83	197	341	1.59	1191.52	9.11E-01			1.36E+00
13	1	609.04*	128	325	1.24	1217.96	8.97E-01			1.74E+00
14	ī	911.10*	9	340	1.82	1822.39	6.64E-01	1.95E-04	560.5	4.53E+00
15	1	969.22*	2	222	1.60	1938.73	6.34E-01	4.11E-05	****	
16	$\frac{1}{1}$	1120.50*	7	154	1.68	2241.60	5.69E-01	1.44E-04	501.2	1.68E+00
17	1	1239.34*	15	207	1.08	2479.57	5.28E-01	3.22E-04		
18	1	1461.00*	96	172	1.81	2923.58	4.69E-01	1.99E-03	46.2	
19	1	1764.71*	11	97	2.21		4.11E-01	2.20E-04	285.4	1.20E+00
20		1848.19	72	79	1.39	3699.58	3.99E-01	1.49E-03	29.4	9.70E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Muglide	Type: natura	a T					
Nuclide	Type. Hacare	4. 4			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	96	10.67*	4.688E-01	3.780E+01	3.780E+01	92.37
RA-226	186.21	103	3.28*	1.946E+00	3.177E+01	3.177E+01	166.23
AC-228	835.50		1.75	7.084E-01	Li	ne Not Found	
110 220	911.07	9	27.70*	6.640E-01	1.007E+00	1.011E+00	1120.92
TH-228	238.63	109	44.60*	1.734E+00	2.789E+00	2.815E+00	174.58
111 220	240.98		3.95	1.723E+00	Li	ne Not Found	
TH-232	583.14	50	30.25	9.263E-01	3.488E+00	3.488E+00	205.65
111 202	911.07	9	27.70*	6.640E-01	1.007E+00	1.007E+00	1120.92
	222.07	_			. = =	2 5025 01	4063 EQ

162 25		4 70	2 011E+00	Line Not Found	
105.33	102	54.00	1 946E+00	1.930E+00 1.930E+00	166.23
185.71	103	24.00	1 0715 00	Line Not Found	
205.31		4./0	T.0/TE+00	EIIC NOC LOCATO	

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Acquisition date : 8-JUN-2006 14:48:43 Sample ID : 13L28821-8

20

Total number of lines in spectrum

Number of unidentified lines 14 Number of lines tentatively identified by NID 30.00%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	<b>77</b>
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error		Flags
	1.28E+09Y	1.00	3.780E+01	3.780E+01	3.491E+01	92.37	
RA-226	1600.00Y	1.00		3.177E+01	5.281E+01	166.23	
AC-228	5.75Y	1.00		1.011E+00	11.33E+00	1120.92	
	1.91Y	1.01		2.815E+00	4.914E+00	174.58	
TH-228		1.00		1.007E+00	11.29E+00	1120.92	
	1.41E+10Y			1.930E+00	3.208E+00		K
U-235	7.04E+08Y	1.00	1.930E+00	1.9306700	3.2001,00		

Total Activity : 7.630E+01 7.633E+01

Grand Total Activity : 7.630E+01 7.633E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 13L28821-8 Page: 3
Acquisition date: 8-JUN-2006 14:48:43

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 2 2 3 1 1 1 1 1	46.40 63.55 66.27 77.17 139.66 198.39 295.04 351.82 595.83 609.04 1120.50 1239.34 1764.71	375 156 375 41 272 345 35 168 197 128 7	2224 1485 1420 1023 1794 1390 956 770 341 325 154 207	2.52 1.36 1.37 0.96 1.02 1.06 1.14 1.58 1.59 1.24 1.68 1.08 2.21	92.93 127.20 132.65 154.42 279.34 396.73 589.96 703.48 1191.52 1217.96 2241.60 2479.57 3532.22	121 121 141 275 393 585 698 1187 1214 2237 2471	16 16 17 10 10 10	7.81E-03 3.25E-03 7.81E-03 8.61E-04 5.66E-03 7.18E-03 7.29E-04 3.50E-03 4.11E-03 2.66E-03 1.44E-04 3.22E-04 2.20E-04	59.7 *** 37.2 *** 66.9 47.4 *** 80.1 76.* *** ***	1.43E-01 6.29E-01 7.23E-01 1.09E+00 2.02E+00 1.90E+00 1.52E+00 1.34E+00 9.11E-01 8.97E-01 5.69E-01 5.28E-01 4.11E-01	
1	1848.19	72	79	1.39	3699.58	3690	16	1.49E-03	58.8	3.99E-01	_

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 20
Number of unidentified lines 14
Number of lines tentatively identified by NID 6 30.00%

Nuclide Type : natural

	<b></b>		Wtd Mean	Wtd Mean		1
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	
K-40	1.28E+09Y	1.00	3.780E+01	3.780E+01	3.491E+01	92.37
RA-226	1600.00Y	1.00	3.177E+01	3.177E+01	5.281E+01	166.23
TH-228	1.91Y	1.01	2.789E+00	2.815E+00	4.914E+00	174.58
	1.41E+10Y	1.00	2.440E+00	2.440E+00	5.617E+00	230.24
	Total Acti	vity:	7.479E+01	7.482E+01		

Grand Total Activity: 7.479E+01 7.482E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

Interfe	ring	Interfered			
Nuclide	Line	Nuclide	Line		
TH-232	911.07	AC-228	911.07		

Combined Activity-MDA Report

---- Identified Nuclides ----

K-40 RA-226 TH-228 TH-232	3.780E+01 3.177E+01 2.815E+00 2.440E+00	3.491E+01 5.281E+01 4.914E+00 5.617E+00	2.973E+01 7.122E+01 5.408E+00 1.122E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	1.271 0.446 0.521 0.217
Non-Id	lentified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-136 CS-137 CE-139 BA-140 CE-141 CE-144 EU-152 EU-154	-5.548E+00 -4.009E-02 -2.354E+01 -1.873E-01 -6.493E-01 -6.493E-00 -2.785E+00 -2.412E-01 -4.878E+00 -2.412E-01 -2.694E+01 -1.252E+00 -7.539E-01 -1.858E-02 -8.566E-01 -2.846E+00 -8.053E-02 -8.111E-01 -1.894E+00 -4.028E+00 -1.471E+01 -1.743E+00 -4.028E+00 -1.471E+01 -1.743E+00 -1.471E+01 -1.743E+00 -1.969E+00 -1.739E+00 -1.739E+00 -1.739E+00 -1.739E+00 -1.743E-01 -1.895E+00 -1.739E+00 -1.743E-01	1.761E+01 3.453E-02 1.934E+01 1.882E+00 1.843E+00 2.003E+00 4.124E+00 1.930E+00 2.538E+00 2.438E+00 2.453E+00 1.848E+00 2.453E+00 1.719E+00 1.785E+01 1.877E+00 1.785E+01 1.877E+00 2.531E+00 2.531E+00 2.531E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 3.122E+00 3.122E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00 1.862E+00	2.881E+01 Half-Life 3.107E+01 3.115E+00 2.966E+00 3.117E+00 7.071E+00 3.141E+00 7.237E+00 4.221E+00 4.724E+00 3.519E+00 3.519E+00 3.340E+00 6.045E+00 2.486E+02 3.646E+02 3.646E+00 2.913E+01 3.098E+00 4.138E+00 3.376E+00 4.138E+00 3.376E+00 4.169E+01 6.949E+00 4.539E+00 4.539E+00 3.584E+00 3.511E+00 3.511E+00 3.111E+00 1.772E+01 5.904E+00 6.148E+00 6.144E+00 6.144E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.193 -0.758 -0.060 -0.219 -0.893 0.599 -0.077 0.674 0.065 5.704 0.356 0.245 -0.006 -0.142 0.326 0.169 -0.98 -0.026 -0.196 -0.561 -0.474 0.353 0.251 1.335 1.062 0.023 0.561 0.559 -0.024 0.490 0.860 -0.112 -1.558 0.013
AC-228 U-235 U-238 AM-241	1.011E+00 2.219E+01 1.682E+02 2.344E+01	1.133E+01 1.774E+01 2.456E+02 1.810E+01	1.203E+01 2.385E+01 3.573E+02 2.642E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.084 0.930 0.471 0.887

```
,06/09/2006 04:09,05/30/2006 10:55,
                                                                 2.850E+00,WG L28821-8 DR
A,13L28821-8
                                             ,06/07/2006 09:34,1335L090904
                     ,LIBD
B,13L28821-8
                                                                     1.271
                     3.780E+01,
                                    3.491E+01,
                                                   2.973E+01,,
C, K-40
           , YES,
                                                                     0.446
                                                   7.122E+01,,
                     3.177E+01,
                                    5.281E+01,
C, RA-226
            ,YES,
                                    4.914E+00,
                                                   5.408E+00,,
                                                                     0.521
C, TH-228
            , YES,
                     2.815E+00,
                                                                     0.217
           , YES,
                     2.440E+00,
                                    5.617E+00,
                                                   1.122E+01,,
C, TH-232
                                                   2.881E+01,,
                                                                    -0.193
                    -5.548E+00,
                                    1.761E+01,
           , NO
C, BE-7
                                                   3.107E+01,,
                                                                    -0.758
                    -2.354E+01,
                                    1.934E+01,
C, CR-51
            , NO
                                                   3.115E+00,,
                                                                    -0.060
            , NO
                    -1.873E-01,
                                    1.882E+00,
C, MN-54
            , NO
                    -6.493E-01,
                                    1.843E+00,
                                                   2.966E+00,,
                                                                    -0.219
C, CO-57
                                                   3.117E+00,,
                                                                    -0.893
            , NO
                                    2.003E+00,
C, CO-58
                    -2.785E+00,
                                    4.124E+00,
                                                   7.071E+00,,
                                                                     0.599
C, FE-59
                     4.234E+00,
            , NO
                                                   3.141E+00,,
                                                                    -0.077
            , NO
                    -2.412E-01,
                                    1.930E+00,
C, CO-60
                                                   7.237E+00,,
                                                                     0.674
C, ZN-65
                     4.878E+00,
                                    4.961E+00,
            , NO
                                                                     0.065
                                    2.538E+00,
                                                   4.221E+00,,
C, SE-75
                     2.740E-01,
            , NO
                                                   4.724E+00,,
                                                                     5.704
                     2.694E+01,
                                    2.438E+00,
C, SR-85
            , NO
                                                                     0.356
C, Y-88
            , NO
                                                   3.519E+00,,
                     1.252E+00,
                                    2.453E+00,
                                                   3.073E+00,,
                     7.539E-01,
                                    1.848E+00,
                                                                     0.245
C, NB-94
            , NO
                                                                    -0.006
                                                   3.340E+00,,
C, NB-95
            , NO
                    -1.858E-02,
                                    2.043E+00,
                                                                    -0.142
                                    3.719E+00,
                                                   6.045E+00,,
C, ZR-95
                    -8.566E-01,
            , NO
                                                                     0.326
            , NO
                     8.094E+01,
                                    1.494E+02,
                                                   2.486E+02,,
C, MO-99
                                                   3.646E+00,,
                                                                     0.169
                                    2.205E+00,
C, RU-103
            , NO
                     6.165E-01,
                                    1.785E+01,
                                                   2.913E+01,,
                                                                    -0.098
            , NO
                    -2.846E+00,
C, RU-106
                                                   3.098E+00,,
                                                                    -0.026
                                    1.877E+00,
C, AG-110m
            ,NO
                    -8.053E-02,
                                                                     0.196
                     8.111E-01,
                                    2.531E+00,
                                                   4.138E+00,,
C, SN-113
            , NO
                                                   3.376E+00,,
                                                                    -0.561
            , NO
                                    5.130E+00,
C,SB-124
                    -1.894E+00,
                                                   8.500E+00,,
                                                                    -0.474
                    -4.028E+00,
                                    5.213E+00,
C,SB-125
            , NO
                                                                     0.353
C, TE-129M
                     1.471E+01,
                                    2.492E+01,
                                                   4.169E+01,,
            , NO
                                                   6.949E+00,,
                                    4.225E+00,
                                                                     0.251
C, I-131
            , NO
                     1.743E+00,
                                                   4.539E+00,,
                                                                     1.335
            , NO
                     6.060E+00,
                                    3.122E+00,
C, BA-133
                                    4.082E+00,
                                                   3.584E+00,,
                                                                     1.062
                     3.805E+00,
C, CS-134
            , NO
                                                   4.758E+00,,
                                                                     0.023
                     1.091E-01,
                                    2.921E+00,
C, CS-136
            , NO
                                                                     0.561
                                                   3.511E+00,,
                     1.969E+00,
                                    2.325E+00,
C, CS-137
            , NO
                                    1.862E+00,
                                                   3.111E+00,,
                                                                     0.559
C, CE-139
            , NO
                     1.739E+00,
                                                   1.772E+01,,
                                                                    -0.024
            , NO
                                    1.085E+01,
C,BA-140
                    -4.305E-01,
                                                   5.904E+00,,
                                                                     0.490
                     2.895E+00,
                                    3.466E+00,
C, LA-140
            , NO
                                                                     0.860
                                                   6.148E+00,,
            , NO
                                    4.248E+00,
C, CE-141
                     5.288E+00,
                                                    2.282E+01,,
                                                                    -0.112
                    -2.559E+00,
                                    1.613E+01,
C, CE-144
            , NO
            ,NO
                                                                    -1.558
C, EU-152
                    -1.464E+01,
                                    7.222E+00,
                                                    9.396E+00,,
                                                    6.144E+00,,
                     7.743E-02,
                                    3.798E+00,
                                                                     0.013
C, EU-154
            , NO
                                                    1.203E+01,,
                                                                     0.084
                     1.011E+00,
                                    1.133E+01,
C, AC-228
            , NO
                                                    2.385E+01,,
                                                                     0.930
                                    1.774E+01,
C, U-235
                     2.219E+01,
            , NO
                                    2.456E+02,
                     1.682E+02,
                                                    3.573E+02,,
                                                                     0.471
C, U-238
            , NO
```

1.810E+01,

C, AM-241

,NO ,

2.344E+01,

0.887

2.642E+01,,



A Teledyne Technologies Company

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L28990 Exelon June 23, 2006



A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

## Case Narrative - L28990 EX001-3ESPDRES-06

06/23/2006 08:13

#### Sample Receipt

The following samples were received on June 19, 2006 in good condition, unless otherwise noted.

Cross Reference Table

	0.000 110,0.00 1100		
Client ID	Laboratory ID	Station ID(if applicable)	
 WG-DN-DSP-147-053006-JH-016	L28990-1		

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3	TBE-2010	EPA 906.0
TOTAL SR	TBE-2018	EPA 905.0



2508 Quality Lane
Knoxville, TN 37931-3133

### Case Narrative - L28990 EX001-3ESPDRES-06

06/23/2006 08:13

#### H-3

#### **Quality Control**

Quality control samples were analyzed as WG4160.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### **Laboratory Control Sample**

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

 Client ID
 Laboratory ID
 QC Sample #

 WG-DN-DSP-147-053006-JH-016
 L28990-1
 WG4160-3

#### TOTAL SR

#### **Quality Control**

Quality control samples were analyzed as WG4170.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### **Laboratory Control Sample**

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID Laboratory ID QC Sample #
RB-TMI-RB7-061206-MMM-062 L28973-1 WG4170-3



A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

### Case Narrative - L28990 EX001-3ESPDRES-06

06/23/2006 08:13

#### Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

# Sample Receipt Summary

L28990 6 of 24

# Teledyne Brown Engineering L28 Sample Receipt Verification/Variance Report

06/19/06 11:22

Client: Exelon

3R #: SR08963

Project #: EX001-3ESPDRES-06 LIMS #:L28990

Initiated By: RCHARLES						
Init Date: 06/19/06 Receive Date: 06/19/06						
Notificati	on of Variance					
Person Notified:	Contacted By:					
Notify Date:						
Notify Method:						
Notify Comment:						
Client Resp	onse					
Person Responding:						
Response Date:						
Response Method:						
Response Comment						
Criteria	Yes No NA Comment					
1 Shipping container custody seals present and intact.	: NA					
2 Sample container custody seals present and intact.	NA					
3 Sample containers received in good condition	Y					
4 Chain of custody received with samples	Y					
5 All samples listed on chain of custody received	Y					
6 Sample container labels present and legible.	Y					
7 Information on container labels correspond with chain of custody	Y					
8 Sample(s) properly preserved and in appropriate container(s)	NA	PHCZ				
9 Other (Describe)	NA					

8615 W. Bryn Mawr Avenue Chicago, Illinois 60631			SHIPPED TO (Laboratory Name): Teledyne Brown				
	(773)38	0-9933 phone	REFERENCE NUM	BER:		PROJECT NAME:	l
(113)300-0421 Tax		45136-23		7	Exelon-Dresden		
SAMPLER'S SIGNATURE: John hoffe			ohn hottimo		No. OF CONTAINERS	REMARKS	
SEQ. DAT				SAMPLE			
1 5/30	106 094	6 WG-DN-DSP-147-0	53006-	WATE	72		-
777			JH-016_				
2	-1357	WG-DN-DSP-148-	0530G/e			Disregard	
* * * * * * * * * * * * * * * * * * *	200		JH-DIT		11,	- Discounted	
3	153	OWG-DN-DSP-156	<del>~0\$3006</del>		廿/	Disregard	
			JH-018	¥			
aa. 4. 19	Projection (Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of						
	ALE M. I		1				
	992	· · · · · · · · · · · · · · · · · · ·	Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie				
	- 100 AV						
and the second	and and an artist of the second	in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se					
AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	en and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	· · · · · · · · · · · · · · · · · · ·					
o and a series of the series	Markett Ma	Alexander and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon					
	J. J. P. J.						
Maringer (m. 1	jan (18) Li jangan ka				100		
Section 1	***	TOTAL NUMBER OF CONTA					<u></u>
RELINQUIS	SHED BY:	0/1/1/		3/06 F	RECEIVE	VED BY: When (Note TIME: 1833	<u></u>
1	<u></u>	John Krilling		-50 \	<u> </u>	DATE	
RELINQUIS	SHED BY:	Mugaer	DATE:		RECEIVE	VED BY:	
2		//- care	TIME:			DATE	
RELINQUIS	ISHED BY:		DATE:			VED BY: TIME:	
(3)	TIME: TIME:						
METHO	METHOD OF SHIPMENT:  AIR BILL No.						
White	-Ful	lly Executed Copy ceiving Laboratory Copy	SAMPLE TEAM:	onani	ka.	RECEIVED FOR LABORATORY BY:	
Pink	Pink -Shipper Copy		annao)		DATE: 6/19/06 TIME: 0900		

6/19/0B

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

#### ACKNOWLEDGEMENT

This is not an invoice

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville, CT 06062 June 19, 2006

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on June 19, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by June 21, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID:

EX001-3ESPDRES-06

P.O. #:

00411203

Release #:

Contract#: 00411203

Kathy Shaw, FAX#:860-747-1900, larry.walton@exeloncorp.com

Client ID/	Laboratory ID Analysis	Vol/Units Start Collect End Collect Price Date/Time Date/Time
Station	Anarysis	Price Date/iiie Date/iiiie
WG-DN-DSP-147-0530	06-JH-016 L28990-1	05/30/06:0940
WG	GELI	162.00
WG	H-3	162.00
WG	SR-90 (FAST)	140.00

End of document

# Internal Chain of Custody

Page: 1 of 10 of 24

06/23/06 08:16

Teledyne Brown Engineering
Internal Chain of Custody

*****************

Sample # L28990-1

GELI

Containernum 1

Prod Analyst

H-3 EJ SR-90 (FAST) CJF

Relinquish Date Relinquish By Received By

DW

06/19/2006 00:00 099999 Sample Custodian

06/20/2006 09:33 099999 Sample Custodian 029964 Erin Jenkins

06/20/2006 09:35 029964 Erin Jenkins 099999 Sample Custodian

*****************

Sample # L28990-1 Containernum 2

Prod Analyst
H-3 EJ
SR-90 (FAST) CJF
GELI DW

Relinquish Date Relinquish By Received By

06/19/2006 00:00 099999 Sample Custodian

06/20/2006 09:33 099999 Sample Custodian 029964 Erin Jenkins

06/20/2006 10:13 029964 Erin Jenkins 099999 Sample Custodian

Page 1 of 1

06/23/06

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L28990

*************

L28990-1	WG	WG-DN-DSP-147-05300	6-JH-016	
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			RCHARLES	06/19/06
Aliquot	GELI		DM	06/19/06
Aliquot	H-3		EJ	06/20/06
Aliquot	SR-90	(FAST)	CJF	06/21/06
Count Room	GELI		ILL	06/19/06
Count Room	н-3		КОЈ	06/20/06
Count Room	SR-90	(FAST)	KOJ	06/22/06

# Analytical Results Summary

## Report of Analysis

06/23/06 08:20



#### L28990

Receive Date: 06/19/2006

Conestoga-Rovers & Associates

Kathy Shaw

EX001-3ESPDRES-06

Sample ID: WG-DN-DSP-147-053006-JH-016

Collect Start: 05/30/2006 09:40

Matrix: Ground Water

(WG)

Station:

Collect Stop:

% Moisture:

Volume:

Description:

LIMS Number: L28990-1

Livis Number. L.														
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	Values
H-3	2010	-4.38E+00	9.46E+01	1.56E+02	pCi/L		10	ml		06/20/06	60	М	U	
TOTAL SR	2018	8.95E-01	7.39E-01	1.36E+00	pCi/L		450	ml	05/30/06 09:40	06/22/06	120	M	U	
MN-54	2007	-2.91E-01	2.92E+00	4.71E+00	pCi/L		3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No
CO-58	2007	6.29E-01	3.24E+00	5.35E+00	pCi/L		3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No
FE-59	2007	4.42E+00	7.28E+00	1.24E+01	pCi/L		3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No
CO-60	2007	2.76E+00	3.52E+00	5.97E+00	pCi/L		3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No
ZN-65	2007	3.89E+00	7.70E+00	1.13E+01	pCi/L		3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No
NB-95	2007	1.97E+00	3.25E+00	5.53E+00	pCi/L	-	3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No
ZR-95	2007	-3.75E-01	5.58E+00	9.10E+00	pCi/L		3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No
CS-134	2007	5.29E+00	5.91E+00	5.08E+00	pCi/L	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No
CS-137	2007	3.38E+00	3.08E+00	5.40E+00	pCi/L		3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No
BA-140	2007	4.93E+00	2.77E+01	4.59E+01	pCi/L		3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No
LA-140	2007	-5.85E+00	9.32E+00	1.43E+01	pCi/L	1	3058.46	ml	05/30/06 09:40	06/19/06	14400	Sec	U	No

√alue

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

Spec MDC exceeds customer technical specification

Low recovery

High recovery

Page 1 of 1

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

# QC Results Summary

for L28990

6/23/2006

8:18:01AM



H-3

Method Blank Summary

**TBE Sample ID** WG4160-1

Radionuclide H-3

Matrix WO

Count Date/Time 06/20/2006 19:15 Blank Result < 1.570E+00 Units

pCi/Total

Qualifier P/F H

LCS Sample Summary

TBE Sample ID

WG4160-2

Radionuclide H-3

WO

Matrix Count Date/Time 06/20/2006 20:19

Spike Value 5.05E+002

LCS Result 4.960E+02

Units pCi/Total Spike Recovery 98.3

Range Qualifier P/F 70-130

Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000

**Duplicate Summary** 

**TBE Sample ID** 

Radionuclide H-3

<u>Matrix</u> Count Date/Time WG 06/22/2006 11:13

**Original Result** < 1.560E+02

**DUP** Result < 1.880E+02 Units pCi/L **RPD** 

Range Qualifier P/F

< 30 NE

WG4160-3 L28990-1

> H-3 L28990

**Associated Samples for SAMPLENUM** 

WG4160 **CLIENTID** 

L28990-1

WG-DN-DSP-147-053006-JH-016

Compound/analyte was analyzed, peak not identified and/or not detected above MDC U

< 5 times the MDC are not evaluated

Nuclide not detected

Spiking level < 5 times activity

Pass P F Fail

Not evaluated NE

Page: 1

L28990 15 0 Ť

> 2 4

## **QC Summary Report**

6/23/2006

8:18:01AM

L28990 for



TOTAL SR

				Method Blank Summ	ary		
TBE Sample ID WG4170-1	Radionuclide TOTAL SR	<u>Matrix</u> WO	Count Date/Time 06/22/2006 16:17		Blank Result < 6.870E-01	<u>Units</u> pCi/Total	Qualifier P/F U P
				LCS Sample Summa	ıry		
TBE Sample ID WG4170-2	Radionuclide TOTAL SR	<u>Matrix</u> WO	Count Date/Time 06/22/2006 16:17	Spike Value 5.84E+001	LCS Result 6.510E+01	UnitsSpike RecoverypCi/Total111.5	Range         Qualifier         P/F           70-130         +         P
Spike ID: 90SR-6 Spike conc: 2.34E Spike Vol: 2.50E	+002						
				<b>Duplicate Summar</b>	y		
TBE Sample ID WG4170-3 L28973-1	Radionuclide TOTAL SR	<u>Matrix</u> WG	Count Date/Time 06/22/2006 16:17	<u>Original Result</u> < 1.570E+00	<u><b>DUP Result</b></u> < 1.030E+00	Units RPD pCi/L	Range Qualifier P/F <30 ** NE

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated U

Nuclide not detected

*** Spiking level < 5 times activity

Pass Fail F

Not evaluated NE

24

# Raw Data

## Raw Data Sheet (rawdata) Jun 23 2006, 08:34 am

Work Order: L28990

Customer: Exelon

Page: 1

Nuclide: <u>H-3</u>

Project : EX001-3ESPDRES-06

				-											Decay &	
Sample ID	Run	Analysis	Reference	Volume/	Scavenge	Milking	Mount	Count	Counter	Total	Sample	Bkg	Bkg	Eff.	Ingrowth	Analyst
Client ID	#	-	Date/time	Aliquot	Date/time	Date/time	Weight	Recovery Date/time	ID	counts	dt (min)	counts	dt (min)		Factor	
L28990-1		H-3					0	20-jun-06	LS7	83	60	1.41	60	.207		EJ
WG-DN-DSP-1	L47-05	3006-J		10 ml				20:37								
Activitus -	4 388	+00 Error	9.46E+01	MDC: 1.56E+02 *	+											

24

#### Raw Data Sheet (rawdata) Jun 23 2006, 08:34 am

Work Order: <u>L28990</u> Customer: <u>Exelon</u> Page: 2

Nuclide: SR-90 (FAST) Project: EX001-3ESPDRES-06

															Decay &	
Sample ID	Run Analysi	s Reference	volume/	Scavenge	Milking	Mount		Count	Counter	Total	Sample	Bkg	Bkg		Ingrowth	Analyst
Client ID	#	Date/time	Aliquot	Date/time	Date/time	Weight	Recovery	Date/time	ID	counts	dt(min)	counts	dt (min)		Factor	
L28990-1	TOTA	L SR 30-may-	06	22-jun-(	06	0		22-jun-06	X4D	133	120	340	400	.353	.998	CJF
WG-DN-DSP-1	47-053006-J	09:40	450 ml	11:45	5		81.99	16:17								
Activity: 8	3.95E-01 Erro	r: 7.39E-01	MDC: 1.36E+00 *	r												

24

Sec. Review:

Analyst:

LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-JUN-2006 17:33:09.01 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 19-JUN-2006 13:32:59.12

LIMS No., Customer Name, Client ID: WG L28990-1 EXELON/DRESDEN

Sample ID : 04L28990-1 Smple Date: 30-MAY-2006 09:40:00.

Sample Type : WG Geometry : 043L082004 Quantity : 3.05850E+00 L BKGFILE : 04BG060306MT 

Pk ]	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
2 3 4	1 1 1 1 1 1 1	66.20* 140.14 198.49* 238.84* 295.39 352.62* 583.45* 596.11 609.50*	115 60 49 27 74 31 26 68 61 25	350 383 248 221 102 172 56 98 116	2.05 1.88	133.07 280.86 397.51 478.18 591.22 705.64 1167.12 1192.44 1219.20 2240.55	6.59E-01 2.04E+00 1.86E+00 1.68E+00 1.45E+00 1.28E+00 8.77E-01 8.63E-01 8.48E-01	8.00E-03 4.16E-03 3.42E-03 1.86E-03 5.11E-03 2.13E-03 1.81E-03 4.75E-03 4.24E-03 1.72E-03	29.5 60.4 64.8 110.5 25.9 99.4 67.5 32.3 44.0	6.86E+00 3.46E+00 5.48E-01 3.04E+00 6.71E-01 2.42E+00 1.54E+00 7.49E-01 1.03E+00
11	1	1293.74	98	9.0		2587.36		6.81E-03		

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

						becay Corr	
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
TH-228	238.63	27	44.60*	1.679E+00	2.193E+00	2.237E+00	220.96
						ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Sample ID: 04L28990-1 Acquisition date: 19-JUN-2006 13:32:59

Total number of lines in spectrum 11

Number of unidentified lines 9

Number of lines tentatively identified by NID 2 18.18%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags

_____

TH-228 1.91Y 1.02 2.193E+00 2.237E+00 4.943E+00 220.96

Total Activity: 2.193E+00 2.237E+00

Grand Total Activity: 2.193E+00 2.237E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID: 04L28990-1

Acquisition date : 19-JUN-2006 13:32:59

18.18%

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	66.20	115	350	0.80	133.07	129	7	8.00E-03	59.1	6.59E-01	
1	140.14	60	383	1.30	280.86	276	9	4.16E-03	***	2.04E+00	
1	198.49	49	248	1.05	397.51	394	8	3.42E-03	***	1.86E+00	
1	295.39	74	102	1.32	591.22	588	7	5.11E-03	51.8	1.45E+00	
1	352.62	31	172	1.59	705.64	698	13	2.13E-03	***	1.28E+00	
1	583.45	26	56	2.03	1167.12	1163	10	1.81E-03	****	8.77E-01	${f T}$
1	596.11	68	98	2.05	1192.44	1186	13	4.75E-03	64.5	8.63E-01	
1	609.50	61	116	1.88	1219.20	1212	14	4.24E-03	88.1	8.48E-01	
1	1120.30	25	33	1.57	2240.55	2230	19	1.72E-03	****	5.27E-01	
1	1293.74	98	83	25.77	2587.36	2581	30	6.81E-03	54.9	4.71E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 11
Number of unidentified lines 9
Number of lines tentatively identified by NID 2

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags 4.943E+00 TH-228 1.02 2.193E+00 2.237E+00 220.96 1.91Y ... .. .. .. .. .. .. ... 

2.237E+00

Grand Total Activity: 2.193E+00 2.237E+00

Flags: "K" = Keyline not found "M" = Manually accepted

2.193E+00

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

Nuclide

No interference correction performed

(pCi/L)

Ided

Total Activity:

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-228	2.237E+00	4.943E+00	7.910E+00	0.000E+00	0.283
Non-Ider	ntified Nuclides				
	Key-Line Activity K.L.	Act error	MDA	MDA error	Act/MDA

BE-7 1.320E+01 2.743E+01 4.652E+01 0.000E+00 0.284

(pCi/L)

NA-24	-4.575E+03	7.785E+03	Half-Life to	1	
K-40	1.018E+01	3.923E+01	7.160E+01	0.000E+00	0.142
CR-51	-1.839E+01	3.696E+01	5.985E+01	0.000E+00	-0.307
MN-54	-2.912E-01	2.916E+00	4.706E+00	0.000E+00	-0.367
CO-57	1.320E+00	2.491E+00	4.130E+00		0.320
CO-58	6.292E-01	3.240E+00	4.130E+00 5.351E+00	0.000E+00	
FE-59	4.423E+00	7.283E+00	1.240E+01	0.000E+00	0.118
CO-60	2.762E+00	7.283E+00 3.519E+00	1.240E+01 5.972E+00	0.000E+00	0.357
ZN-65	3.890E+00	7.697E+00	1.133E+01	0.000E+00 0.000E+00	0.463
SE-75	-3.216E+00	3.878E+00	6.063E+00		0.343
SR-85	2.043E+01	3.878E+00 3.933E+00		0.000E+00	-0.530
Y-88	-1.863E+01	3.933E+00 3.517E+00	7.708E+00	0.000E+00	2.650
NB-94	1.048E+00	3.51/E+00 2.732E+00	5.461E+00	0.000E+00	-0.341
NB-95	1.974E+00	2.732E+00 3.246E+00	4.602E+00	0.000E+00	0.228
ZR-95	-3.750E-01		5.528E+00	0.000E+00	0.357
MO-99	1.951E+03	5.579E+00	9.098E+00	0.000E+00	-0.041
RU-103	1.951E+03 2.285E+00	3.194E+03	5.456E+03	0.000E+00	0.358
RU-103 RU-106	2.285E+00 3.479E+00	3.920E+00	6.652E+00	0.000E+00	0.344
AG-110m	8.325E-01	2.786E+01	4.549E+01	0.000E+00	0.076
SN-113		2.921E+00	4.918E+00	0.000E+00	0.169
SN-113 SB-124	1.529E+00	3.994E+00	6.624E+00	0.000E+00	0.231
SB-124 SB-125	1.957E+00	7.157E+00	5.486E+00	0.000E+00	0.357
TE-129M	1.043E+00	7.397E+00	1.242E+01	0.000E+00	0.084
	-1.953E+00	4.456E+01	7.375E+01	0.000E+00	-0.026
I-131	5.465E-01	1.558E+01	2.556E+01	0.000E+00	0.021
BA-133	4.972E+00	4.390E+00	6.548E+00	0.000E+00	0.759
CS-134	5.288E+00	5.907E+00	5.082E+00	0.000E+00	1.040
CS-136	-3.130E+00	7.724E+00	1.221E+01	0.000E+00	-0.256
CS-137	3.381E+00	3.075E+00	5.404E+00	0.000E+00	0.626
CE-139	-4.640E-01	2.680E+00	4.442E+00	0.000E+00	-0.104
BA-140	4.934E+00	2.771E+01	4.589E+01	0.000E+00	0.107
LA-140	-5.849E+00	9.322E+00	1.427E+01	0.000E+00	-0.410
CE-141	-3.208E+00	7.506E+00	1.015E+01	0.000E+00	-0.316
CE-144	-5.628E+00	2.279E+01	3.127E+01	0.000E+00	-0.180
EU-152	-4.010E+00	1.007E+01	1.369E+01	0.000E+00	-0.293
EU-154	2.696E+00	5.054E+00	8.376E+00	0.000E+00	0.322
RA-226	-2.093E+01	6.569E+01	1.043E+02	0.000E+00	-0.201
AC-228	-3.961E+00	1.089E+01	1.722E+01	0.000E+00	-0.230
TH-232	-3.934E+00	1.082E+01	1.711E+01	0.000E+00	-0.230
U-235	-2.722E+00	2.213E+01	3.038E+01	0.000E+00	-0.090
U-238	1.676E+01	3.295E+02	5.422E+02	0.000E+00	0.031
AM-241	-4.599E+01	2.700E+01	3.805E+01	0.000E+00	-1.209

```
A,04L28990-1
                     ,06/19/2006 17:33,05/30/2006 09:40,
                                                                 3.059E+00,WG L28990-1 EX
B,04L28990-1
                     , LIBD
                                              ,06/13/2006 09:42,043L082004
C, TH-228
            , YES,
                     2.237E+00,
                                    4.943E+00,
                                                   7.910E+00,,
                                                                     0.283
C, BE-7
            , NO
                     1.320E+01,
                                    2.743E+01,
                                                   4.652E+01,,
                                                                     0.284
C, K-40
            , NO
                     1.018E+01,
                                                   7.160E+01,,
                                    3.923E+01,
                                                                     0.142
C, CR-51
            , NO
                    -1.839E+01,
                                    3.696E+01,
                                                   5.985E+01,,
                                                                    -0.307
C, MN-54
            , NO
                    -2.912E-01,
                                    2.916E+00,
                                                   4.706E+00,,
                                                                    -0.062
            , NO
C, CO-57
                     1.320E+00,
                                    2.491E+00,
                                                   4.130E+00,,
                                                                     0.320
C, CO-58
            , NO
                     6.292E-01,
                                                   5.351E+00,,
                                    3.240E+00,
                                                                     0.118
C, FE-59
            , NO
                     4.423E+00,
                                    7.283E+00,
                                                   1.240E+01,,
                                                                     0.357
C, CO-60
            , NO
                                    3.519E+00,
                     2.762E+00,
                                                   5.972E+00,,
                                                                     0.463
C, ZN-65
            , NO
                     3.890E+00,
                                                   1.133E+01,,
                                    7.697E+00,
                                                                     0.343
C, SE-75
            , NO
                    -3.216E+00,
                                    3.878E+00,
                                                   6.063E+00,,
                                                                    -0.530
C, SR-85
            , NO
                     2.043E+01,
                                    3.933E+00,
                                                   7.708E+00,,
                                                                     2.650
C, Y-88
            ,NO
                    -1.863E+00,
                                    3.517E+00,
                                                   5.461E+00,,
                                                                   -0.341
C, NB-94
            , NO
                     1.048E+00,
                                    2.732E+00,
                                                   4.602E+00,,
                                                                     0.228
C,NB-95
            , NO
                     1.974E+00,
                                    3.246E+00,
                                                   5.528E+00,,
                                                                     0.357
C, ZR-95
            , NO
                    -3.750E-01,
                                    5.579E+00,
                                                   9.098E+00,,
                                                                   -0.041
C,MO-99
            , NO
                     1.951E+03,
                                                   5.456E+03,,
                                    3.194E+03,
                                                                     0.358
C, RU-103
            , NO
                                                   6.652E+00,,
                     2.285E+00,
                                    3.920E+00,
                                                                     0.344
            , NO
C,RU-106
                     3.479E+00,
                                    2.786E+01,
                                                   4.549E+01,,
                                                                     0.076
C, AG-110m
           ,NO
                     8.325E-01,
                                    2.921E+00,
                                                   4.918E+00,,
                                                                     0.169
C,SN-113
            , NO
                     1.529E+00,
                                                   6.624E+00,,
                                    3.994E+00,
                                                                     0.231
C,SB-124
            , NO
                     1.957E+00,
                                    7.157E+00,
                                                   5.486E+00,,
                                                                     0.357
C,SB-125
            , NO
                     1.043E+00,
                                                   1.242E+01,,
                                    7.397E+00,
                                                                     0.084
C, TE-129M
           , NO
                    -1.953E+00,
                                    4.456E+01,
                                                   7.375E+01,,
                                                                   -0.026
C, I-131
            , NO
                     5.465E-01,
                                                   2.556E+01,,
                                    1.558E+01,
                                                                    0.021
C,BA-133
            , NO
                     4.972E+00,
                                    4.390E+00,
                                                   6.548E+00,,
                                                                    0.759
C, CS-134
           , NO
                     5.288E+00,
                                    5.907E+00,
                                                   5.082E+00,,
                                                                    1.040
C, CS-136
            , NO
                    -3.130E+00,
                                    7.724E+00,
                                                   1.221E+01,,
                                                                   -0.256
C, CS-137
            , NO
                     3.381E+00,
                                    3.075E+00,
                                                   5.404E+00,,
                                                                    0.626
                    -4.640E-01,
C,CE-139
            , NO
                                    2.680E+00,
                                                   4.442E+00,,
                                                                   -0.104
C, BA-140
            , NO
                     4.934E+00,
                                    2.771E+01,
                                                   4.589E+01,,
                                                                    0.107
C, LA-140
            , NO
                    -5.849E+00,
                                                   1.427E+01,,
                                    9.322E+00,
                                                                   -0.410
C, CE-141
            , NO
                    -3.208E+00,
                                    7.506E+00,
                                                   1.015E+01,,
                                                                   -0.316
C, CE-144
           , NO
                   -5.628E+00,
                                    2.279E+01,
                                                   3.127E+01,,
                                                                   -0.180
C, EU-152
           , NO
                   -4.010E+00,
                                    1.007E+01,
                                                   1.369E+01,,
                                                                   -0.293
C, EU-154
           , NO
                     2.696E+00,
                                    5.054E+00,
                                                   8.376E+00,,
                                                                    0.322
C, RA-226
            , NO
                   -2.093E+01,
                                    6.569E+01,
                                                   1.043E+02,,
                                                                   -0.201
C, AC-228
           , NO
                                    1.089E+01,
                   -3.961E+00,
                                                   1.722E+01,,
                                                                   -0.230
C, TH-232
           , NO
                   -3.934E+00,
                                                   1.711E+01,,
                                    1.082E+01,
                                                                   -0.230
C, U-235
                   -2.722E+00,
           , NO
                                    2.213E+01,
                                                   3.038E+01,,
                                                                   -0.090
C, U-238
           , NO
                    1.676E+01,
                                                   5.422E+02,,
                                    3.295E+02,
                                                                    0.031
C,AM-241
           , NO
                   -4.599E+01,
```

2.700E+01,

3.805E+01,,

-1.209



2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L28845 R3
Exelon
July 19, 2006



A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

## Case Narrative - L28845 EX001-3ESPDRES-06

07/19/2006 16:41

#### Sample Receipt

The following samples were received on June 5, 2006 in good condition, unless otherwise noted.

Sample WG-DN-MW-DN-108I-052606-JL-065 (L28845-7) exceeded 2.0 pCi/L for total strontium and has been scheduled for Sr-90 analysis.

#### Revision #1:

Analysis for Sr-90 confirmed the original results for total strontium. The activity detected on the original analysis can be attributed to the Sr-90 nuclide. The Strontium 90 result is included in this report.

#### Revision #2:

Sample WG-DN-MW-DN-108I-052606-JL-065 (L28845-7) analysis for Sr-90 confirmed the original results for total strontium. The activity detected on the original analysis can be attributed to the Sr-90 nuclide. The Strontium 90 result is included in this report.

#### Revision #3:

Report has been revised to include the Sr-90 re-analysis results of sample WG-DN-MW-DN-108I-052606-JL-065 (L28845-7).

Cross Reference Table

Cross Rejerence Luoi	ie
Laboratory ID	Station ID(if applicable)
L28845-1	
L28845-2	
L28845-3	
L28845-4	
L28845-5	
L28845-6	
L28845-7	
L28845-8	
L28845-9	
L28845-10	
	Laboratory ID  L28845-1  L28845-2  L28845-3  L28845-4  L28845-5  L28845-6  L28845-7  L28845-8  L28845-9

Analytical Method Cross Reference Table


Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3	TBE-2010	EPA 906.0
SR-90	TBE-2019	EPA 905.0



## Case Narrative - L28845 EX001-3ESPDRES-06

07/19/2006 16:41

Radiological Parameter	TBE Knoxville Method	Reference Method
TOTAL SR	TBE-2018	EPA 905.0



A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

### Case Narrative - L28845 EX001-3ESPDRES-06

07/19/2006 16:41

#### Gamma Spectroscopy

#### **Quality Control**

Quality control samples were analyzed as WG4117,WG4118.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-TMI-MS-19-053106-JAS-017	L28841-1	WG4117-1
WG-TMI-MS-7-053106-JAS-015	L28846-1	WG4118-1

#### H-3

#### **Quality Control**

Quality control samples were analyzed as WG4110.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### **Laboratory Control Sample**

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### <u>Duplicate Sample</u>

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-TMI-MS-7-053106-JAS-015	L28846-1	WG4110-3

#### **SR-90**

Per client request to confirm original result.

#### **Quality Control**

Quality control samples were analyzed as WG4162, WG4230.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.



2508 Quality Lane Knoxville, TN 37931-3133

## Case Narrative - L28845 EX001-3ESPDRES-06

07/19/2006 16:41

#### TOTAL SR

Client requested reanalysis for confirmation **Quality Control** 

Quality control samples were analyzed as WG4162.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### **Laboratory Control Sample**

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client IDLaboratory IDQC Sample #STILL CREEKL28864-1WG4162-3

#### Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

**Operations Manager** 

# Sample Receipt Summary

06/07/06 09:52

Teledyne Brown Engineering
Sample Receipt Verification/VarianceL28845tR3 / 7 of 90

SR #: SR08727

appropriate container(s)

9 Other (Describe)

Project #: EX001-3ESPDRES-06

LIMS #: L28845

pH at or below 2 on Gamma portion

ient: Exelon	Project #	#: EX001-3ESPDRES-06	LIMS #: L28845
Initiated By: BWILKERSON Init Date: 06/06/06 Rec	ceive Date: 06/0	5/06	
	Notificat	cion of Variance	
Person Notified:		Contacted By:	
Notify Date:			
Notify Method:			
Notify Comment:			
	Client Res	sponse	
Person Responding:			
Response Date:			
Response Method:			
Response Comment			
Criteria		Yes No NA Comment	
1 Shipping container cu and intact.	stody seals prese	ent NA	
2 Sample container cust and intact.	ody seals present	t NA	
3 Sample containers recondition	ceived in good	Y	
4 Chain of custody rec	eived with sample	s Y	
5 All samples listed o received	n chain of custod	у Ү	
6 Sample container lab legible.	els present and	Y	
7 Information on contaction correspond with chair	iner labels in of custody	Y	
8 Sample(s) properly page appropriate contains	preserved and in er(s)	Y	

NA

REFERENCE NUMBER: PROJECT 773)380-6421 fax $45/3$ $6-2$ $2$ $2\times$ $2\times$ $2\times$ $2\times$ $2\times$ $2\times$ $2\times$	
PARAME	
300	
SEQ. DATE TIME SAMPLE IDENTIFICATION NO. MATRIX 8 X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
1 5/26/66 0990 WG-DN-1035- WATER Z X X X	
in the second	
2000	
3 1105 WG-DN-MW-DN-1031- 052606-JH-012	
2) [	
本	
WG-DN-154-65-65-65-65-65-65-65-65-65-65-65-65-65-	
6 W 655 WG DN-BSP=H7-052606 W W W W	
88 - <del>/2-</del> 8	
CALINGTON DATE: SOCION RECEIVED BY: TIME: A TAIL TIME: A TIME: A	26 06 323
11/1/ / DATE: 1/2/20	
Chin TIME: 1/15 (3)  DATE: RECEIVED BY:	
	288
METHOD OF SHIPMENT:	45
Fully Executed Copy Receiving Laboratory Copy	R3 / 6
Tim Go	01
1001-00(SOURCE)GN-CO004	£ 90

ESTOGA-ROVERS & ASSOCIATES 8615 W. Bryn Mawr Avenue Chicago, Illinois 60631	SHIPPED TO (Laboratory Name):	Telephne Brown		
Gao	REFERENCE NUMBER:	PROJECT NAME:	spation station	
RINTED NAME:	<i>≥</i> €	PARAMETERS CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR	REMARKS	IKS
SEQ. DATE TIME SAMPLE IDENTIFICATION NO.	SAMPLE	CONT		
THE COUNTY OF THE PER VI	111	*	O'STROOM O	
日子	人名一名市のなる	* *	Chis referen	\ \ \
100 100 100 100 100 100 100 100 100 100		X X X X	2	
200	53606-3-Tot W	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
THE MIC-DI-MA-DO-TRA-TRA-TRA-TRA-TRA-TRA-TRA-TRA-TRA-TRA				
TOTAL NUMBER OF CONTAINERS			DATES	200
INGUISHED BY: ()	DATE:5/30/06	RECEIVED BY:	TIME:	1322
(1) Statute Original	4/4/06	RECEIVED BY:	DATE	
RELINGUISHED BT:	1175.		DATE:	
RELINQUISHED BY:	UATE: (4)	(4)	TIME:	128
METHOD OF SHIPMENT:		AIR BILL No.		8845
ed Copy	SAMPLE TEAM:	RECEIVED FOR LAB	FOR LABORATORY BY:	<del>R3</del>
	1) UKIK C.	DATE: 6-5-06 TIME:	11:00	/ <del>9</del>
Goldenrod -Sampler Copy	ו וניות (כיייייייייייייייייייייייייייייייייייי			of
1001-00(SOURCE)GN-CO004				90

アミシフト 10/0///// CAUTION - HIGH

		Т		1	Т-	<del></del>	<del></del>	T	<del>                                     </del>		1	T	Π	T	П	<del></del>	Τ		<del>12</del> 6	84	<del>5</del> 11	R3 /	10	of	90
		1000	REMARKS			A THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE										DATE: 6/1/06 TIME: 12 00		TIME:	DATE: TIME:			12776			
RS & ASSOCIATES   SHIPPED TO   (Laboratory Name):   S 60631	REFERENCE NUMBER:	FODY RECORD 45136-23 DRESOLCH	The State Talle Lizziek & PARAMETE	TIME SAMPLE IDENTIFICATION NO. MATRIX S	XXX C V OOG - IN ON ON ON ON ON	NXX NO. W. OCO. M. 103-050000 N. O. O. O. O. O. O. O. O. O. O. O. O. O.	WG-DN-059-04-083200								TOTAL NUMBER OF CONTAINERS	DATES	12 TIME: 1820	SHED BY:  TIME:  (3)			METHOD OF SHIPMENT:	-Fully Executed Copy -Receiving Laboratory Copy -Receiving Laboratory Copy -Receiving Laboratory Copy		1 2	
CONES.			SAMPLER'S SIGNATURE:	SEQ. DATE		90/9×/C										REI INDUISHED BY:	17 D	REL'INCUISHED BY:	RELINQUISHED BY:	$\widehat{\mathfrak{S}}$	METHO	White	Pink	Goldenrod	00-1001

# Internal Chain of Custody

Teledyne Brown Engineering
Internal Chain of Custody

****************** Containernum 1 Sample # L28845-1 Analyst Prod GELI DW H-3 so LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 06/06/2006 00:00 029709 Susan Ogletree Sample Custodian 06/08/2006 14:02 099999 ******************** Sample # L28845-1 Containernum 2 Analyst Prod DW **GELI** H-3 so LCB SR-90 (FAST) Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/06/2006 00:00 Sample Custodian 030854 Donna Webb 06/09/2006 15:38 099999 029728 Lauren Larsen Donna Webb 06/09/2006 15:39 030854 Lauren Larsen 030854 Donna Webb 06/09/2006 15:39 029728 099999 Sample Custodian Donna Webb 06/09/2006 15:39 030854 ****************** Containernum 1 Sample # L28845-2 Analyst Prod GELI DW H-3SO LCB SR-90 (FAST) Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/06/2006 00:00 Susan Ogletree 029709 Sample Custodian 06/08/2006 14:02 099999 ***************** Sample # L28845-2 Containernum 2 Analyst Prod GELI DW H-3 SO LCB SR-90 (FAST) Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/06/2006 00:00 Sample Custodian 030854 Donna Webb 06/09/2006 15:38 099999 Lauren Larsen Donna Webb 029728 06/09/2006 15:39 030854 Donna Webb 099999 Sample Custodian 06/09/2006 15:39 030854 030854 Donna Webb Lauren Larsen 06/09/2006 15:39 029728 ********************* Sample # L28845-3 Containernum 1 Analyst Prod

DW

so

GELI

E-H

Teledyne Brown Engineering
Internal Chain of Custody

***************

Sample # L28845-3 Containernum 1

SR-90 (FAST) LCB

Relinquish Date Relinquish By Received By

06/06/2006 00:00 099999 Sample Custodian

06/08/2006 14:02 099999 Sample Custodian 029709 Susan Ogletree

******************

Sample # L28845-3 Containernum 2

Prod Analyst
GELI DW
H-3 SO
SR-90 (FAST) LCB

Relinquish Date Relinquish By Received By

099999 Sample Custodian 06/06/2006 00:00 Donna Webb Sample Custodian 030854 06/09/2006 15:38 099999 Donna Webb 029728 Lauren Larsen 06/09/2006 15:39 030854 099999 Sample Custodian Donna Webb 06/09/2006 15:39 030854

06/09/2006 15:39 029728 Lauren Larsen 030854 Donna Webb

******************

Sample # L28845-4 Containernum 1

Prod Analyst
GELI DW
H-3 SO
SR-90 (FAST) LCB

Relinquish Date Relinquish By Received By

06/06/2006 00:00 099999 Sample Custodian

06/08/2006 14:02 099999 Sample Custodian 029709 Susan Ogletree

****************

Sample # L28845-4 Containernum 2

Prod Analyst
GELI DW
H-3 SO
SR-90 (FAST) LCB

Relinquish Date Relinquish By Received By

099999 Sample Custodian 06/06/2006 00:00 030854 Donna Webb Sample Custodian 06/09/2006 15:38 099999 Lauren Larsen Donna Webb 029728 06/09/2006 15:39 030854 099999 Sample Custodian Donna Webb 06/09/2006 15:39 030854

06/09/2006 15:39 029728 Lauren Larsen 030854 Donna Webb

Prod Analyst
GELI DW

H-3 SO SR-90 (FAST) LCB

Relinquish Date Relinquish By

Received By

06/06/2006 00:00

Teledyne Brown Engineering
Internal Chain of Custody

****************** Containernum 1 Sample # L28845-5 Received By Relinquish Date 099999 Sample Custodian 06/06/2006 00:00 Susan Ogletree Sample Custodian 029709 06/08/2006 14:02 099999 ****************** Sample # L28845-5 Containernum 2 Analyst Prod GELI DW H-3 SO SR-90 (FAST) LCB Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/06/2006 00:00 030854 Donna Webb Sample Custodian 06/09/2006 15:38 099999 Donna Webb 029728 Lauren Larsen 06/09/2006 15:39 030854 Sample Custodian Donna Webb 099999 06/09/2006 15:39 030854 Lauren Larsen 030854 Donna Webb 06/09/2006 15:39 029728 ***************** Sample # L28845-6 Containernum 1 Analyst Prod GELI DW H-3SO SR-90 (FAST) LCB Relinquish Date Relinquish By Received By 099999 Sample Custodian 06/06/2006 00:00 Susan Ogletree Sample Custodian 029709 06/08/2006 14:02 099999 ***************** Sample # L28845-6 Containernum 2 Analyst Prod GELI DWH-3SO LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/06/2006 00:00 Donna Webb 06/09/2006 15:38 099999 Sample Custodian 030854 029728 Lauren Larsen Donna Webb 06/09/2006 15:39 030854 Donna Webb 099999 Sample Custodian 06/09/2006 15:39 030854 030854 Donna Webb Lauren Larsen 06/09/2006 15:39 029728 ****************** Sample # L28845-7 Containernum 1 Analyst Prod GELI DW so H-3 SR-90 (FAST) LCB SR-90 LCB Received By Relinquish Date Relinquish By

099999

Sample Custodian

Teledyne Brown Engineering
Internal Chain of Custody

****************** Containernum 1 Sample # L28845-7 Received By Relinquish Date 029709 Susan Ogletree Sample Custodian 06/08/2006 14:02 099999 **************** Sample # L28845-7 Containernum 2 Analyst Prod **GELI** DW so H-3LCB SR-90 (FAST) SR-90 LCB Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/06/2006 00:00 030854 Donna Webb Sample Custodian 06/09/2006 15:38 099999 Lauren Larsen Donna Webb 029728 06/09/2006 15:39 030854 Sample Custodian 099999 Donna Webb 06/09/2006 15:39 030854 Donna Webb Lauren Larsen 030854 06/09/2006 15:39 029728 ******************* Containernum 1 Sample # L28845-8 Analyst Prod GELI DW H-3SO LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/06/2006 00:00 Susan Ogletree 029709 Sample Custodian 06/08/2006 14:02 099999 **************** Sample # L28845-8 Containernum 2 Analyst Prod DW GELI so H-3SR-90 (FAST) LCB Received By Relinquish Date Relinquish By 099999 Sample Custodian 06/06/2006 00:00 030854 Donna Webb Sample Custodian 06/09/2006 15:38 099999 Lauren Larsen Donna Webb 029728 06/09/2006 15:39 030854 Donna Webb 030854 Lauren Larsen 06/09/2006 15:39 029728 Donna Webb 099999 Sample Custodian 06/09/2006 15:39 030854 ***************** Sample # L28845-9 Containernum 1 Analyst Prod **GELI** DW so H-3SR-90 (FAST) LCB Received By Relinquish Date Relinquish By Sample Custodian 099999 06/06/2006 00:00 Susan Ogletree Sample Custodian 029709 06/08/2006 14:02 099999

Sample Custodian

099999

06/09/2006 15:39

030854

Teledyne Brown Engineering
Internal Chain of Custody

**************************************		**************************************	*****	****
Prod GELI	Analys D <b>W</b>	st		
н-3	so			
SR-90 (FAST)	LCB			
Relinquish Date Reli	inquish By		Received By	
06/06/2006 00:00			099999	Sample Custodian
06/09/2006 15:38	099999	Sample Custodian	030854	Donna Webb
06/09/2006 15:39	030854	Donna Webb	029728	Lauren Larsen
06/09/2006 15:39	029728	Lauren Larsen	030854	Donna Webb
06/09/2006 15:39	030854	Donna Webb	099999	Sample Custodian
**************************************		**************************************	******	****
Prod GELI	Analys DW	st		
H-3	so			
SR-90 (FAST)	LCB			
Relinquish Date Reli	inquish By		Received By	
06/06/2006 00:00			099999	Sample Custodian
06/08/2006 14:02	099999	Sample Custodian	029709	Susan Ogletree
**************************************		**************************************	****	****
Prod GELI	Analy: DW	st		
н-3	so			
SR-90 (FAST)	LCB			
Relinquish Date Rel: 06/06/2006 00:00	inquish By		Received By 099999	Sample Custodian
06/09/2006 15:38	099999	Sample Custodian	030854	Donna Webb
06/09/2006 15:39	030854	Donna Webb	029728	Lauren Larsen
06/09/2006 15:39	029728	Lauren Larsen	030854	Donna Webb
00/09/2000 15:39	023120		<b>-</b>	

Donna Webb

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L28845

*****	*****	C+005L1 ****************	****	******
L28845-1	WG	WG-DN-MW-DN-103S-052		
Process step	Prod		Analyst	Date
Login			BWILKERSON	06/05/06
Aliquot	GELI		DW	06/09/06
Aliquot	н-3		SO	06/09/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KOJ	06/11/06
Count Room	H-3		KPW	06/11/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
*****	*****	*****	****	*****
L28845-2	WG	WG-DN-MW-DN-103S-052	2606-ЈН-011	*
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	06/05/06
Aliquot	GELI		DW	06/09/06
Aliquot	H-3		SO	06/09/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		ILL	06/12/06
Count Room	H-3		KPW	06/11/06
Count Room	SR-90	(FAST)	KOJ	06/21/06
******	*****	*****	*****	*******
L28845-3	WG	WG-DN-MW-DN-103I-052	2606-JH-012	
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	06/05/06
Aliquot	GELI		DW	06/09/06
Aliquot	H-3		SO	06/09/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		ILL	06/12/06
Count Room	н-3		KPW	06/11/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
*****	*****			******
L28845-4	WG	WG-DN-MW-DN-106S-052	2606-ЈН-013	
Process step	Prod		<u>Analyst</u>	Date
Login			BWILKERSON	06/05/06
Aliquot	GELI		D₩	06/09/06
Aliquot	H-3		SO	06/09/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		ILL	06/12/06
Count Room	H-3		KPW	06/11/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
****	*****	*******	*****	********
L28845-5	WG	WG-DN-MW-DN-101S-052	2606-JL-063	
Process step	Prod		Analyst	<u>Date</u>
Login			BWILKERSON	06/05/06
Aliquot	GELI		DW	06/09/06
Aliquot	H-3		SO	06/09/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		ILL	06/12/06

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L28845

L28845-5	WG	WG-DN-MW-DN-101S-052	:606-JL-063	
Count Room	н-3		KPW	06/11/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
*****	*****	*****	******	*********
L28845-6	WG	WG-DN-MW-DN-101I-052	2606-JL-064	
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			BWILKERSON	06/05/06
Aliquot	GELI		DW	06/09/06
Aliquot	H-3		SO	06/09/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KOJ	06/12/06
Count Room	H-3		KPW	06/11/06
Count Room	SR-90	(FAST)	KOJ	06/20/06
******	*****	*****	*****	*******
L28845-7	WG	WG-DN-MW-DN-108I-052	2606-JL-065	
Process step	Prod		Analyst	Date
Login			KTHURMAN	06/05/06
Aliquot	GELI		DW	06/09/06
Aliquot	H-3		SO	06/09/06
Aliquot	SR-90		LCB	06/14/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	GELI		KPW	06/12/06
Count Room	H-3		KPW	06/11/06
Count Room	SR-90		KOJ	07/01/06
Count Room	SR-90	(FAST)	KOJ	06/21/06
*****	*****	*****	*****	******
L28845-7R1	WG	WG-DN-MW-DN-108I-052		
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	06/05/06
Aliquot	SR-90		LCB	07/13/06
Aliquot	SR-90	(FAST)	LCB	07/13/06
Count Room	SR-90		KOJ	07/19/06
Count Room	SR-90	(FAST)	MVW	07/14/06
****	*****	******	*****	*******
L28845-8	WG	WG-DN-DSP-DN-123-052		
Process step	<u>Prod</u>		Analyst	Date
Login			BWILKERSON	06/05/06
Aliquot	GELI		DW	06/09/06
Aliquot	н-3		SO	06/09/06
Aliquot	SR-90	(FAST)	LCB	06/14/06
Count Room	C T T T		KPW	06/12/06
	GELI			
Count Room	H-3		KPW	06/12/06
Count Room	H-3 SR-90	(FAST)	KOJ	06/20/06
Count Room	H-3 SR-90	******	KOJ ********	
Count Room	H-3 SR-90		KOJ *************** 2606-JL-061	06/20/06 **********
Count Room ******* L28845-9 Process step	H-3 SR-90 *****	******	KOJ *************** 2606-JL-061 Analyst	06/20/06  *********  Date
Count Room ******* L28845-9	H-3 SR-90 ******	******	KOJ *************** 2606-JL-061	06/20/06 **********

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L28845

L28845-9	WG	WG-DN-DSP-DN-123-052	2606-JL-061				
Aliquot	GELI		DW	06/09/06			
Aliquot	H-3		SO	06/09/06			
Aliquot	SR-90	(FAST)	LCB	06/14/06			
Count Room	GELI		KPW	06/12/06			
Count Room	H-3		KPW	06/12/06			
Count Room	SR-90	(FAST)	KOJ	06/20/06			
*************							
L28845-10	WG	WG-DN-DSP-DN-124-052	2606-Л-062				
Process step	Prod		<u>Analyst</u>	Date			
Login			BWILKERSON	06/05/06			
Aliquot	Н-3		SO	06/09/06			
Aliquot	GELI		DW	06/10/06			
Aliquot	SR-90	(FAST)	LCB	06/14/06			
Count Room	GELI		ILL	06/12/06			
Count Room	H-3		KPW	06/12/06			
Count Room	SR-90	(FAST)	KOJ	06/20/06			

# Analytical Results Summary

# Report of Analysis 07/19/06 16:23

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28845

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

(MG) Flag Values  $\supset$  $\supset$  $\supset$ Units Count Sec Σ Ground Water Count Time 33791 120 135 06/11/06 06/20/06 90/11/90 Count Date Matrix: Volume: % Moisture: 05/26/06 09:40 05/26/06 09:40 Reference Aliguot Units 百百 E Collect Start: 05/26/2006 09:40 Volume Aliquot 3078.23 Receive Date: 06/05/2006 450 10 Collect Stop: Run Units pCi/L pCi/L 3.26E+00 1.77E+02 1.30E+00 MDC 1.11E+02 1.99E+00 Uncertainty 7.12E-01 WG-DN-MW-DN-103S-052606-JH-010 1.12E+02 -3.75E-01 8.33E-01 Activity Conc 2007 L28845-1 Sample ID: LIMS Number: Station Description: Radionuclide TOTAL SR MN-54

S_N

33791

06/11/06

05/26/06 09:40

05/26/06 09:40

3078.23

pCi/L pCi/L

pCi/L

3.83E+00

1.77E-01 1.13E+00

2007

**SN-65** NB-95 ZR-95

09-00

2007 2007

7.32E+00

pCi/L

3078.23 3078.23 33791

33791

05/26/06 09:40 | 06/11/06

ш E

3078.23 3078.23

Ξ

3078.23

33791

90/11/90 06/11/06

8

 $\supset$ 

Sec

33791

05/26/06 09:40

Έ

3078.23

pCi/L

pCi/L

pCi/L

3.87E+00 2.86E+01 8.89E+00

2.28E+00

2.49E+00

2007 2007

4.05E+00

1.77E+01 5.41E+00

-1.04E+01

**BA-140** 

LA-140

CS-137

CS-134

-4.99E-01

2007

3.76E+00

6.94E+00

05/26/06 09:40

ž

å

 $\supset$  $\supset$  $\supset$  $\Box$ 

2

n

33791

06/11/06 06/11/06

2

å 2

 $\supset$  $\supset$  $\supset$ 

Sec Sec Sec Sec Sec Sec Sec Sec

33791

06/11/06

33791

90/11/90

05/26/06 09:40 05/26/06 09:40 05/26/06 09:40

05/26/06 09:40

핕 m 国国 Ē

3078.23 3078.23

pCi/L pCi/L

8.19E+00 3.58E+00

4.47E+00

2007 2007 2007

FE-59 CO-58

5.85E-01 4.51E-01

-2.93E-01

2007

pCi/L

3.87E+00

2.35E+00 4.72E+00 2.15E+00 4.39E+00 2.30E+00 4.14E+00 4.06E+00

3078.23

33791

06/11/06

 $\Box$ 

Sec

33791

06/11/06

05/26/06 09:40

No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

10 Jo

Page 1

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification High recovery Low recovery High Spec

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Flag Values

*

Bolded text indicates reportable value.

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28845

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Collect Start: 05/26/2006 10:00 Collect Stop: WG-DN-MW-DN-103S-052606-JH-011 Sample ID: Station:

Kathy Shaw

Receive Date: 06/05/2006

Volume: % Moisture:

Ground Water

Matrix:

(MG)

8 Z Yes e å ^oZ 8 N 9 Z å ž Flag Values  $\supset$  $\supset$  $\supset$  $\supset$ +  $\Box$  $\Box$  $\Box$ Units Count Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Σ 30078 30078 30078 30078 30078 30078 30078 30078 30078 Count Time 30078 30078 135 100 06/17/06 06/17/06 06/17/06 06/12/06 06/17/06 06/17/06 06/17/06 06/12/06 06/12/06 06/12/06 06/12/06 06/11/06 06/21/06 Count Date 05/26/06 10:00 05/26/06 10:00 05/26/06 10:00 05/26/06 10:00 05/26/06 10:00 05/26/06 10:00 05/26/06 10:00 05/26/06 10:00 05/26/06 10:00 05/26/06 10:00 05/26/06 10:00 05/26/06 10:00 Reference Date Aliquot Units 핍 Ē Ξ ᇤ 핕 Ξ 臣 E E 百百 Volume Aliquot 3084.13 3084.13 3084.13 3084.13 3084.13 3084.13 3084.13 3084.13 3084.13 3084.13 3084.13 450 Run # Units pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L 3.65E+00 1.83E+02 8.05E+00 7.50E+00 3.81E+00 3.29E+00 9.80E+00 1.38E+00 3.26E+00 3.59E+00 6.07E+00 3.27E+00 2.56E+01 MDC 2.20E+00 1.85E+00 2.23E+00 4.66E+00 2.44E+00 5.01E+00 3.82E+00 4.10E+00 2.02E+00 5.75E+00 9.60E+01 1.54E+01 Uncertainty 8.03E-01 2.79E+00 4.53E+00 1.01E+00 2.58E+00 -3.12E+00 2.54E+00 2.37E+00 1.46E+00 2.91E+00 -9.72E-01 5.37E+00 -4.49E+02 7.08E-02 Activity Conc 2007 2007 2007 2007 2007 2007 2007 SOP# 2007 2007 2007 L28845-2 LIMS Number: Description: Radionuclide TOTAL SR MN-54 CS-134 CS-137 BA-140 LA-140 CO-58 FE-59 **ZN-65** NB-95 ZR-95 CO-60

= Peak identified in gamma spectrum Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

10 Jo

7

Page

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28845

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID:	Sample ID: WG-DN-MW-DN-1031-052606-JH-012	N-1031-05260	6-JH-012	The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co	Collec	t Start: 0	Collect Start: 05/26/2006 11:05	05		Matrix: Ground Water	ound Wat	er		(MG)
Station:					Collec	Collect Stop:			,	Volume:				
Description:					Receive	e Date: 0	Receive Date: 06/05/2006		≥ %	% Moisture:				
LIMS Number: L28845-3	L28845-3													
		Activity	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count		
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag	Flag Values
1-3	2010	8.11E+01	1.11E+02	1.79E+02	pCi/L		10	m.		06/11/06	135	Σ	n	
TOTAL SR	2018	-2.55E-01	6.64E-01	1.41E+00	pCi/L		450	III	05/26/06 11:05	06/20/06	120	M	n	
MN-54	2007	1.77E+00	1.81E+00	3.09E+00	pCi/L		3100.89	m	05/26/06 11:05	06/12/06	30464	Sec	n	No
CO-58	2007	-1.10E+00	2.02E+00	3.25E+00	pCi/L		3100.89	m	05/26/06 11:05	06/17/06	30464	Sec	n	No
FE-59	2007	5.62E+00	4.33E+00	7.56E+00	pCi/L		3100.89	m	05/26/06 11:05	06/12/06	30464	Sec	n	No
09-02	2007	3.02E-01	1.82E+00	3.03E+00	pCi/L		3100.89	m	05/26/06 11:05	06/12/06	30464	Sec	n	No
ZN-65	2007	1.95E+00	3.95E+00	6.64E+00	pCi/L		3100.89	m	05/26/06 11:05	06/12/06	30464	Sec	n	No
NB-95	2007	1.32E+00	1.99E+00	3.39E+00	pCi/L		3100.89	m	05/26/06 11:05	06/12/06	30464	Sec	n	No No
ZR-95	2007	-1.04E+00	3.51E+00	5.75E+00	pCi/L		3100.89	m	05/26/06 11:05	06/12/06	30464	Sec	ם	No
CS-134	2007	2.12E+00	2.90E+00	3.07E+00	pCi/L		3100.89	m	05/26/06 11:05	06/17/06	30464	Sec	n	No
CS-137	2007	-1.25E+00	2.13E+00	3.12E+00	pCi/L		3100.89	TE	05/26/06 11:05	06/17/06	30464	Sec	n	No -
BA-140	2007	1.02E+01	1.49E+01	2.54E+01	pCi/L		3100.89	m	05/26/06 11:05	06/12/06	30464	Sec	ח	No No
LA-140	2007	-1.27E-01	5.18E+00	8.57E+00	pCi/L		3100.89	百	05/26/06 11:05	06/12/06	30464	Sec	D	No
				LIAMON TO THE REAL PROPERTY OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF			***************************************							

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

of 10

Page 3

Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Compound/Analyte not detected or less than 3 sigma Flag Values U = U* High Spec

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28845

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: WG-DN-MW-DN-106S-052606-JH-013	JN-MW-DI	N-106S-05260t	5-JH-013		Collec	t Start: 0.	Collect Start: 05/26/2006 14:00	00		Matrix: Gr	Ground Water	ĭ		(MG)
Station:					Collec	Collect Stop:				Volume:				
Description:					Receive	Date: 0	Receive Date: 06/05/2006		W%	% Moisture:				
LIMS Number: L28845-4	15-4													
		Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count		***************************************
Radionuclide	%OF#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Тіте	Units	Flag Values	nes
H-3	2010	1.73E+02	1.14E+02	1.78E+02	pCi/L		10	m		90/11/90	135	Σ	N	
TOTAL SR	2018	-8.97E-02	5.51E-01	1.14E+00	pCi/L		450	ш	05/26/06 14:00   06/20/06	06/20/06	120	M	n	
MN-54	2007	1.08E+00	2.72E+00	4.61E+00	pCi/L		3065.58	ш	05/26/06 14:00 06/12/06	06/12/06	12062	Sec	_ n	No
CO-58	2007	-6.54E-01	3.16E+00	5.16E+00	pCi/L		3065.58	m	05/26/06 14:00   06/12/06	06/17/06	12062	Sec	n	No
FE-59	2007	9.53E-01	6.25E+00	1.05E+01	pCi/L		3065.58	m	05/26/06 14:00 06/12/06	06/12/06	12062	Sec	n	No
09-02	2007	-1.78E-01	2.65E+00	4.30E+00	pCi/L		3065.58	lm	05/26/06 14:00 06/12/06	06/12/06	12062	Sec	n	No
ZN-65	2007	-1.00E+00	6.20E+00	1.01E+01	pCi/L		3065.58	ml	05/26/06 14:00 06/12/06	06/12/06	12062	Sec		No
NB-95	2007	-4.95E-02	3.06E+00	5.08E+00	pCi/L		3065.58	m	05/26/06 14:00 06/12/06	06/12/06	12062	Sec	Ŋ	No
ZR-95	2007	-1.77E+00	5.66E+00	9.01E+00	pCi/L		3065.58	mj	05/26/06 14:00		12062	Sec	n	No
CS-134	2007	1.53E+00	3.12E+00	5.24E+00	pCi/L		3065.58	m	05/26/06 14:00	06/12/06	12062	Sec	n	No
CS-137	2007	1.92E+00	2.89E+00	4.92E+00	pCi/L		3065.58	ml	05/26/06 14:00 06/12/06	06/12/06	12062	Sec	_ n	No
BA-140	2007	1.75E+01	2.25E+01	3.89E+01	pCi/L		3065.58	ml	05/26/06 14:00   06/12/06	06/12/06	12062	Sec	n	No
LA-140	2007	1.30E+00	7.33E+00	1.23E+01	pCi/L		3065.58	ī	05/26/06 14:00 06/12/06	06/12/06	12062	Sec	_ n	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

10

Page 4 of

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification High recovery U* High Spec

Compound/Analyte not detected or less than 3 sigma

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28845

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Collect Start: 05/26/2006 14:10 Sample ID: WG-DN-MW-DN-101S-052606-JL-063

Kathy Shaw

Matrix: Ground Water Volume:

(MG)

Station			) ) )		College	Collect Ston.			•••	Volume:				,
Description:					Receiv	Receive Date: 06/05/2006	,05/2006		% W%	% Moisture:				
LIMS Number: L28845-5	15-5													
	TO MAN COMMON CO.	Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count		
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag	Flag Values
H-3	2010	2.20E+02	1.14E+02	1.78E+02	pCi/L		10	ш		90/11/90	135	M	+	
TOTAL SR	2018	1.35E+00	9.48E-01	1.69E+00	pCi/L		450	m	05/26/06 14:10	06/20/06	120	Σ	n	
MN-54	2007	-3.16E-01	2.01E+00	3.39E+00	pCi/L		3056.2	ш	05/26/06 14:10	06/12/06	27841	Sec	Ω	No
CO-58	2007	-7.70E-01	2.30E+00	3.86E+00	pCi/L		3056.2	m	05/26/06 14:10	06/12/06	27841	Sec	Ω	No
FE-59	2007	5.34E+00	4.47E+00	8.17E+00	pCi/L		3056.2	lm.	05/26/06 14:10 06/12/06	06/12/06	27841	Sec	n	No
09-02	2007	4.33E-01	1.86E+00	3.26E+00	pCi/L		3056.2	ml	05/26/06 14:10 06/12/06	06/12/06	27841	Sec	Ω	No
ZN-65	2007	7.73E+00	5.03E+00	8.07E+00	pCi/L		3056.2	Ш	05/26/06 14:10	06/12/06	27841	Sec	Ω	- %
NB-95	2007	2.33E+00	2.24E+00	3.98E+00	pCi/L		3056.2	ml	05/26/06 14:10 06/12/06	06/12/06	27841	Sec	n	No
ZR-95	2007	-2.33E-01	3.93E+00	6.68E+00	pCi/L		3056.2	m	05/26/06 14:10	06/12/06	27841	Sec	n	No
CS-134	2007	1.16E+01	4.58E+00	4.41E+00	pCi/L		3056.2	ш	05/26/06 14:10	06/12/06	27841	Sec	10*	No
CS-137	2007	7.85E-01	2.17E+00	3.75E+00	pCi/L		3056.2	m	05/26/06 14:10	06/12/06	27841	Sec	n	No
BA-140	2007	4.94E+00	1.79E+01	3.02E+01	pCi/L		3056.2	ᄪ	05/26/06 14:10   06/12/06	06/12/06	27841	Sec	n	No
LA-140	2007	5.02E+00	5.21E+00	9.66E+00	pCi/L		3056.2	m	05/26/06 14:10   06/12/06	06/12/06	27841	Sec	n	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

10

Page 5 of

Activity concentration exceeds MDC and 3 sigmä, peak identified(gamma only)
Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification High recovery Low recovery High Spec

Compound/Analyte not detected or less than 3 sigma

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28845

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

(MG)

Ground Water Matrix: Volume: % Moisture: Collect Start: 05/26/2006 15:35 Receive Date: 06/05/2006 Collect Stop: Sample ID: WG-DN-MW-DN-1011-052606-JL-064 L28845-6

LIMS Number:

Station: Description:

Kathy Shaw

	Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count		- COLUMN TO A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STAT
SOP# Conc 2 Sigma	2 Sigma		MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values	ies
2010 <b>4.57E+03</b> 2.08E+02 1.7	2.08E+02	1.7	1.79E+02	pCi/L		10	m		06/11/06	135	M	+ High	
2018 -4.47E-01 9.03E-01 1.93	-	1.9	1.93E+00	pCi/L		450	m	05/26/06 15:35	06/20/06	120	Σ	n	
2007 -1.17E+00 2.13E+00 3.54	2.13E+00	3.54	3.54E+00	pCi/L		3108.09	Ē	05/26/06 15:35	06/12/06	21600	Sec	D	No
2007 -1.20E+00 2.47E+00 <b>4.12</b>	2.47E+00	4.12	4.12E+00	pCi/L		3108.09	Ē	05/26/06 15:35	06/12/06	21600	Sec	n	No
2007 3.70E-01 4.94E+00 <b>8.62</b>	4.94E+00	8.62	8.62E+00	pCi/L		3108.09	ш	05/26/06 15:35	06/12/06	21600	Sec	U	No
2007 -4.63E-01 2.11E+00 3.61E+00	2.11E+00	3.611	3+00	pCi/L		3108.09	m	05/26/06 15:35   06/12/06	06/17/06	21600	Sec	U	No
2007 1.32E+00 4.53E+00 <b>8.00E+00</b>	4.53E+00	8.00I	00+3	pCi/L		3108.09	lm	05/26/06 15:35	06/12/06	21600	Sec	n	No
2007 1.23E+00 2.53E+00 4.43E+00	2.53E+00	4.43E	00+3	pCi/L		3108.09	ш	05/26/06 15:35	06/12/06	21600	Sec	n	No
2007 -2.44E+00 4.31E+00 7.18	4.31E+00	7.18	7.18E+00	pCi/L		3108.09	ш	05/26/06 15:35	06/12/06	21600	Sec	n l	No
2007 5.65E+00 4.16E+00 <b>4.2</b> 9	4.16E+00	4.29	4.29E+00	pCi/L		3108.09	m	05/26/06 15:35	06/12/06	21600	Sec	Ŋ	No
2007 2.51E+00 2.40E+00 <b>4.2</b> 9		4.29	4.29E+00	pCi/L		3108.09	lm	05/26/06 15:35	06/12/06	21600	Sec	Ω	No
2007 -1.43E+01 1.95E+01 3.17	1.95E+01	3.17	3.17E+01	pCi/L		3108.09	m	05/26/06 15:35	06/12/06	21600	Sec	n	No
2007 -2.37E+00 6.02E+00 <b>1.0</b> .	6.02E+00	1.0	1.03E+01	pCi/L		3108.09	m	05/26/06 15:35	06/12/06	21600	Sec	Ŋ	No
2007 <b>8.28E+00</b> 4.88E+00 7.1	4.88E+00	7.1	7.17E+00	pCi/L		3108.09	lm	05/26/06 15:35	06/12/06	21600	Sec	+	Yes

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

10 Jo

Page 6

High recovery Low recovery

High Spec

Activity concentration exceeds MDC and 3 sigma; peak identified (gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma
Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28845

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Collect Start: 05/26/2006 17:00 Collect Stop: Sample ID: WG-DN-MW-DN-108I-052606-JL-065 Station:

Kathy Shaw

Matrix: Ground Water

(WG)

Description:					Receive	Date: (	Receive Date: 06/05/2006		W %	% Moisture:				
LIMS Number: L28845-7	45-7													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	alues
H-3	2010	1.59E+02	1.12E+02	1.76E+02	pCi/L		10	m.		06/11/06	135	M	n	
SR-90	2019	4.37E+00	6.60E-01	8.21E-01	pCi/L		450	m	05/26/06 17:00	90/10//0	400	M	+	
SR-90	2019	2.72E+00	1.29E+00	1.79E+00	pCi/L	RI	450	ш	05/26/06 17:00	07/19/06	100	Σ	+	
TOTAL SR	2018	4.42E+00	1.23E+00	1.77E+00	pCi/L		450	m	05/26/06 17:00	06/21/06	100	M	+ High	
TOTAL SR	2018	3.39E+00	7.74E-01	1.06E+00	pCi/L	R1	450	lm.	05/26/06 17:00	07/14/06	120	Σ	+   High	
MN-54	2007	1.03E+00	2.28E+00	3.87E+00	pCi/L		3058.37	m	05/26/06 17:00 06/12/06	06/12/06	16511	Sec	n	No
CO-58	2007	-1.43E+00	2.49E+00	4.00E+00	pCi/L		3058.37	ш	05/26/06 17:00   06/12/06	06/12/06	16511	Sec	n	No
FE-59	2007	2.40E+00	5.26E+00	8.97E+00	pCi/L		3058.37	E	05/26/06 17:00	06/12/06	16511	Sec	n	No
09-OD	2007	7.64E-01	2.28E+00	3.82E+00	pCi/L		3058.37	m	05/26/06 17:00	06/12/06	16511	Sec	n	No
ZN-65	2007	1.45E+01	5.91E+00	9.95E+00	pCi/L		3058.37	ш	05/26/06 17:00	06/12/06	16511	Sec	N*	No
NB-95	2007	5.40E-01	2.69E+00	4.51E+00	pCi/L		3058.37	m	05/26/06 17:00 06/12/06	06/12/06	16511	Sec	ם	%
ZR-95	2007	6.59E-01	4.90E+00	8.01E+00	pCi/L		3058.37	ᄪ	05/26/06 17:00	06/12/06	16511	Sec	ם	No No
CS-134	2007	5.25E+00	4.11E+00	4.79E+00	pCi/L		3058.37	ш	05/26/06 17:00	06/12/06	16511	Sec	n	No
CS-137	2007	8.96E-03	2.57E+00	4.21E+00	pCi/L		3058.37	m	05/26/06 17:00	06/12/06	16511	Sec	n	No
BA-140	2007	2.67E+00	1.96E+01	3.28E+01	pCi/L		3058.37	ш	05/26/06 17:00 06/12/06	06/12/06	16511	Sec	n	No —
LA-140	2007	2.50E-01	6.29E+00	1.04E+01	pCi/L		3058.37	ш	05/26/06 17:00   06/12/06	06/12/06	16511	Sec	n	No
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			Management of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the	WASANIAN TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa		THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PERSON NAMED AND PARTY OF THE PE					

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification

10

Page 7 of

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

Low recovery

High Spec Bolded text indicates reportable value.

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28845

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: W	Sample ID: WG-DN-DSP-DN-123-052606-JL-060	V-123-052606-	JL-060	NAME OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER	Collect	t Start: 0	Collect Start: 05/26/2006 10:10	10			Ground Water	and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o		(MG)
Station:					Collect Stop:	t Stop:	Collect Stop:		W %	Volume: % Moisture:				
LIMS Number: L28845-8	28845-8				Moodin	Care.								
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Count	Count Units	Fla	Flag Values
H-3	2010	1.31E+04	3.18E+02	1.78E+02	pCi/L		10	m		06/12/06	135	M	+	High
TOTALSR	2018	1.48E+00	8.85E-01	1.55E+00	pCi/L		450	m	05/26/06 10:10 06/20/06	90/02/90	120	M	n	
MN-54	2007	-8.17E-02	2.45E+00	4.04E+00	pCi/L		3127.73	臣	05/26/06 10:10 06/12/06	06/12/06	21600	Sec	Ω	No
CO-58	2007	4.77E-02	2.81E+00	4.65E+00	pCi/L		3127.73	m	05/26/06 10:10	06/12/06	21600	Sec	Ŋ	No
FE-59	2007	3.91E+00	5.86E+00	1.01E+01	pCi/L		3127.73	m	05/26/06 10:10   06/12/06	06/12/06	21600	Sec	n	No
09-02	2007	1.46E+00	2.62E+00	4.46E+00	pCi/L		3127.73	E	05/26/06 10:10	06/12/06	21600	Sec	l U	No
ZN-65	2007	3.33E+00	5.46E+00	9.39E+00	pCi/L		3127.73	E	05/26/06 10:10	06/12/06	21600	Sec	n	No
NB-95	2007	-1.91E+00	2.93E+00	4.69E+00	pCi/L		3127.73	m	05/26/06 10:10 06/12/06	06/12/06	21600	Sec	Ω	No
ZR-95	2007	-1.51E+00	5.27E+00	8.61E+00	pCi/L		3127.73	m	05/26/06 10:10 06/12/06	06/12/06	21600	Sec	n	No
CS-134	2007	5.03E+00	4.15E+00	4.50E+00	pCi/L		3127.73	m	05/26/06 10:10	06/12/06	21600	Sec	n	No
CS-137	2007	-2.53E+00	2.62E+00	4.05E+00	pCi/L		3127.73	m	05/26/06 10:10	06/12/06	21600	Sec	n	No
BA-140	2007	-9.58E+00	2.23E+01	3.62E+01	pCi/L		3127.73	田	05/26/06 10:10 06/12/06	06/12/06	21600	Sec	ח	No
1.A-140	2007	8.75E-01	7.25E+00	1.21E+01	pCi/L		3127.73	ш	05/26/06 10:10	06/12/06	21600	Sec	n	No No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

Page 8

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification

Low recovery

Compound/Analyte not detected or less than 3 sigma

Flag Values U =

U* High Spec

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28845

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Ground Water Matrix: Volume: Collect Start: 05/26/2006 10:20 Collect Stop: WG-DN-DSP-DN-123-052606-JL-061

Sample ID:

Kathy Shaw

Station: Description:

Receive Date: 06/05/2006

% Moisture:

(MG)

8 Z S_N SN å ŝ 2 N ž ž å 2 Z Flag Values High +  $\supset$  $\supset$  $\supset$  $\supset$  $\supset$ +  $\supset$  $\supset$  $\supset$  $\supset$ Count Units Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Σ Σ 21600 21600 21600 21600 21600 21600 21600 21600 Count 21600 21600 Time 21600 135 120 06/12/06 06/17/06 05/26/06 10:20 06/12/06 06/17/06 06/17/06 06/12/06 06/12/06 06/12/06 06/12/06 06/20/06 06/12/06 06/12/06 06/12/06 06/12/06 Count Date 05/26/06 10:20 05/26/06 10:20 05/26/06 10:20 05/26/06 10:20 05/26/06 10:20 05/26/06 10:20 05/26/06 10:20 05/26/06 10:20 05/26/06 10:20 05/26/06 10:20 05/26/06 10:20 05/26/06 10:20 Reference Date Aliquot Units Ē Ē 표 E E E 핕 百 百百 Ē Ξ Volume Aliquot 3064.03 3064.03 3064.03 3064.03 3064.03 3064.03 3064.03 3064.03 3064.03 3064.03 3064.03 450 10 Run Units pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L 9.89E+00 8.50E+00 1.64E+00 4.12E+00 4.60E+00 4.15E+00 9.21E+00 4.87E+00 4.28E+00 4.48E+00 3.55E+01 1.78E+02 3.94E+01 MDC 6.06E+00 3.19E+02 2.82E+00 2.48E+00 5.47E+00 2.93E+00 5.01E+00 3.01E+00 2.60E+00 2.16E+01 4.87E+01 2.56E+00 Uncertainty 8.71E-01 -1.44E+00 1.48E+00 2.23E+00 1.32E+04 7.50E+01 -7.12E-01 3.05E+00 -7.06E-01 5.92E+00 -1.94E-01 6.30E-01 7.32E-01 5.95E-01 Activity Conc 2007 2007 2007 2007 2007 2007 2007 2007 2007 L28845-9 LIMS Number: Radionuclide TOTAL SR CS-134 BA-140 CS-137 MN-54 CO-58 FE-59 09-00 **SN-65** ZR-95 NB-95 K-40

Sec

21600

Ξ

3064.03

pCi/L

1.24E+01

7.15E+00

3.95E+00

LA-140

Yes = Peak identified in gammary **** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

10 oę

Page 9

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High Spec *

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28845

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

(MG)

Count Ground Water Matrix: Volume: % Moisture: Aliquot Collect Start: 05/26/2006 12:00 Aliquot Receive Date: 06/05/2006 Collect Stop: Run Uncertainty Sample ID: WG-DN-DSP-DN-124-052606-JL-062 Activity L28845-10 LIMS Number: Station: Description:

Units Sec Sec Sec Sec Σ 12452 12452 Count 12452 12452 12452 Time 12452 120 135 06/17/06 06/17/06 06/12/06 06/17/06 06/20/06 06/17/06 06/12/06 06/12/06 Count Date 05/26/06 12:00 05/26/06 12:00 05/26/06 12:00 05/26/06 12:00 05/26/06 12:00 Reference

å ô ô 2 2 å

 $\supset$ 

 $\supset$ 

 $\supset$  $\supset$ 

Flag Values

Units

Volume

Units

MDC

E E E E

450 10

pCi/L

1.79E+02 1.23E+00 4.81E+00 5.53E+00 1.25E+01

2.84E+02

1.00E+04

Conc

Radionuclide

TOTAL SR

MN-54

pCi/L pCi/L

2992.17

2992.17

2992.17

pCi/L

3.26E+00 6.74E+00

-1.08E+00

2007

4.89E+00

2007

FE-59 CO-58

2.83E+00

-8.31E-01 4.00E-01

2007

6.42E-01

High

+

Sec Sec Sec Sec Sec Sec Sec 12452 12452 12452 12452 12452 05/26/06 12:00 06/12/06 06/17/06 06/17/06 06/17/06 06/12/06 05/26/06 12:00 05/26/06 12:00 05/26/06 12:00 05/26/06 12:00 05/26/06 12:00 05/26/06 12:00 E E E E Ш 핕 E 핕 2992.17 2992.17 2992.17 2992.17 2992.17 2992.17 2992.17 pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L 5.28E+00 9.88E+00 1.23E+01 6.47E+00 5.85E+00 5.53E+00 4.39E+01 1.48E+01 2.85E+00 3.47E+00 5.14E+00 3.18E+00 6.48E+00 5.92E+00 2.58E+01 7.84E+00 1.38E+00 1.61E+00 7.81E+00 4.76E+00 -3.55E+00 1.55E+00 3.23E-02 4.08E+00 2007 2007 2007 2007 2007 LA-140 CS-134 CS-137 BA-140 09-00 ZN-65 NB-95 ZR-95

οN

 $\supset$  $\supset$  $\supset$ 

õ 2

 $\supset$ 

 $\supset$ 

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

10

Page 10 of

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High Spec *

Compound/Analyte not detected or less than 3 sigma

Flag Values

### QC Results Summary

Page:

# QC Summary Report

for L28845

4:22:19PM

TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company

	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			Method Blank Summary	ary		
TBE Sample ID WG4110-1	<u>Radionuclide</u> H-3	Matrix WO	Count Date/Time 06/11/2006 4:13		Blank Result < 1.700E+00	<u>Units</u> pCi/Total	Qualifier P/F U P
				LCS Sample Summary	ıry		
TBE Sample ID WG4110-2	Radionuclide H-3	Matrix WO	Count Date/Time 06/11/2006 5:16	Spike Value 5.05E+002	LCS Result 4.930E+02	Units Spike Recovery pCi/Total 97.7	<b><u>Range Qualifier P/F</u></b> 70-130 + P
Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000	1706-1 +002 +000						
				Duplicate Summary	y		
TBE Sample ID WG4110-3 L28846-1	Radionuclide H-3	<u>Matrix</u> WG	Count Date/Time 06/11/2006 5:35	Original Result 3.050E+02	DUP Result 2.380E+02	Units RPD pCi/L	Range Qualifier P/F <30 * NE
1.28845	H.3						

L28845 H-3	
Associated Samples for	WG4110
SAMPLENUM	CLIENTID
L28845-1	WG-DN-MW-DN-103S-052606-JH-010
L28845-2	WG-DN-MW-DN-103S-052606-JH-011
L28845-3	WG-DN-MW-DN-103I-052606-JH-012
L28845-4	WG-DN-MW-DN-106S-052606-JH-013
L28845-5	WG-DN-MW-DN-101S-052606-JL-063
L28845-6	WG-DN-MW-DN-1011-052606-JL-064
L28845-7	WG-DN-MW-DN-108I-052606-JL-065
L28845-8	WG-DN-DSP-DN-123-052606-JL-060
L28845-9	WG-DN-DSP-DN-123-052606-JL-061
L28845-10	WG-DN-DSP-DN-124-052606-JL-062

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected + D * * * 4 L H

Spiking level < 5 times activity

Pass Fail Not evaluated

7

Page:

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated

Spiking level < 5 times activity

Pass Fail Not evaluated

к К К К К

Nuclide not detected

Positive Result

+ > * *

# QC Summary Report

L28845

for

4:22:19PM

7/19/2006

BROWN ENGINEERING
A Teledyne Technologies Company

SR-90

And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	Method Blank Summary	nary		
TBE Sample ID Radionuclide WG4230-1 SR-90	Matrix         Count Date/Time           WO         07/14/2006 13:53	Blank Result < 5.950E-01	<u>U<b>nits</b></u> pCi/Total	Qualifier P/F U P
	LCS Sample Summary	ıary		
TBE Sample ID Radionuclide WG4230-2 SR-90	Matrix         Count Date/Time         Spike Value           WO         07/14/2006         13:53         2.11E+002	LCS Result 1.800E+02	Units Spike Recovery pCi/Total 85.3	Range         Qualifier         P/F           70-130         +         P
Spike ID: 90SR-0406051-1 Spike conc: 2.11E+002 Spike Vol: 1.00E+000				
L28845 SR-90				
Associated Samples for	WG4162			
SAMPLENUM	CLIENTID			
L28845-1	WG-DN-MW-DN-103S-052606-JH-010			
L28845-2	WG-DN-MW-DN-103S-052606-JH-011			
L28845-3	WG-DN-MW-DN-103I-052606-JH-012			
L28845-4	WG-DN-MW-DN-106S-052606-JH-013			
L28845-5	WG-DN-MW-DN-101S-052606-JL-063			
L28845-7	WG-DN-MW-DN-108I-052606-JL-065			
L28845-8	WG-DN-DSP-DN-123-052606-JL-060			
L28845-9	WG-DN-DSP-DN-123-052606-JL-061			
L28845-10	WG-DN-DSP-DN-124-052606-JL-062			
Associated Samples for	WG4230			
SAMPLENUM	CLIENTID			
L28845-7R1	WG-DN-MW-DN-108I-052606-JL-065			
				]

QC Summary Report

L28845

for

4:22:19PM



	٦	
1		
	•	

- International Control	Qualifier P/F U P		Range         Qualifier         P/F           70-130         +         P			Range Qualifier P/F <30 ** NE	
	<u>Units</u> pCi/Total		UnitsSpike RecoveryRapCi/Total107.170-			Units RPD Rep	
ry	Blank Result Uni	y	LCS Result Un 6.250E+01 pCi			DUP Result Un < 1.570E+00 pc	
Method Blank Summary	mi v	LCS Sample Summary	Spike Value 5.84E+001		Duplicate Summary	Original Result < 1.630E+00	
	Count Date/Time 06/20/2006 20:27		Count Date/Time 06/20/2006 20:27			Count Date/Time 06/20/2006 20:27	
	<u>Matrix</u> WO		Matrix WO			<u>Matrix</u> WG	
3	Radionuclide TOTAL SR		Radionuclide TOTAL SR	11905 +002 001		Radionuclide TOTAL SR	
	TBE Sample ID WG4162-1		TBE Sample ID WG4162-2	Spike ID: 90SR-011905 Spike conc: 2.34E+002 Spike Vol: 2.50E-001		TBE Sample ID WG4162-3 L28864-1	

ć Page:

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected

+ D * * * a L X

Spiking level < 5 times activity Pass Fail Not evaluated

### Raw Data

Raw Data Sheet (rawdata) Jul 03 2006, 03:49 pm Page: 1

Work Order: <u>L28845</u>	Cu	Customer: Exelon							Page:	<del>г</del>			
Nuclide: H-3	Pr	Project : <u>EX001-3</u> 1	: EX001-3ESPDRES-06	1									t analymt
n Analysis	Reference	Volume/		Milking	Mount Weight Reco	Count Recovery Date/time	Counter	Total counts			- 1	Err. imgrowen	- 1
Client ID # D L28845-1 H-3	Date/time	Aliquot 10 ml	nace/time	חמרפ/ ביווום	1	11-jun-06 09:43	LS5	570	135	3.73	135	.198	Q _a
MG-DN-MM-DN-103S-052606-JH-010 Activity: 1.12E+02 Error: 1.11E+02 L28845-2 H-3	5+02	MDC: 1.77E+02 *			0	11-jun-06 12:02	LS5	247	135	3.73	135	.191	80
MG-DN-MW-DN-LU3S-U52600-UR-U11 Activity: -4.49E+02 Error: 9.6E+01 L28845-3 H-3 WG DN MM DN 1031-052606-IH-012	+01	MDC: 1.83E+02 *			0	11-jun-06 14:21	LS5	551	135	3.73	135	.195	SO
MG-DN-NN-DN-LO31 OZZOC CH. CZ. ACTIVILY: 8.11E+01 EXTOR: 1.11E+02 L28845-4 H-3 WG-DN-NW-DN-106S-052606-7H-013	E+02	MDC: 1,79E+02 *	*		0	11-jun-06 16:40	LS5	605	135	3.73	135	. 196	80
Activity: 1.73E+02 Error: 1.14 L28845-5 H-3 WG-DN-MW-DN-101S-052606-JL-063	E+02	MDC: 1,78E+02 *	*		0	11-jun-06 18:58	LS5	633	135	3.73	135	.197	OS
Activity: 2.2E+02 * Error: 1.14E+02 L28845-6 H-3 WG-DN-MW-DN-1011-052606-JL-064	.14E+02 64	MDC: 1.78E+02 10 ml			0	11-jun-06 21:16	LS5	3166	135	3.73	135	.195	90
Activity: 4.57E+03 * Error: 2.08E+02 L28845-7 H-3 WG-DN-MW-DN-108I-052606-JL-065	.08 <u>B</u> +02	MDC: 1.79E+02 10 ml			0	11-jun-06 23:34	LS5	598	135	3.73	135	.199	80
Activity: 1.59E+02 Error: 1.12E+02 L28845-8 WG-DN-DSP-DN-123-052606-JL-060	12E+02	MDC: 1.76E+02 *	*		0	12-jun-06 01:52	LS5	8170	135	3.73	135	.196	80
Activity: 1.31E+04 * Error: 3.18E+02 L28845-9 WG-DN-DSP-DN-123-052606-JL-061	3.18E+02 161	MDC: 1.78E+02			0	12-jun-06 04:11	LS5	8242	135	3.73	135	. 196	80
+04 24-0	3.19E+02	MDC: 1.78E+02 10 ml			0	12-jun-06 06:29	LSS	6348	135	3.73	135	.195	[©] L2
Activity: lB+04 * Error: 2.84E+02	2.84E+02	MDC: 1.758+02											8845 R3 / 36 of 90

Raw Data Sheet (rawdata) Jul 19 2006, 04:39 pm

		Analyst	LCB		LCB	
	Decay &	Eff. Ingrowth Analyst Factor	.498 .8		.49 .468	
		Bff.			4.	
		Bkg dt (min)	800		100	
2		Bkg	305		72	
Page: 2		Sample Bkg	400		100	
		Total	459		132	
		Counter Total	хэр		X1B	
		Mount Count Counter Total Sample Bkg Bkg Weight Recovery Date(time ID counts dt(min) counts dt(min)	01-jul-06 01:05		jul-06 0.0359 106.21 19-jul-06 9:15 90.86 16:51	
		Recogn	102.37		106.21	
					0.0359	
	ı	Scavenge Milking Date/time Date/time	20-jun-06 30-jun-06 0.0346 102.37 01-jul-06 15:00 09:00 43.01 01:05	)	18-jul-06 09:15	
	SSPDRES-06	Scavenge Milking Date/time Date/tin	20-jun-06		14-jul-06 18- 07:00 0	
Customer: Exelon	Project : EX001-3ESPDRES-06	Volume/	450 ml	MDC: 8.21E-01	450 ml	MDC: 1.79E+00
Cust	Pro	Reference Date/time	26-may-06		3y-06	
	***************************************	malysis	SR-90	052606-JL-	SR-90	052606-JL-
L28845	-90	Run 7	:	N-1081-	R1	N-1081-
Work Order: <u>128845</u>	Nuclide: SR-90	Sample ID Run Analysis	L28845-7	WG-DN-MW-DN-108I-052606-JL-065 Activity: 4.37E+00 * Error: 6.6E-01	L28845-7	WG-DN-MW-DN-1081-052606-JL-065 Activity: 2.72E+00 * Error: 1.29E+00

Raw Data Sheet (rawdata) Jul 19 2006, 04:39 pm

Customer: Exelon

Work Order: L28845

Page:

L28845 R3 / LCB LCB LCB LCB LCB LCB LCB ECB ECB LCB LCB Analyst Ingrowth Десау & .998 .998 .998 .998 .998 .998 .997 .998 .998 .998 .998 .346 .352 .341 .345 .349 .356 .351 .354 .347 .341 .362 BEE. 400 400 400 400 400 400 400 400 400 400 400 dt (min) Bkg 289 279 300 305 280 315 279 291 292 262 279 counts Bkg 120 120 120 100 120 120 120 120 100 120 120 dt (min) Sample counts 111 118 226 129 Total 111 167 107 82 88 84 92 Counter YIA XIC YIA YIC XID  $x_{2A}$ YZB Ylb Y3A Y3B **X3D** 20-jun-06 20:31 21-jun-06 00:37 20-jun-06 20:31 21-jun-06 00:37 20-jun-06 20:31 20-jun-06 20:31 14-jul-06 13:53 20-jun-06 20:31 20-jun-06 20:31 20-jun-06 20:31 20-jun-06 20:31 Recovery Date/time 80.38 83.06 76.08 90.08 60.48 55.11 67.74 63.98 79.57 62.90 97.04 Mount Weight 0 0 0 0 0 0 0 0 Milking Date/time 20-jun-06 15:00 20-jun-06 15:00 20-jun-06 15:00 14-ju1-06 07:00 20-jun-06 15:00 20-jun-06 15:00 20-jun-06 15:00 20-jun-06 15:00 20-jun-06 15:00 20-jun-06 15:00 20-jun-06 15:00 Scavenge Date/time Project : EX001-3ESPDRES-06 MDC: 1.38E+00 MDC: 1.77E+00 MDC: 1.06E+00 MDC: 1.14E+00 MDC: 1.69E+00 MDC: 1.93E+00 MDC: 1.23E+00 MDC: 1.41E+00 MDC: 1.55E+00 MDC: 1.64E+00 MDC: 1.3E+00 Aliquot Volume/ 겉 띹 Ę E E 겉 딭 딭 핕 댙 덭 450 ml 450 450 450 450 450 450 450 450 450 450 26-may-06 15:35 Activity: 1.46E+00 * Error: 8.03E-01 L28845-3 TOTAL SR 26-may-06 26-may-06 26-may-06 26-may-06 26-may-06 26-may-06 26-may-06 26-may-06 26-may-06 26-may-06 Reference Date/time Activity: 3.39E+00 * Error: 7.74E-01 L28845-8 TOTAL SR 26-ma) Activity: 4.42E+00 * Error: 1.23E+00 11:05 10:10 10:00 17:00 17:00 12:00 09:40 Activity: 8,33E-01 Error: 7,12E-01 L28845-2 TOTAL SR 26-me Activity: -2.55E-01 Error: 6.64E-01 14:00 Activity: -8.97E-02 Error: 5.51E-01 14:10 Activity: 1.35E+00 Error: 9.48E-01
L28845-6 TOTAL SR 26-m Activity: 1.48E+00 Error: 8.85E-01 10:20 Activity: 7.32E-01 Error: 8.71E-01 Activity: -4.47E-01 Error: 9.03E-01 Error: 6.42E-01 WG-DN-DSP-DN-123-052606-JL-060 WG-DN-MW-DN-103S-052606-JH-010 WG-DN-MW-DN-1081-052606-JL-065 WG-DN-MW-DN-106S-052606-JH-013 WG-DN-MW-DN-1018-052606-JL-063 WG-DN-MW-DN-1081-052606-JL-065 WG-DN-DSP-DN-124-052606-JL-062 WG-DN-MW-DN-103S-052606-JH-011 WG-DN-MW-DN-103I-052606-JH-012 WG-DN-MW-DN-1011-052606-JL-064 WG-DN-DSP-DN-123-052606-JL-061 TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR Analysis R Run # Activity: 4E-01 Nuclide: SR-90 L28845-4 L28845-5 L28845-7 L28845-7 Sample ID L28845-1

38 of 90

Sec. Review: Analyst: LIMS:

VAN VIMO TIGA demo Descent Fina Laboratore Compa Descent 12 TIN 2006 00:05:07.25

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 12-JUN-2006 09:05:07.35 TBE10 12892256 HpGe ******* Aquisition Date/Time: 11-JUN-2006 23:41:48.88

LIMS No., Customer Name, Client ID: WG L28845-1 EX DRES

Sample ID : 10L28845-1 Smple Date: 26-MAY-2006 09:40:00.

 Sample Type
 : WG
 Geometry
 : 103L083004

 Quantity
 : 3.07820E+00 L
 BKGFILE
 : 10BG060306MT

 Start Channel
 : 80
 Energy Tol
 : 1.00000
 Real Time
 : 0 09:23:16.42

 End Channel
 : 4090
 Pk Srch Sens
 5.00000
 Live time
 : 0 09:23:10.86

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1	1	66.53*	222	992	1.24	132.18	7.35E-01	6.58E-03 27.5	1.38E+00
2	1	92.72*	6	907	1.05	184.57	1.52E+00	1.71E-04****	7.56E-01
3	1	139.83	174	1091	0.87	278.83	1.91E+00	5.15E-03 34.8	5.76E-01
4	1	185.60*	7	823	1.42	370.42	1.77E+00	1.99E-04899.3	1.65E+00
5	1	198.47*	221	962	1.88	396.16	1.71E+00	6.55E-03 31.8	1.56E+00
6	1	238.72*	50	760	1.33	476.70	1.54E+00	1.49E-03122.2	1.99E+00
7	1	352.24*	83	430	2.15	703.86	1.17E+00	2.45E-03 61.0	1.06E+00
8	1	501.21	96	370	5.07	1001.97	8.96E-01	2.84E-03 47.4	3.05E+00
9	1	583.56*	13	229	2.24	1166.79	7.98E-01	3.81E-04295.6	1.68E+00
10	1	595.69	141	194	2.45	1191.06	7.86E-01	4.17E-03 23.0	3.03E+00
11	1	609.33*	65	252	1.60	1218.36	7.72E-01	1.93E-03 60.5	1.43E+00
12	1	911.72*	10	147	2.00	1823.58	5.64E-01	2.93E-04301.2	3.36E-01
13	1	1765.72	50	31	3.60	3533.29	3.39E-01	1.48E-03 26.5	2.75E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected Decay Corr 2-Sig	<b>з</b> та
Nuclide	Energy	Area	%Abn	%Eff	pCi/L pCi/L %Err	cor
RA-226	186.21	7	3.28*	1.772E+00	3.004E+00 3.004E+00 1798.5	38
AC-228	835.50		1.75	6.047E-01	Line Not Found	
	911.07	10	27.70*	5.644E-01	1.646E+00 1.655E+00 602.4	ł5
TH-228	238.63	50	44.60*	1.538E+00	1.904E+00 1.936E+00 244.3	31
	240.98	And Ann 1000 5000 6000 5000	3.95	1.529E+00	Line Not Found	
TH-232	583.14	13	30.25	7.982E-01	1.386E+00 1.386E+00 591.1	L4
	911.07	10	27.70*	5.644E-01	1.646E+00 1.646E+00 602.4	15
	969.11		16.60	5.377E-01	Line Not Found	
U-235	143.76		10.50*	1.905E+00	Line Not Found	
	163.35		4.70	1.860E+00	Line Not Found	
	185.71	7	54.00	1.772E+00	1.825E-01 1.825E-01 1798.5	58
	205.31		4.70	1.684E+00	Line Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Acquisition date : 11-JUN-2006 23:41:48 Sample ID : 10L28845-1

Total number of lines in spectrum Number of unidentified lines 13 9 Number of lines tentatively identified by NID 4

30.77%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error	%Error Flags	3
RA-226	1600.00Y	1.00	3.004E+00	3.004E+00	54.04E+00 1	798.58	
AC-228	5.75Y	1.01	1.646E+00	1.655E+00	9.971E+00	602.45	
TH-228	1.91Y	1.02	1.904E+00	1.936E+00	4.729E+00	244.31	
TH-232	1.41E+10Y	1.00	1.646E+00	1.646E+00	9.915E+00	602.45	
U-235	7.04E+08Y	1.00	1.825E-01	1.825E-01	32.82E-01 1	798.58 K	

Total Activity: 8.382E+00 8.423E+00

Grand Total Activity: 8.382E+00 8.423E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines
Sample ID: 10L28845-1 Acquisit

Page : 3
Acquisition date : 11-JUN-2006 23:41:48

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff I	Flags
1 1 1 1 1 1	66.53 92.72 139.83 198.47 352.24 501.21 595.69 609.33	222 6 174 221 83 96 141 65	992 907 1091 962 430 370 194 252	1.24 1.05 0.87 1.88 2.15 5.07 2.45 1.60		698 994 1183	8 9 12 13 17 14	6.58E-03 1.71E-04 5.15E-03 6.55E-03 2.45E-03 2.84E-03 4.17E-03 1.93E-03	**** 69.7 63.6 **** 94.7 46.1	7.35E-01 1.52E+00 1.91E+00 1.71E+00 1.17E+00 8.96E-01 7.86E-01 7.72E-01	
1	1765.72	50	31	3.60	3533.29	3528	13	1.48E-03	53.0	3.39E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 13
Number of unidentified lines 9
Number of lines tentatively identified by NID 4

30.77%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Error	%Error	Flags
RA-226	1600.00Y	1.00	3.004E+00	3.004E+00	_	1798.58	5
AC-228	5.75Y	1.01	2.599E-01	2.613E-01	129.3E-01	4948.84	
TH-228	1.91Y	1.02	1.904E+00	1.936E+00	4.729E+00	244.31	
TH-232	1.41E+10Y	1.00	1.386E+00	1.386E+00	8.193E+00	591.14	
	Total Acti	lvity :	6.554E+00	6.587E+00			

Grand Total Activity: 6.554E+00 6.587E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

Interfe	ring	Interfered				
Nuclide	Line	Nuclide	Line			
TH-232	911.07	AC-228	911.07			

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
RA-226	3.004E+00	5.404E+01	7.903E+01	0.000E+00	0.038
AC-228	2.613E-01	1.293E+01	1.183E+01	0.000E+00	0.022
TH-228	1.936E+00	4.729E+00	5.990E+00	0.000E+00	0.323
TH-232	1.386E+00	8.193E+00	1.301E+01	0.000E+00	0.107

### ---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	-1.724E+01		2.064E+01	3.335E+01	0.000E+00	-0.517
NA-24	-6.739E+01		1.263E+02	Half-Life to	o short	
K-40	-1.741E+00		3.222E+01	5.386E+01	0.000E+00	-0.032
CR-51	-3.330E+01		2.627E+01	4.187E+01	0.000E+00	-0.795
MN-54	-3.747E-01		1.990E+00	3.256E+00	0.000E+00	-0.115
CO-57	-1.632E+00		2.051E+00	3.349E+00	0.000E+00	-0.487
CO-58	-2.934E-01		2.354E+00	3.871E+00	0.000E+00	-0.076
FE-59	4.466E+00		4.717E+00	8.190E+00	0.000E+00	0.545
CO-60	5.849E-01		2.147E+00	3.577E+00	0.000E+00	0.164
ZN-65	4.509E-01		4.392E+00	7.318E+00	0.000E+00	0.062
SE-75	-3.149E+00		2.998E+00	4.857E+00	0.000E+00	-0.648
SR-85	2.202E+01		2.866E+00	5.451E+00	0.000E+00	4.040
Y-88	1.075E+00		2.577E+00	4.341E+00	0.000E+00	0.248
NB-94	-9.726E-01		2.059E+00	3.288E+00	0.000E+00	-0.296
NB-95	1.774E-01		2.302E+00	3.829E+00	0.000E+00	0.046
ZR-95	1.130E+00		4.136E+00	6.937E+00	0.000E+00	0.163
MO-99	-2.208E+02		9.923E+02	1.634E+03	0.000E+00	-0.135
RU-103	3.292E+00		3.193E+00	4.680E+00	0.000E+00	0.703
RU-106	2.801E+00		2.053E+01	3.240E+01	0.000E+00	0.086
AG-110m	2.041E-01		2.155E+00	3.530E+00	0.000E+00	0.058
SN-113	-1.615E+00		2.947E+00	4.730E+00	0.000E+00	-0.341
SB-124	-1.642E+00		5.916E+00	3.964E+00	0.000E+00	-0.414
SB-125 TE-129M	1.019E+00		5.920E+00	9.667E+00	0.000E+00	0.105
IE-129M I-131	1.239E+01		3.137E+01	5.276E+01	0.000E+00	0.235
BA-133	1.785E+00		8.904E+00	1.444E+01	0.000E+00	0.124
CS-134	3.236E+00		3.419E+00	4.904E+00	0.000E+00	0.660
CS-134 CS-136	4.051E+00		4.059E+00	3.764E+00	0.000E+00	1.076
CS-136 CS-137	4.383E+00		4.744E+00	8.138E+00	0.000E+00	0.539
CE-139	2.491E+00		2.278E+00	3.869E+00	0.000E+00	0.644
BA-140	-1.363E+00		2.207E+00	3.576E+00	0.000E+00	-0.381
LA-140	-1.037E+01		1.768E+01	2.858E+01	0.000E+00	-0.363
CE-141	-4.990E-01		5.410E+00	8.888E+00	0.000E+00	-0.056
CE-141 CE-144	9.074E+00		5.595E+00	8.128E+00	0.000E+00	1.116
EU-152	6.509E+00		1.866E+01	2.637E+01	0.000E+00	0.247
EU-152 EU-154	-1.666E+00		7.751E+00	1.065E+01	0.000E+00	-0.156
U-235	-3.757E+00		4.170E+00	6.794E+00	0.000E+00	-0.553
U-238	2.738E+01		1.858E+01	2.688E+01	0.000E+00	1.018
AM-241	1.758E+02 -2.037E+01		2.242E+02	3.800E+02	0.000E+00	0.463
שויו – אד	-2.U3/E+UI		1.998E+01	2.804E+01	0.000E+00	-0.727

```
A,10L28845-1
                     ,06/12/2006 09:05,05/26/2006 09:40,
                                                                 3.078E+00,WG L28845-1 EX
B,10L28845-1
                     , LIBD
                                             ,06/07/2006 09:32,103L083004
C, RA-226
           , YES,
                     3.004E+00,
                                    5.404E+01,
                                                   7.903E+01,,
                                                                    0.038
C, AC-228
           , YES,
                     2.613E-01,
                                    1.293E+01,
                                                   1.183E+01,,
                                                                    0.022
C, TH-228
           , YES,
                     1.936E+00,
                                    4.729E+00,
                                                   5.990E+00,,
                                                                    0.323
C, TH-232
            ,YES,
                     1.386E+00,
                                    8.193E+00,
                                                   1.301E+01,,
                                                                    0.107
C, BE-7
            , NO
                    -1.724E+01,
                                    2.064E+01,
                                                   3.335E+01,,
                                                                   -0.517
C, K-40
           , NO
                   -1.741E+00,
                                                   5.386E+01,,
                                    3.222E+01,
                                                                   -0.032
C, CR-51
           , NO
                    -3.330E+01,
                                    2.627E+01,
                                                   4.187E+01,,
                                                                   -0.795
C, MN-54
           , NO
                   -3.747E-01,
                                    1.990E+00,
                                                   3.256E+00,,
                                                                   -0.115
           , NO
C, CO-57
                   -1.632E+00,
                                                   3.349E+00,,
                                    2.051E+00,
                                                                   -0.487
C, CO-58
           , NO
                                                   3.871E+00,,
                    -2.934E-01,
                                    2.354E+00,
                                                                   -0.076
C, FE-59
            , NO
                     4.466E+00,
                                    4.717E+00,
                                                   8.190E+00,,
                                                                    0.545
C, CO-60
                                                   3.577E+00,,
            , NO
                     5.849E-01,
                                    2.147E+00,
                                                                    0.164
C, ZN-65
            , NO
                     4.509E-01,
                                    4.392E+00,
                                                   7.318E+00,,
                                                                    0.062
C, SE-75
                                                   4.857E+00,,
           , NO
                    -3.149E+00,
                                    2.998E+00,
                                                                    -0.648
           , NO
C,SR-85
                     2.202E+01,
                                    2.866E+00,
                                                   5.451E+00,,
                                                                    4.040
C, Y-88
            , NO
                     1.075E+00,
                                    2.577E+00,
                                                   4.341E+00,,
                                                                    0.248
C, NB-94
           , NO
                    -9.726E-01,
                                    2.059E+00,
                                                   3.288E+00,,
                                                                   -0.296
C, NB-95
            , NO
                     1.774E-01,
                                    2.302E+00,
                                                   3.829E+00,,
                                                                    0.046
C, ZR-95
            , NO
                     1.130E+00,
                                                   6.937E+00,,
                                    4.136E+00,
                                                                    0.163
                                    9.923E+02,
C,MO-99
            , NO
                    -2.208E+02,
                                                   1.634E+03,,
                                                                   -0.135
C, RU-103
           , NO
                     3.292E+00,
                                    3.193E+00,
                                                   4.680E+00,,
                                                                    0.703
C, RU-106
            , NO
                     2.801E+00,
                                    2.053E+01,
                                                   3.240E+01,,
                                                                    0.086
C,AG-110m
           , NO
                     2.041E-01,
                                    2.155E+00,
                                                   3.530E+00,,
                                                                    0.058
C, SN-113
            , NO
                    -1.615E+00,
                                    2.947E+00,
                                                   4.730E+00,,
                                                                   -0.341
C,SB-124
            , NO
                    -1.642E+00,
                                    5.916E+00,
                                                   3.964E+00,,
                                                                   -0.414
C,SB-125
            , NO
                     1.019E+00,
                                    5.920E+00,
                                                   9.667E+00,,
                                                                    0.105
C, TE-129M
           , NO
                     1.239E+01,
                                    3.137E+01,
                                                   5.276E+01,,
                                                                    0.235
C, I-131
            , NO
                     1.785E+00,
                                                   1.444E+01,,
                                    8.904E+00,
                                                                    0.124
C,BA-133
                     3.236E+00,
            , NO
                                    3.419E+00,
                                                   4.904E+00,,
                                                                    0.660
C, CS-134
            , NO
                                                   3.764E+00,,
                     4.051E+00,
                                    4.059E+00,
                                                                    1.076
C,CS-136
            , NO
                     4.383E+00,
                                                   8.138E+00,,
                                    4.744E+00,
                                                                    0.539
C, CS-137
            , NO
                     2.491E+00,
                                    2.278E+00,
                                                   3.869E+00,,
                                                                    0.644
C,CE-139
            , NO
                    -1.363E+00,
                                    2.207E+00,
                                                   3.576E+00,,
                                                                   -0.381
C,BA-140
            , NO
                    -1.037E+01,
                                    1.768E+01,
                                                   2.858E+01,,
                                                                   -0.363
C, LA-140
            , NO
                    -4.990E-01,
                                    5.410E+00,
                                                   8.888E+00,,
                                                                   -0.056
           ,NO
C,CE-141
                     9.074E+00,
                                    5.595E+00,
                                                   8.128E+00,,
                                                                    1.116
C, CE-144
            , NO
                     6.509E+00,
                                    1.866E+01,
                                                   2.637E+01,,
                                                                    0.247
C, EU-152
            , NO
                    -1.666E+00,
                                    7.751E+00,
                                                   1.065E+01,,
                                                                   -0.156
C, EU-154
            , NO
                    -3.757E+00,
                                    4.170E+00,
                                                   6.794E+00,,
                                                                   -0.553
C, U-235
            , NO
                     2.738E+01,
                                                   2.688E+01,,
                                    1.858E+01,
                                                                    1.018
C, U-238
            , NO
                     1.758E+02,
                                    2.242E+02,
                                                   3.800E+02,,
                                                                    0.463
```

1.998E+01,

2.804E+01,,

-0.727

C, AM-241

, NO

-2.037E+01,

Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 12-JUN-2006 22:54:45.23 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 12-JUN-2006 14:33:14.25

LIMS No., Customer Name, Client ID: L28845-2 WG DRESDEN

Smple Date: 26-MAY-2006 10:00:00. Sample ID : 04L28845-2

Geometry : 043L082004 Sample Type : WG BKGFILE : 04BG060306MT : 3.08410E+00 L Quantity End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 08:21:18.48 MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1	6	63.50*	115	603	1.21	127.58	5.61E-01	3.83E-03 40.7	2.33E+00
2	6	66.22*	258	738	1.32	133.01	6.60E-01	8.59E-03 20.6	
3	1	73.72*	557	1564	2.90	148.02	9.38E-01	1.85E-02 16.2	2.62E+01
4	1	92.52*	0	689	1.05	185.66	1.53E+00	1.31E-06****	1.11E+00
5	1	139.84	225	686	1.04	280.35	2.04E+00	7.47E-03 22.2	9.88E-01
6	1	174.76	107	563	1.40	350.25	1.97E+00	3.55E-03 39.4	1.26E+00
7	1	185.58*	60	809	2.19	371.90	1.92E+00	1.99E-03107.3	4.25E+00
8	1	198.55*	219	670	1.52	397.85	1.86E+00	7.27E-03 27.1	3.68E+00
9	1	295.23	47	328	1.01	591.35	1.45E+00	1.55E-03 69.0	1.58E+00
10	1	351.73*	28	200	1.15	704.41	1.28E+00	9.19E-04114.9	3.05E+00
11	1	583.27*	26	163	1.75	1167.74	8.77E-01	8.77E-04113.7	7.99E-01
12	1	595.99	98	167	1.70	1193.19	8.63E-01	3.25E-03 28.0	2.83E+00
13	1	609.07*	113	98	2.46	1219.37	8.49E-01	3.75E-03 27.6	1.37E+00
14	1	911.15*	12	110	2.12	1823.77	6.21E-01	3.85E-04228.0	8.71E-01
15	1	1120.14*	56	75	3.31	2241.86	5.27E-01	1.88E-03 41.1	1.00E+00
16	1	1173.79*	18	60	2.62	2349.18	5.08E-01	5.82E-04120.7	8.60E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: activation

	11				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
CO-60	1173.22	18	100.00	5.083E-01	1.004E+00	1.010E+00	241.36
	1332.49		100.00*	4.604E-01	Li	ne Not Found	

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
RA-226	186.21	60	3.28*	1.923E+00	2.767E+01	2.767E+01	214.69
AC-228	835.50		1.75	6.649E-01	Li:	ne Not Found	
	911.07	12	27.70*	6.211E-01	1.963E+00	1.974E+00	456.08
TH-232	583.14	26	30.25	8.771E-01	2.895E+00	2.895E+00	227.33
	911.07	12	27.70*	6.211E-01	1.963E+00	1.963E+00	456.08

163.35		4.70	2.007E+00	Line Not Found	
185.71	60	54.00	1.923E+00	1.681E+00 1.681E+00	214.69
205.31		4.70	1.833E+00	Line Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2
Sample ID: 04L28845-2 Acquisition date: 12-JUN-2006 14:33:14

Total number of lines in spectrum 16
Number of unidentified lines 12

Number of lines tentatively identified by NID 4 25.00%

Nuclide Type : activation

Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags

CO-60 5.27Y 1.01 1.004E+00 1.010E+00 2.438E+00 241.36 K

Total Activity: 1.004E+00 1.010E+00

Nuclide Type : natural

Uncorrected Decay Corr 2-Sigma Decay Corr Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags RA-226 1.00 2.767E+01 2.767E+01 1600.00Y 5.941E+01 214.69 AC-228 5.75Y 1.01 1.963E+00 1.974E+00 9.003E+00 456.08 TH-232 1.41E+10Y 1.00 1.963E+00 1.963E+00 8.952E+00 456.08 7.04E+08Y 1.00 1.681E+00 U-235 3.609E+00 214.69 K 1.681E+00 _____ _____

Total Activity: 3.328E+01 3.329E+01

Grand Total Activity: 3.428E+01 3.430E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines

Sample ID: 04L28845-2

Acquisition date: 12-JUN-2006 14:33:14

Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
6	63.50	115	603	1.21	127.58	123	15	3.83E-03	81.4	5.61E-01	
6	66.22	258	738	1.32	133.01			8.59E-03		6.60E-01	
1	73.72	557	1564	2.90	148.02	140	15	1.85E-02	32.4	9.38E-01	
1	92.52	0	689	1.05	185.66	182	8	1.31E-06	***	1.53E+00	
1	139.84	225	686	1.04	280.35	276	9	7.47E-03	44.3	2.04E+00	
1	174.76	107	563	1.40	350.25	347	8	3.55E-03	78.9	1.97E+00	
1	198.55	219	670	1.52	397.85	392	11	7.27E-03	54.2	1.86E+00	
1	295.23	47	328	1.01	591.35	587	8	1.55E-03	****	1.45E+00	
1	351.73	28	200	1.15	704.41	701	7	9.19E-04	***	1.28E+00	
1	595.99	98	167	1.70	1193.19	1189	11	3.25E-03	56.0	8.63E-01	
1	609.07	113	98	2.46	1219.37	1214	11	3.75E-03	55.1	8.49E-01	
1	1120.14	56	75	3.31	2241.86	2236	16	1.88E-03	82.2	5.27E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 16
Number of unidentified lines 12
Number of lines tentatively identified by NID 4 25.00%

Nuclide Type : activation

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags
CO-60 5.27Y 1.01 1.004E+00 1.010E+00 2.438E+00 241.36

Total Activity : 1.004E+00 1.010E+00

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags RA-226 1600.00Y 1.00 2.767E+01 2.767E+01 5.941E+01 214.69 TH-232 1.41E+10Y 1.00 2.568E+00 2.568E+00 5.302E+00 206.49 .......... Total Activity: 3.024E+01 3.024E+01

Grand Total Activity : 3.125E+01 3.125E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

Interfering Interfered

Nuclide Line Nuclide Line

TH-232 911.07 AC-228 911.07

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
CO-60	1.010E+00	2.438E+00	3.651E+00	0.000E+00	0 277
RA-226	2.767E+01				0.277
TH-232		5.941E+01	6.655E+01	0.000E+00	0.416
111-232	2.568E+00	5.302E+00	1.088E+01	0.000E+00	0.236
Non-Id	dentified Nuclide	s			
	Key-Line				
	Activity K.I	. Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L) Ide	ed	(pCi/L)		•
			- '		
BE-7	2.024E+01	1.863E+01	3.216E+01	0.000E+00	0.630
NA-24	-6.872E+02	2.335E+02	Half-Life to	oo short	
K-40	-1.708E+00	3.006E+01	4.920E+01	0.000E+00	-0.035
CR-51	-2.599E+01	2.289E+01	3.675E+01	0.000E+00	-0.707
MN-54	2.912E+00	1.846E+00	3.257E+00	0.000E+00	0.894
CO-57	-1.320E+00	1.725E+00	2.762E+00	0.000E+00	-0.478
CO-58	-9.722E-01	2.231E+00	3.593E+00	0.000E+00	-0.271
FE-59	4.530E+00	4.660E+00	8.049E+00	0.000E+00	0.563
ZN-65	5.366E+00	5.013E+00	7.502E+00	0.000E+00	0.715
SE-75	-9.332E-01	2.594E+00	4.169E+00	0.000E+00	-0.224
SR-85	1.972E+01	2.601E+00	5.122E+00	0.000E+00	3.850
Y-88	-1.870E+00	2.368E+00	3.642E+00	0.000E+00	-0.513
NB-94	1.556E-02	1.781E+00	2.961E+00	0.000E+00	0.005
NB-95	2.578E+00	2.198E+00	3.813E+00	0.000E+00	0.676
ZR-95	-3.124E+00	3.819E+00	6.071E+00	0.000E+00	-0.515
MO-99	7.958E+01	1.061E+03	1.762E+03	0.000E+00	0.045
RU-103	2.491E+00	2.505E+00	4.297E+00	0.000E+00	0.580
RU-106	3.518E+00	1.768E+01	2.911E+01	0.000E+00	0.121
AG-110m	1.073E-01	1.889E+00	3.079E+00	0.000E+00	0.035
SN-113	-9.175E-01	2.572E+00	4.162E+00	0.000E+00	-0.220
SB-124	4.247E-01	4.857E+00	3.593E+00	0.000E+00	0.118
SB-125	-7.271E-01	5.248E+00	8.501E+00	0.000E+00	-0.086
TE-129M	4.095E+01	2.957E+01	5.029E+01	0.000E+00	0.814
I-131	-9.647E+00	7.764E+00	1.224E+01	0.000E+00	-0.788
BA-133	4.276E+00	2.778E+00	4.169E+00	0.000E+00	1.026
CS-134	2.537E+00	4.104E+00	3.273E+00	0.000E+00	0.775
CS-136	1.791E+00	4.311E+00	7.227E+00	0.000E+00	0.248
CS-137	7.075E-02	2.020E+00	3.289E+00	0.000E+00	0.022
CE-139	4.390E-01	1.762E+00	2.953E+00	0.000E+00	0.149
BA-140	2.794E+00	1.538E+01	2.557E+01	0.000E+00	0.109
LA-140	2.372E+00	5.754E+00	9.803E+00	0.000E+00	0.242
CE-141	3.340E+00	4.603E+00	6.505E+00	0.000E+00	0.513
CE-144	-9.556E-01	1.561E+01	2.161E+01	0.000E+00	-0.044
EU-152	-4.209E+00	6.232E+00	9.052E+00	0.000E+00	-0.465
EU-154	2.810E-01	3.465E+00	5.653E+00	0.000E+00	0.050
AC-228	1.974E+00	9.003E+00	1.283E+01	0.000E+00	0.154
TH-228	2.992E+00	3.871E+00	6.105E+00	0.000E+00	0.490
U-235	2.338E+01	1.444E+01	2.101E+01	0.000E+00	1.112
U-238	1.157E+02	1.984E+02	3.386E+02	0.000E+00	0.342
AM-241	1.301E+01	1.950E+01	2.758E+01	0.000E+00	0.472
	· · ·			0.0000100	0 . 1 / 2

```
A,04L28845-2
                     ,06/12/2006 22:54,05/26/2006 10:00,
                                                                 3.084E+00,L28845-2 WG DR
B,04L28845-2
                     ,LIBD
                                             ,06/12/2006 10:58,043L082004
C, CO-60
           , YES,
                                    2.438E+00,
                                                   3.651E+00,,
                     1.010E+00,
                                                                     0.277
C, RA-226
            , YES,
                     2.767E+01,
                                                   6.655E+01,,
                                    5.941E+01,
                                                                     0.416
            , YES,
C, TH-232
                     2.568E+00,
                                                   1.088E+01,,
                                    5.302E+00,
                                                                     0.236
C,BE-7
           , NO
                     2.024E+01,
                                    1.863E+01,
                                                   3.216E+01,,
                                                                     0.630
C, K-40
                                                   4.920E+01,,
           , NO
                    -1.708E+00,
                                    3.006E+01,
                                                                    -0.035
C, CR-51
           , NO
                    -2.599E+01,
                                                   3.675E+01,,
                                    2.289E+01,
                                                                    -0.707
C, MN-54
                     2.912E+00,
                                                   3.257E+00,,
            , NO
                                    1.846E+00,
                                                                     0.894
C, CO-57
           , NO
                                                   2.762E+00,,
                    -1.320E+00,
                                    1.725E+00,
                                                                    -0.478
C, CO-58
           , NO
                    -9.722E-01,
                                    2.231E+00,
                                                   3.593E+00,,
                                                                    -0.271
C, FE-59
                                                   8.049E+00,,
            , NO
                     4.530E+00,
                                    4.660E+00,
                                                                     0.563
C, ZN-65
           , NO
                     5.366E+00,
                                    5.013E+00,
                                                   7.502E+00,,
                                                                     0.715
C, SE-75
           , NO
                    -9.332E-01,
                                    2.594E+00,
                                                   4.169E+00,,
                                                                    -0.224
C, SR-85
                     1.972E+01,
            , NO
                                    2.601E+00,
                                                   5.122E+00,,
                                                                     3.850
C, Y-88
            , NO
                    -1.870E+00,
                                    2.368E+00,
                                                   3.642E+00,,
                                                                    -0.513
C, NB-94
            , NO
                     1.556E-02,
                                    1.781E+00,
                                                   2.961E+00,,
                                                                     0.005
C, NB-95
            , NO
                     2.578E+00,
                                    2.198E+00,
                                                   3.813E+00,,
                                                                     0.676
C, ZR-95
                                                   6.071E+00,,
            , NO
                    -3.124E+00,
                                    3.819E+00,
                                                                    -0.515
            , NO
C, MO-99
                                    1.061E+03,
                     7.958E+01,
                                                   1.762E+03,,
                                                                     0.045
C, RU-103
            , NO
                     2.491E+00,
                                    2.505E+00,
                                                   4.297E+00,,
                                                                     0.580
C,RU-106
            , NO
                     3.518E+00,
                                    1.768E+01,
                                                   2.911E+01,,
                                                                     0.121
C, AG-110m
                                                   3.079E+00,,
           , NO
                     1.073E-01,
                                    1.889E+00,
                                                                     0.035
            , NO
C, SN-113
                    -9.175E-01,
                                    2.572E+00,
                                                   4.162E+00,,
                                                                    -0.220
C,SB-124
            , NO
                     4.247E-01,
                                    4.857E+00,
                                                   3.593E+00,,
                                                                     0.118
C,SB-125
            , NO
                    -7.271E-01,
                                    5.248E+00,
                                                   8.501E+00,,
                                                                    -0.086
C, TE-129M
           ,NO
                     4.095E+01,
                                    2.957E+01,
                                                   5.029E+01,,
                                                                     0.814
C, I-131
            ,NO
                    -9.647E+00,
                                                   1.224E+01,,
                                    7.764E+00,
                                                                    -0.788
C, BA-133
            , NO
                     4.276E+00,
                                    2.778E+00,
                                                   4.169E+00,,
                                                                     1.026
                                                   3.273E+00,,
C,CS-134
            , NO
                     2.537E+00,
                                    4.104E+00,
                                                                     0.775
C,CS-136
            , NO
                     1.791E+00,
                                    4.311E+00,
                                                   7.227E+00,,
                                                                     0.248
            , NO
C,CS-137
                     7.075E-02,
                                    2.020E+00,
                                                   3.289E+00,,
                                                                     0.022
C, CE-139
            , NO
                     4.390E-01,
                                    1.762E+00,
                                                   2.953E+00,,
                                                                     0.149
            , NO
C,BA-140
                     2.794E+00,
                                                   2.557E+01,,
                                    1.538E+01,
                                                                     0.109
C, LA-140
            , NO
                     2.372E+00,
                                                   9.803E+00,,
                                    5.754E+00,
                                                                     0.242
            , NO
C, CE-141
                     3.340E+00,
                                    4.603E+00,
                                                   6.505E+00,,
                                                                     0.513
C, CE-144
            , NO
                    -9.556E-01,
                                                   2.161E+01,,
                                    1.561E+01,
                                                                    -0.044
C, EU-152
            , NO
                    -4.209E+00,
                                    6.232E+00,
                                                   9.052E+00,,
                                                                    -0.465
C, EU-154
                                                   5.653E+00,,
            , NO
                     2.810E-01,
                                    3.465E+00,
                                                                     0.050
C, AC-228
            , NO
                     1.974E+00,
                                    9.003E+00,
                                                   1.283E+01,,
                                                                     0.154
            , NO
C, TH-228
                     2.992E+00,
                                    3.871E+00,
                                                   6.105E+00,,
                                                                     0.490
C, U-235
            , NO
                     2.338E+01,
                                    1.444E+01,
                                                   2.101E+01,,
                                                                     1.112
C, U-238
            , NO
                     1.157E+02,
                                    1.984E+02,
                                                   3.386E+02,,
                                                                     0.342
C, AM-241
            , NO
```

1.950E+01,

2.758E+01,,

0.472

1.301E+01,

Sec. Review: Analyst: LIMS:  $\frac{V}{V}$ 

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 09:33:35.20 TBE13 P-10727B HpGe ******** Aquisition Date/Time: 12-JUN-2006 14:33:18.19

LIMS No., Customer Name, Client ID: L28845-3 WG DRESDEN

Sample ID : 13L28845-3 Smple Date: 26-MAY-2006 11:05:00.

Sample Type : WG Geometry : 133L082404
Quantity : 3.10090E+00 L BKGFILE : 13BG060306MT
Start Channel : 25 Energy Tol : 1.50000 Real Time : 0 08:27:52.74
End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 08:27:44.16

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8	8 8 3 5 1 1	63.32* 65.89 77.24* 84.77* 87.15* 139.83* 185.71*	123 272 88 13 37 251 49 252	803 1047 715 854 741 807 788 649	1.19 1.56 1.13 1.40 1.12 1.14 1.06	126.74 131.87 154.56 169.61 174.37 279.65 371.35 396.43	1.51E+00 1.58E+00 2.27E+00	8.93E-03 2.88E-03 4.25E-044 1.22E-031 8.22E-03	22.9 59.9 152.0 138.7 23.1 127.3	1.75E+00 1.09E+00
9 10 11 12 13	1 1 1 1	238.65* 294.98* 351.71* 595.86 609.17*	158 10 30 123 63	677 545 407 280 183	1.12 1.20 2.29 1.41 1.75	477.19 589.78 703.20 1191.39 1218.01	1.94E+00 1.70E+00 1.51E+00 1.02E+00 1.01E+00	3.42E-044 9.74E-043 4.03E-03	180.1	1.19E+00 1.01E+00 1.76E+00 1.33E+00 1.85E+00
14 15	1 1	1714.01 1765.87	44 76	41 64	3.97 2.81	3428.98 3532.82	4.63E-01 4.55E-01	1.44E-03 2.49E-03	35.3 26.7	2.31E+00 2.16E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-S19111a
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĈi/L	%Error
RA-226	186.21	49	3.28*	2.179E+00	1.950E+01	1.950E+01	254.60
TH-228	238.63	158	44.60*	1.938E+00	5.218E+00	5.309E+00	72.88
	240.98		3.95	1.927E+00	Liı	ne Not Found	
U-235	143.76		10.50*	2.278E+00	Li	ne Not Found	
	163.35		4.70	2.256E+00	Li	ne Not Found	
	185.71	49	54.00	2.179E+00	1.184E+00	1.184E+00	254.60
	205.31		4.70	2.093E+00	Li	ne Not Found	

Flag: "*" = Keyline

2

Summary of Nuclide Activity

Acquisition date : 12-JUN-2006 14:33:18 Sample ID : 13L28845-3

Total number of lines in spectrum 15 Number of unidentified lines 13

Number of lines tentatively identified by NID 2 13.33%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	%Error	Flags
RA-226	1600.00Y	1.00	1.950E+01	1.950E+01	4.964E+01	254.60	
TH-228	1.91Y	1.02	5.218E+00	5.309E+00	3.869E+00	72.88	
U-235	7.04E+08Y	1.00	1.184E+00	1.184E+00	3.015E+00	254.60	K

Total Activity : 2.590E+01 2.599E+01

Grand Total Activity: 2.590E+01 2.599E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 13L28845-3

Page: 3 Acquisition date : 12-JUN-2006 14:33:18

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
8 8 3 5 1 1 1	63.32 65.89 77.24 84.77 87.15 139.83 198.25 294.98 351.71 595.86	123 272 88 13 37 251 252 10 30 123	803 1047 715 854 741 807 649 545 407 280	1.19 1.56 1.13 1.40 1.12 1.14 1.19 1.20 2.29 1.41	126.74 131.87 154.56 169.61 174.37 279.65 396.43 589.78 703.20 1191.39	123 140 163 163 276 392 585 698 1185	13 19 15 15 8 8 10 11	8.22E-03 8.26E-03 3.42E-04 9.74E-04 4.03E-03	45.7 **** **** 46.3 42.3 **** 57.4	7.08E-01 8.10E-01 1.25E+00 1.51E+00 1.58E+00 2.27E+00 2.12E+00 1.70E+00 1.51E+00	
1 1	609.17 1714.01	63 44	183 41	1.75 3.97			15	2.07E-03 1.44E-03	**** 70.5	1.01E+00 4.63E-01	•
1	1765.87	76	64	2.81	3532.82	3523	Τ./	2.49E-03	53.3	4.55E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 15 Number of unidentified lines 13 Number of lines tentatively identified by NID 2 13.33%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error	%Error	Flags
RA-226	1600.00Y	1.00	1.950E+01	1.950E+01	4.964E+01	254.60	
TH-228	1.91Y	1.02	5.218E+00	5.309E+00	3.869E+00	72.88	
	Total Acti	vity:	2.472E+01	2.481E+01			

Grand Total Activity : 2.472E+01 2.481E+01

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted
"A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
RA-226	1.950E+01	4.964E+01	6.294E+01	0.000E+00	0.310
TH-228	5.309E+00	3.869E+00	5.056E+00	0.000E+00	1.050

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
				_		
BE-7	9.308E+00		1.722E+01	2.861E+01	0.000E+00	0.325
NA-24	-2.953E+02		1.983E+02	Half-Life to		
K-40	-4.621E+00		2.934E+01	4.996E+01	0.000E+00	-0.092
CR-51	-1.308E+01		2.169E+01	3.471E+01	0.000E+00	-0.377
MN-54	1.768E+00		1.807E+00	3.094E+00	0.000E+00	0.571
CO-57	6.098E-01		1.592E+00	2.675E+00	0.000E+00	0.228
CO-58	-1.098E+00		2.017E+00	3.254E+00	0.000E+00	-0.337
FE-59	5.615E+00		4.330E+00	7.556E+00	0.000E+00	0.743
CO-60	3.015E-01		1.817E+00	3.030E+00	0.000E+00	0.100
ZN-65	1.949E+00		3.949E+00	6.642E+00	0.000E+00	0.293
SE-75	-1.126E+00		2.403E+00	3.919E+00	0.000E+00	-0.287
SR-85 Y-88	1.892E+01		2.518E+00	4.800E+00	0.000E+00	3.941
1-88 NB-94	-4.950E-01		2.286E+00	3.686E+00	0.000E+00	-0.134
NB-94 NB-95	-1.822E+00		1.767E+00	2.763E+00	0.000E+00	-0.659
ZR-95	1.319E+00 -1.039E+00		1.990E+00	3.388E+00	0.000E+00	0.389
MO-99			3.505E+00 9.982E+02	5.751E+00	0.000E+00	-0.181
RU-103	6.379E+01 3.607E+00			1.665E+03	0.000E+00	0.038
RU-103 RU-106	-1.289E+01		2.374E+00 1.635E+01	4.048E+00	0.000E+00	0.891
AG-110m	1.536E+01		1.789E+00	2.608E+01 3.023E+00	0.000E+00	-0.494
SN-113	1.602E-01				0.000E+00	0.508
SB-124	-1.328E-01		2.392E+00 4.619E+00	3.971E+00 3.401E+00	0.000E+00	0.040
SB-124 SB-125	-8.124E-01		4.860E+00	7.957E+00	0.000E+00 0.000E+00	-0.039
TE-129M	-1.086E+01		2.784E+01	4.501E+01	0.000E+00	-0.102 -0.241
I-131	4.417E+00		7.321E+00	1.240E+01	0.000E+00	0.356
BA-133	1.395E+00		2.664E+00	3.867E+00	0.000E+00	0.361
CS-134	2.117E+00		2.900E+00	3.073E+00	0.000E+00	0.689
CS-134	-6.816E-01		3.937E+00	6.443E+00	0.000E+00	-0.106
CS-137	-1.247E+00		2.126E+00	3.119E+00	0.000E+00	-0.400
CE-139	-7.664E-01		1.707E+00	2.769E+00	0.000E+00	-0.277
BA-140	1.016E+01		1.494E+01	2.763E+01	0.000E+00	0.400
LA-140	-1.269E-01		5.177E+00	8.568E+00	0.000E+00	-0.015
CE-141	5.261E+00		4.278E+00	6.288E+00	0.000E+00	0.837
CE-144	-8.161E+00		1.395E+01	2.043E+01	0.000E+00	-0.399
EU-152	-1.105E+01		6.487E+00	8.273E+00	0.000E+00	-1.336
EU-154	1.962E+00		3.227E+00	5.442E+00	0.000E+00	0.360
AC-228	-1.004E+00		8.213E+00	1.158E+01	0.000E+00	-0.087
TH-232	-9.986E-01		8.167E+00	1.151E+01	0.000E+00	-0.087
U-235	-4.268E+00		1.492E+01	1.974E+01	0.000E+00	-0.216
U-238	1.963E+02		2.215E+02	3.428E+02	0.000E+00	0.573
AM-241	4.439E+00		1.479E+01	2.144E+01	0.000E+00	0.207

```
A,13L28845-3
                     ,06/13/2006 09:33,05/26/2006 11:05,
                                                                 3.101E+00,L28845-3 WG DR
                     ,LIBD
B, 13L28845-3
                                             ,08/05/2005 08:16,133L082404
C, RA-226
           , YES,
                     1.950E+01,
                                    4.964E+01,
                                                   6.294E+01,,
                                                                    0.310
C, TH-228
           , YES,
                     5.309E+00,
                                                   5.056E+00,,
                                    3.869E+00,
                                                                    1.050
C, BE-7
           , NO
                     9.308E+00,
                                    1.722E+01,
                                                   2.861E+01,,
                                                                    0.325
C, K-40
           , NO
                   -4.621E+00,
                                    2.934E+01,
                                                   4.996E+01,,
                                                                   -0.092
C, CR-51
                                                   3.471E+01,,
                                                                   -0.377
           , NO
                    -1.308E+01,
                                    2.169E+01,
C, MN-54
           , NO
                     1.768E+00,
                                    1.807E+00,
                                                   3.094E+00,,
                                                                    0.571
C, CO-57
           , NO
                     6.098E-01,
                                    1.592E+00,
                                                   2.675E+00,,
                                                                    0.228
C, CO-58
           , NO
                   -1.098E+00,
                                    2.017E+00,
                                                   3.254E+00,,
                                                                   -0.337
C, FE-59
           , NO
                     5.615E+00,
                                    4.330E+00,
                                                   7.556E+00,,
                                                                    0.743
C, CO-60
           , NO
                     3.015E-01,
                                    1.817E+00,
                                                   3.030E+00,,
                                                                    0.100
C, ZN-65
                                                   6.642E+00,,
           , NO
                    1.949E+00,
                                    3.949E+00,
                                                                    0.293
C,SE-75
           , NO
                   -1.126E+00,
                                    2.403E+00,
                                                   3.919E+00,,
                                                                   -0.287
                     1.892E+01,
C, SR-85
           , NO
                                    2.518E+00,
                                                   4.800E+00,,
                                                                    3.941
C, Y-88
           ,NO
                    -4.950E-01,
                                    2.286E+00,
                                                   3.686E+00,,
                                                                   -0.134
C, NB-94
           , NO
                    -1.822E+00,
                                    1.767E+00,
                                                   2.763E+00,,
                                                                   -0.659
C, NB-95
           , NO
                     1.319E+00,
                                    1.990E+00,
                                                   3.388E+00,,
                                                                    0.389
C, ZR-95
           , NO
                    -1.039E+00,
                                    3.505E+00,
                                                   5.751E+00,,
                                                                   -0.181
C, MO-99
           ,NO
                                                   1.665E+03,,
                     6.379E+01,
                                    9.982E+02,
                                                                    0.038
C, RU-103
           , NO
                     3.607E+00,
                                    2.374E+00,
                                                   4.048E+00,,
                                                                    0.891
C, RU-106
           , NO
                    -1.289E+01,
                                    1.635E+01,
                                                   2.608E+01,,
                                                                   -0.494
C,AG-110m
           , NO
                     1.536E+00,
                                    1.789E+00,
                                                   3.023E+00,,
                                                                    0.508
C,SN-113
           , NO
                     1.602E-01,
                                    2.392E+00,
                                                   3.971E+00,,
                                                                    0.040
C,SB-124
           , NO
                    -1.328E-01,
                                    4.619E+00,
                                                   3.401E+00,,
                                                                   -0.039
C,SB-125
           , NO
                    -8.124E-01,
                                    4.860E+00,
                                                   7.957E+00,,
                                                                   -0.102
C, TE-129M
                                                   4.501E+01,,
                                                                   -0.241
           , NO
                    -1.086E+01,
                                    2.784E+01,
C, I-131
           , NO
                     4.417E+00,
                                    7.321E+00,
                                                   1.240E+01,,
                                                                    0.356
C,BA-133
            , NO
                     1.395E+00,
                                    2.664E+00,
                                                   3.867E+00,,
                                                                    0.361
C,CS-134
           , NO
                     2.117E+00,
                                    2.900E+00,
                                                   3.073E+00,,
                                                                    0.689
C, CS-136
           ,NO
                    -6.816E-01,
                                    3.937E+00,
                                                   6.443E+00,,
                                                                   -0.106
C, CS-137
           , NO
                    -1.247E+00,
                                    2.126E+00,
                                                   3.119E+00,,
                                                                   -0.400
C,CE-139
           , NO
                    -7.664E-01,
                                    1.707E+00,
                                                   2.769E+00,,
                                                                   -0.277
C,BA-140
            , NO
                     1.016E+01,
                                    1.494E+01,
                                                   2.543E+01,,
                                                                    0.400
C, LA-140
            , NO
                    -1.269E-01,
                                    5.177E+00,
                                                   8.568E+00,,
                                                                   -0.015
C, CE-141
            , NO
                                                   6.288E+00,,
                     5.261E+00,
                                    4.278E+00,
                                                                    0.837
C, CE-144
            , NO
                    -8.161E+00,
                                    1.395E+01,
                                                   2.043E+01,,
                                                                   -0.399
C, EU-152
                                                   8.273E+00,,
            , NO
                    -1.105E+01,
                                    6.487E+00,
                                                                   -1.336
C, EU-154
            , NO
                     1.962E+00,
                                    3.227E+00,
                                                   5.442E+00,,
                                                                    0.360
C,AC-228
            , NO
                    -1.004E+00,
                                    8.213E+00,
                                                   1.158E+01,,
                                                                   -0.087
C, TH-232
            , NO
                    -9.986E-01,
                                    8.167E+00,
                                                   1.151E+01,,
                                                                   -0.087
            , NO
C, U-235
                    -4.268E+00,
                                    1.492E+01,
                                                   1.974E+01,,
                                                                   -0.216
C, U-238
            , NO
                     1.963E+02,
                                    2.215E+02,
                                                   3.428E+02,,
                                                                    0.573
C, AM-241
```

1.479E+01,

2.144E+01,,

0.207

, NO

4.439E+00,

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 12-JUN-2006 18:13:21.85 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 12-JUN-2006 14:52:11.70

LIMS No., Customer Name, Client ID: L28845-4 WG DRESDEN

Sample ID : 07L28845-4 Smple Date: 26-MAY-2006 14:00:00.

 Sample Type
 : WG
 Geometry
 : 073L082504

 Quantity
 : 3.06560E+00 L
 BKGFILE
 : 07BG060306MT

 Start Channel
 : 40
 Energy Tol
 : 1.00000
 Real Time
 : 0 03:21:04.54

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time
 : 0 03:21:02.21

MDA Constant : 0.00 Library Used: LIBD

Pk It	Energy	Area	Bkgnd	FWHM Ch	annel	%Eff	Cts/Sec	%Err	Fit
	139.83* 198.50*	85 96				2.36E+00 2.24E+00			

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Summary of Nuclide Activity

Sample ID : 07L28845-4

Page: 2
Acquisition date: 12-JUN-2006 14:52:11

Total number of lines in spectrum

2

Number of unidentified lines 2
Number of lines tentatively identified by NID 0

0.00%

**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found

"M" = Manually accepted

"E" = Manually edited

"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 07L28845-4

Page: 3
Acquisition date: 12-JUN-2006 14:52:11

Ιt Energy Area Bkgnd FWHM Channel Left Pw Cts/Sec %Err %Eff Flags 139.83 85 369 2.38 280.34 276 10 7.03E-03 91.4 2.36E+00 1 198.50 96 269 1.74 397.76 392 10 7.95E-03 72.2 2.24E+00

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 2
Number of unidentified lines 2
Number of lines tentatively identified by NID 0 0.00%
**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	2.111E-01		2.682E+01	4.369E+01	0.000E+00	0.005
NA-24	-6.512E+02		2.449E+02	Half-Life		
K-40	1.529E+01		3.601E+01	6.590E+01	0.000E+00	0.232
CR-51	-3.579E+01		3.324E+01	5.303E+01	0.000E+00	-0.675
MN-54	1.075E+00		2.721E+00	4.607E+00	0.000E+00	0.233
CO-57	-1.974E-01		2.616E+00	4.266E+00	0.000E+00	-0.046
CO-58	-6.543E-01		3.155E+00	5.158E+00	0.000E+00	-0.127
FE-59	9.526E-01		6.250E+00	1.047E+01	0.000E+00	0.091
CO-60	-1.779E-01		2.650E+00	4.301E+00	0.000E+00	-0.041
ZN-65	-1.002E+00		6.198E+00	1.014E+01	0.000E+00	-0.099
SE-75	-2.087E+00		3.822E+00	6.111E+00	0.000E+00	-0.341
SR-85	2.630E+01		3.941E+00	7.936E+00	0.000E+00	3.313
Y-88	-2.522E+00		3.062E+00	4.613E+00	0.000E+00	-0.547
NB-94	-2.975E+00		2.613E+00	3.968E+00	0.000E+00	-0.750
NB-95	-4.954E-02		3.061E+00	5.082E+00	0.000E+00	-0.010
ZR-95	-1.766E+00		5.662E+00	9.010E+00	0.000E+00	-0.196
MO-99	8.468E+02		1.462E+03	2.465E+03	0.000E+00	0.344
RU-103	3.102E+00		3.648E+00	6.176E+00	0.000E+00	0.502
RU-106	4.230E+01		2.551E+01	4.571E+01	0.000E+00	0.925
AG-110m	-1.235E+00		2.750E+00	4.388E+00	0.000E+00	-0.282
SN-113	1.410E+00		3.684E+00	6.172E+00	0.000E+00	0.228
SB-124	-9.174E+00		3.667E+00	5.321E+00	0.000E+00	-1.724
SB-125	-7.141E-01		7.615E+00	1.242E+01	0.000E+00	-0.057
TE-129M	5.043E+00		4.159E+01	6.828E+01	0.000E+00	0.074
I-131	-8.807E+00		1.102E+01	1.756E+01	0.000E+00	-0.501
BA-133	2.166E+00		3.705E+00	6.277E+00	0.000E+00	0.345

				L28845 R3	/ 58 of 90
CS-134	1.530E+00	3.115E+00	5.243E+00	0.000E+00	0.292
CS-136	2.377E+00	6.137E+00	1.041E+01	0.000E+00	0.228
CS-137	1.918E+00	2.892E+00	4.920E+00	0.000E+00	0.390
CE-139	-1.353E+00	2.659E+00	4.369E+00	0.000E+00	-0.310
BA-140	1.752E+01	2.254E+01	3.892E+01	0.000E+00	0.450
LA-140	1.296E+00	7.334E+00	1.226E+01	0.000E+00	0.106
CE-141	5.778E+00	6.961E+00	9.979E+00	0.000E+00	0.579
CE-144	-1.893E+01	2.405E+01	3.210E+01	0.000E+00	-0.590
EU-152	-1.316E+01	8.567E+00	1.335E+01	0.000E+00	-0.986
EU-154	4.705E-01	5.270E+00	8.634E+00	0.000E+00	0.054
RA-226	1.847E+00	6.641E+01	1.105E+02	0.000E+00	0.017
AC-228	-2.485E+00	1.074E+01	1.720E+01	0.000E+00	-0.144
TH-228	2.483E+00	5.193E+00	8.695E+00	0.000E+00	0.286
TH-232	-2.471E+00	1.068E+01	1.710E+01	0.000E+00	-0.144
U-235	3.462E+01	2.253E+01	3.330E+01	0.000E+00	1.039

4.620E+02 3.795E+01 0.000E+00

0.000E+00

0.047

-1.258

2.815E+02

2.514E+01

2.175E+01

-4.773E+01

U-238

AM-241

```
,06/12/2006 18:13,05/26/2006 14:00,
                                                                 3.066E+00, L28845-4 WG DR
A,07L28845-4
B,07L28845-4
                     ,LIBD
                                             ,06/07/2006 09:32,073L082504
C, BE-7
                     2.111E-01,
                                    2.682E+01,
           , NO
                                                   4.369E+01,,
                                                                    0.005
                     1.529E+01,
                                                   6.590E+01,,
C, K-40
                                    3.601E+01,
            , NO
                                                                    0.232
                                                   5.303E+01,,
C, CR-51
           , NO
                    -3.579E+01,
                                    3.324E+01,
                                                                   -0.675
C, MN-54
                                                   4.607E+00,,
            , NO
                     1.075E+00,
                                    2.721E+00,
                                                                    0.233
C, CO-57
                    -1.974E-01,
                                    2.616E+00,
                                                   4.266E+00,,
                                                                   -0.046
            , NO
C, CO-58
            , NO
                                    3.155E+00,
                    -6.543E-01,
                                                   5.158E+00,,
                                                                   -0.127
C, FE-59
                                    6.250E+00,
                                                   1.047E+01,,
            , NO
                     9.526E-01,
                                                                    0.091
C, CO-60
            , NO
                    -1.779E-01,
                                    2.650E+00,
                                                   4.301E+00,,
                                                                   -0.041
            , NO
C, ZN-65
                    -1.002E+00,
                                    6.198E+00,
                                                   1.014E+01,,
                                                                   -0.099
C, SE-75
            , NO
                    -2.087E+00,
                                    3.822E+00,
                                                   6.111E+00,,
                                                                   -0.341
C,SR-85
            , NO
                     2.630E+01,
                                    3.941E+00,
                                                   7.936E+00,,
                                                                    3.313
C, Y-88
                                    3.062E+00,
                                                   4.613E+00,,
                                                                   -0.547
            , NO
                    -2.522E+00,
            , NO
                    -2.975E+00,
                                                   3.968E+00,,
C, NB-94
                                    2.613E+00,
                                                                   -0.750
C, NB-95
            , NO
                    -4.954E-02,
                                    3.061E+00,
                                                   5.082E+00,,
                                                                   -0.010
C, ZR-95
            , NO
                    -1.766E+00,
                                    5.662E+00,
                                                   9.010E+00,,
                                                                   -0.196
C,MO-99
                                                   2.465E+03,,
                                                                     0.344
            , NO
                     8.468E+02,
                                    1.462E+03,
C, RU-103
                                                                     0.502
                     3.102E+00,
                                                   6.176E+00,,
            , NO
                                    3.648E+00,
C, RU-106
            , NO
                     4.230E+01,
                                    2.551E+01,
                                                   4.571E+01,,
                                                                     0.925
C, AG-110m
            , NO
                    -1.235E+00,
                                    2.750E+00,
                                                   4.388E+00,,
                                                                   -0.282
C, SN-113
            , NO
                     1.410E+00,
                                    3.684E+00,
                                                   6.172E+00,,
                                                                     0.228
C,SB-124
            , NO
                    -9.174E+00,
                                    3.667E+00,
                                                   5.321E+00,,
                                                                   -1.724
            , NO
C,SB-125
                    -7.141E-01,
                                    7.615E+00,
                                                   1.242E+01,,
                                                                   -0.057
C, TE-129M
           , NO
                     5.043E+00,
                                    4.159E+01,
                                                   6.828E+01,,
                                                                     0.074
            , NO
                                                   1.756E+01,,
C, I-131
                    -8.807E+00,
                                    1.102E+01,
                                                                   -0.501
C, BA-133
            ,NO
                     2.166E+00,
                                    3.705E+00,
                                                   6.277E+00,,
                                                                     0.345
C, CS-134
                     1.530E+00,
                                    3.115E+00,
                                                   5.243E+00,,
            , NO
                                                                     0.292
C, CS-136
            , NO
                     2.377E+00,
                                    6.137E+00,
                                                   1.041E+01,,
                                                                     0.228
C, CS-137
            ,NO
                                                   4.920E+00,,
                     1.918E+00,
                                    2.892E+00,
                                                                     0.390
            , NO
C, CE-139
                    -1.353E+00,
                                    2.659E+00,
                                                   4.369E+00,,
                                                                    -0.310
C, BA-140
            , NO
                     1.752E+01,
                                    2.254E+01,
                                                   3.892E+01,,
                                                                     0.450
C, LA-140
            , NO
                     1.296E+00,
                                    7.334E+00,
                                                   1.226E+01,,
                                                                     0.106
C, CE-141
            , NO
                                    6.961E+00,
                                                   9.979E+00,,
                     5.778E+00,
                                                                     0.579
C, CE-144
            , NO
                    -1.893E+01,
                                    2.405E+01,
                                                   3.210E+01,,
                                                                    -0.590
C, EU-152
            , NO
                    -1.316E+01,
                                    8.567E+00,
                                                   1.335E+01,,
                                                                    -0.986
C, EU-154
            , NO
                     4.705E-01,
                                    5.270E+00,
                                                   8.634E+00,,
                                                                     0.054
C, RA-226
            , NO
                                                   1.105E+02,,
                                                                     0.017
                     1.847E+00,
                                    6.641E+01,
C,AC-228
            , NO
                    -2.485E+00,
                                    1.074E+01,
                                                   1.720E+01,,
                                                                    -0.144
C, TH-228
                                                   8.695E+00,,
            , NO
                     2.483E+00,
                                    5.193E+00,
                                                                     0.286
C, TH-232
            , NO
                    -2.471E+00,
                                    1.068E+01,
                                                   1.710E+01,,
                                                                    -0.144
C, U-235
            , NO
                     3.462E+01,
                                    2.253E+01,
                                                   3.330E+01,,
                                                                     1.039
C, U-238
            , NO
                     2.175E+01,
                                    2.815E+02,
                                                   4.620E+02,,
                                                                     0.047
```

2.514E+01,

3.795E+01,,

-1.258

C, AM-241

, NO

-4.773E+01,

Sec. Review: Analyst: LIMS:  $\sqrt{\phantom{a}}$ 

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 12-JUN-2006 23:01:34.11 TBE23 03017322 HpGe ******* Aquisition Date/Time: 12-JUN-2006 15:17:03.79

LIMS No., Customer Name, Client ID: WG L28845-5 DRESDEN

Sample ID : 23L28845-5 Smple Date: 26-MAY-2006 14:10:00.

MDA Constant : 0.00 Library Used: LIBD

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
-	0	22 504		2.0			0 055 00	4 =4 = 00	0 = 1	
1	8	33.79*	131	30	1.17	67.90		4.71E-03		4.25E+00
2	8	35.94*	155	216	2.59	72.19	1.18E-01	5.56E-03	42.4	
3	8	38.96*	181	496	2.59	78.25	1.81E-01	6.51E-03	37.3	
4	8	41.68*	12	405	1.45	83.68	2.50E-01	4.22E-044	.06.8	
5	8	46.55*	13	629	1.55	93.40	4.00E-01	4.66E-043	57.5	
6	4		52	946	1.34		1.04E+00			2.76E+00
7	4	66.08	255	787	1.49	132.44	1.15E+00	9.15E-03	19.5	
8	0	76.95	135	922	0.94	154.16	1.53E+00	4.84E-03	38.3	
9	0	92.35*	125	1472	1.13	184.93	1.93E+00	4.48E-03	67.1	
10	0	139.50*	138	1149	0.94	279.18	2.32E+00	4.97E-03	48.7	
11	0	185.18*	34	987	1.51	370.46	2.18E+00	1.22E-032	02.7	
12	0	198.37*	161	928	1.19	396.82	2.11E+00	5.79E-03	39.1	
13	0	238.02*	122	788	1.30	476.08	1.90E+00	4.38E-03	49.8	
14	0	295.33*	57	551	0.78	590.64	1.64E+00	2.03E-03	87.4	
15	0	351.61*	168	521	1.38	703.13	1.44E+00	6.02E-03	32.8	
16	0	582.18*	51	328	1.60	1164.06	9.72E-01	1.84E-03	88.1	
17	0	595.70		233	1.52	1191.09	9.56E-01	6.22E-03	20.7	
18	0	608.79*		288	1.65	1217.25	9.41E-01	1.03E-02	16.8	
19	0	851.67	47	66	1.42	1702.90		1.71E-03		
20	0	911.10*	67	90			7.08E-01			
21	0	1120.57*	59	88			6.15E-01			
22	0	1764.76*	32	59		3529.42		1.16E-03		

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

		•			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĈi/L	%Error
RA-226	186.21	34	3.28*	2.177E+00	1.515E+01	1.515E+01	405.46
AC-228	835.50		1.75	7.515E-01	Lir	ne Not Found	
	911.07	67	27.70*	7.083E-01	1.090E+01	1.097E+01	76.22
TH-228	238.63	122	44.60*	1.903E+00	4.565E+00	4.644E+00	99.68
	240.98		3.95	1.888E+00	Lir	ne Not Found	
TH-232	583.14	51	30.25	9.725E-01	5.539E+00	5.539E+00	176.12
	911.07	67	27.70*	7.083E-01	1.090E+01	1.090E+01	76.22
	969.11		16.60	6.793E-01	Lir	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2

Acquisition date : 12-JUN-2006 15:17:03 Sample ID : 23L28845-5

Total number of lines in spectrum 22 Number of unidentified lines 18

Number of lines tentatively identified by NID 4 18.18%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Error	%Error Flags
RA-226	1600.00Y	1.00	1.515E+01	1.515E+01	6.143E+01	405.46
AC-228	5.75Y	1.01	1.090E+01	1.097E+01	0.836E+01	76.22
TH-228	1.91Y	1.02	4.565E+00	4.644E+00	4.629E+00	99.68
TH-232	1.41E+10Y	1.00	1.090E+01	1.090E+01	0.831E+01	76.22

Total Activity: 4.152E+01 4.166E+01

Grand Total Activity: 4.152E+01 4.166E+01

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted

"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 23L28845-5

Page: 3 Acquisition date : 12-JUN-2006 15:17:03

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
8	33.79	131	30	1.17	67.90	64	34	4.71E-03	50.2	8.25E-02	2
8	35.94	155	216	2.59	72.19	64	34	5.56E-03	84.9	1.18E-01	-
8	38.96	181	496	2.59	78.25	64	34	6.51E-03	74.6	1.81E-01	-
8	41.68	12	405	1.45	83.68	64	34	4.22E-04	***	2.50E-01	-
8	46.55	13	629	1.55	93.40	64	34	4.66E-04	***	4.00E-01	<u>.</u>
4	63.24	52	946	1.34	126.76	123	13	1.86E-03	***	1.04E+00	)
4	66.08	255	787	1.49	132.44	123	13	9.15E-03	39.0	1.15E+00	)
0	76.95	135	922	0.94	154.16	152	7	4.84E-03	76.7	1.53E+00	)
0	92.35	125	1472	1.13	184.93	179	11	4.48E-03	***	1.93E+00	)
0	139.50	138	1149	0.94	279.18	275	9	4.97E-03	97.5	2.32E+00	)
0	198.37	161	928	1.19	396.82	391	10	5.79E-03	78.1	2.11E+00	)
0	295.33	57	551	0.78	590.64	586	10	2.03E-03	***	1.64E+00	)
0	351.61	168	521	1.38	703.13	696	14	6.02E-03	65.6	1.44E+00	)
0	595.70	173	233	1.52	1191.09	1184	15	6.22E-03	41.3	9.56E-01	L
0	608.79	286	288	1.65	1217.25	1208	18	1.03E-02	33.5	9.41E-01	L
0	851.67	47	66	1.42	1702.90	1699	9	1.71E-03	67.9	7.42E-01	L
0	1120.57	59	88	1.72	2240.66	2236	12	2.11E-03	81.7	6.15E-01	L
0	1764.76	32	59	2.44	3529.42	3522	19	1.16E-03	***	4.38E-01	L

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 22 Number of unidentified lines 18 Number of lines tentatively identified by NID 4 18.18%

Nuclide Type : natural

	2750 1 22000		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Error	%Error Flags
RA-226	1600.00Y	1.00	1.515E+01	1.515E+01	6.143E+01	405.46
AC-228	5.75Y	1.01	5.365E+00	5.395E+00	12.89E+00	238.87
TH-228	1.91Y	1.02	4.565E+00	4.644E+00	4.629E+00	99.68
TH-232	1.41E+10Y	1.00	5.539E+00	5.539E+00	9.755E+00	176.12
	Total Act	lvity:	3.062E+01	3.073E+01		

Grand Total Activity: 3.062E+01 3.073E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Interfe	ring	Interfered				
Nuclide	Line	Nuclide	Line			
TH-232	911.07	AC-228	911.07			

Combined Activity-MDA Report

# ---- Identified Nuclides ----

Identi	fied Nuclides				
	Activity	Act error	MDA	MT) A correction	7 at /MD7
Nuclide	(pCi/L)	ACC EIIOI	MDA (pCi/L)	MDA error	Act/MDA
Nacitae	(PCI/ II)		(PCI/II)		
RA-226	1.515E+01	6.143E+01	8.567E+01	0.000E+00	0.177
AC-228	5.395E+00	1.289E+01	1.216E+01	0.000E+00	0.444
TH-228	4.644E+00	4.629E+00	6.084E+00	0.000E+00	0.763
TH-232	5.539E+00	9.755E+00	1.313E+01	0.000E+00	0.422
	3.3332100	5.,332.00	1.3131101	0.000100	0.422
Non-Id	entified Nucl:	ides			
	Key-Line				
	<del>-</del>	K.L. Act error	MDA	MDA error	Act/MDA
Nuclide		Ided	(pCi/L)	MDA EIIOI	ACC/MDA
	(POI/I/	Laca	(PC1/ II)		
BE-7	-7.825E+00	2.041E+01	3.381E+01	0.000E+00	-0.231
NA-24	-2.796E+02	2.007E+02	Half-Life to	oo short	
K-40	-1.181E+01	3.140E+01	5.748E+01	0.000E+00	-0.205
CR-51	-8.831E+00	2.643E+01	4.431E+01	0.000E+00	-0.199
MN-54	-3.157E-01	2.011E+00	3.391E+00	0.000E+00	-0.093
CO-57	1.597E+00	2.212E+00	3.738E+00	0.000E+00	0.427
CO-58	-7.698E-01	2.304E+00	3.860E+00	0.000E+00	-0.199
FE-59	5.343E+00	4.471E+00	8.165E+00	0.000E+00	0.654
CO-60	4.332E-01	1.862E+00	3.258E+00	0.000E+00	0.133
ZN-65	7.734E+00	5.031E+00	8.072E+00	0.000E+00	0.958
SE-75	5.929E-01	2.977E+00	5.070E+00	0.000E+00	0.117
SR-85	1.814E+01	2.724E+00	5.282E+00	0.000E+00	3.434
Y-88	1.098E+00	2.172E+00	3.944E+00	0.000E+00	0.278
NB-94	-3.938E-02	1.906E+00	3.246E+00	0.000E+00	-0.012
NB-95	2.333E+00	2.241E+00	3.978E+00	0.000E+00	0.586
ZR-95	-2.329E-01	3.925E+00	6.678E+00	0.000E+00	-0.035
MO-99	-1.019E+02	1.071E+03	1.820E+03	0.000E+00	-0.056
RU-103	1.801E+00	2.734E+00	4.676E+00	0.000E+00	0.385
RU-106	2.987E+00	1.892E+01	3.176E+01	0.000E+00	0.094
AG-110m	-1.003E+00	2.002E+00	3.359E+00	0.000E+00	-0.299
SN-113	-1.714E+00	2.907E+00	4.814E+00	0.000E+00	-0.356
SB-124	4.574E+00	4.758E+00	4.026E+00	0.000E+00	1.136
SB-125	-8.946E-01	5.983E+00	1.001E+01	0.000E+00	-0.089
TE-129M	1.676E+01	3.214E+01	5.482E+01	0.000E+00	0.306
I-131	-3.836E+00	8.971E+00	1.496E+01	0.000E+00	-0.256
BA-133	5.560E+00	3.307E+00	5.021E+00	0.000E+00	1.107
CS-134	1.158E+01	4.577E+00	4.411E+00	0.000E+00	2.625
CS-136	1.968E+00	4.744E+00	8.202E+00	0.000E+00	0.240
CS-137	7.849E-01	2.166E+00	3.749E+00	0.000E+00	0.209
CE-139	-1.862E+00	2.344E+00	3.842E+00	0.000E+00	-0.485
BA-140	4.937E+00	1.787E+01	3.019E+01	0.000E+00	0.164
LA-140	5.019E+00	5.206E+00	9.656E+00	0.000E+00	0.520
CE-141	7.162E+00	6.133E+00	8.901E+00	0.000E+00	0.805
CE-144	-3.862E+00	1.994E+01	2.813E+01	0.000E+00	-0.137
EU-152	-1.230E+01	7.850E+00	1.055E+01	0.000E+00	-1.166
EU-154	3.088E+00	4.482E+00	7.568E+00	0.000E+00	0.408
U-235	1.415E+01	2.098E+01	2.880E+01	0.000E+00	0.491
U-238	-4.946E+01	2.332E+02	3.682E+02	0.000E+00	-0.134
AM-241	1.756E+01	1.369E+01	1.972E+01	0.000E+00	0.890

```
,06/12/2006 23:01,05/26/2006 14:10,
                                                                3.056E+00,WG L28845-5 DR
A,23L28845-5
                     ,LIBD
                                             ,06/01/2006 10:14,233L082404
B,23L28845-5
                    1.515E+01,
                                   6.143E+01,
C,RA-226
           ,YES,
                                                   8.567E+01,,
                                                                    0.177
C, AC-228
           , YES,
                    5.395E+00,
                                   1.289E+01,
                                                   1.216E+01,,
                                                                    0.444
C, TH-228
                    4.644E+00,
                                    4.629E+00,
                                                   6.084E+00,,
                                                                    0.763
           ,YES,
           ,YES,
                                                   1.313E+01,,
                                                                    0.422
C, TH-232
                    5.539E+00,
                                    9.755E+00,
                                                   3.381E+01,,
C, BE-7
                    -7.825E+00,
                                    2.041E+01,
                                                                   -0.231
           , NO
                                                                   -0.205
C, K-40
           , NO
                                                   5.748E+01,,
                   -1.181E+01,
                                    3.140E+01,
C, CR-51
           , NO
                    -8.831E+00,
                                    2.643E+01,
                                                   4.431E+01,,
                                                                   -0.199
C, MN-54
           , NO
                    -3.157E-01,
                                    2.011E+00,
                                                   3.391E+00,,
                                                                   -0.093
C, CO-57
                                    2.212E+00,
                                                   3.738E+00,,
                                                                    0.427
                     1.597E+00,
           , NO
C, CO-58
                    -7.698E-01,
                                    2.304E+00,
                                                   3.860E+00,,
                                                                   -0.199
           , NO
                                                   8.165E+00,,
                                                                    0.654
C, FE-59
            , NO
                     5.343E+00,
                                    4.471E+00,
                                                   3.258E+00,,
C, CO-60
            , NO
                     4.332E-01,
                                    1.862E+00,
                                                                    0.133
C, ZN-65
                                    5.031E+00,
                                                   8.072E+00,,
                                                                    0.958
           , NO
                     7.734E+00,
                                                   5.070E+00,,
C, SE-75
                     5.929E-01,
                                    2.977E+00,
                                                                    0.117
            , NO
                                                   5.282E+00,,
                                    2.724E+00,
                                                                    3.434
C,SR-85
            , NO
                     1.814E+01,
                                                   3.944E+00,,
C, Y-88
                     1.098E+00,
                                    2.172E+00,
                                                                    0.278
            , NO
C,NB-94
            , NO
                    -3.938E-02,
                                    1.906E+00,
                                                   3.246E+00,,
                                                                   -0.012
C, NB-95
                     2.333E+00,
                                    2.241E+00,
                                                   3.978E+00,,
                                                                    0.586
            , NO
                                                   6.678E+00,,
C, ZR-95
            ,NO
                    -2.329E-01,
                                    3.925E+00,
                                                                   -0.035
                                                   1.820E+03,,
                                                                   -0.056
C, MO-99
            , NO
                    -1.019E+02,
                                    1.071E+03,
C, RU-103
                     1.801E+00,
                                    2.734E+00,
                                                   4.676E+00,,
                                                                    0.385
            , NO
C,RU-106
            , NO
                     2.987E+00,
                                    1.892E+01,
                                                   3.176E+01,,
                                                                    0.094
                    -1.003E+00,
                                    2.002E+00,
                                                   3.359E+00,,
                                                                   -0.299
C, AG-110m
           , NO
C, SN-113
            ,NO
                    -1.714E+00,
                                    2.907E+00,
                                                   4.814E+00,,
                                                                   -0.356
                                    4.758E+00,
                                                   4.026E+00,,
                                                                    1.136
C,SB-124
            , NO
                     4.574E+00,
                                                   1.001E+01,,
                                                                   -0.089
C,SB-125
            , NO
                    -8.946E-01,
                                    5.983E+00,
                                                   5.482E+01,,
C, TE-129M
            , NO
                     1.676E+01,
                                    3.214E+01,
                                                                    0.306
            , NO
                                                   1.496E+01,,
C, I-131
                    -3.836E+00,
                                    8.971E+00,
                                                                   -0.256
C, BA-133
                     5.560E+00,
                                    3.307E+00,
                                                   5.021E+00,,
                                                                    1.107
            , NO
                                                   4.411E+00,,
C, CS-134
            , NO
                     1.158E+01,
                                    4.577E+00,
                                                                    2.625
                                                   8.202E+00,,
C, CS-136
                                                                    0.240
            , NO
                     1.968E+00,
                                    4.744E+00,
                                                   3.749E+00,,
C, CS-137
            , NO
                     7.849E-01,
                                    2.166E+00,
                                                                    0.209
C, CE-139
            , NO
                    -1.862E+00,
                                    2.344E+00,
                                                   3.842E+00,,
                                                                   -0.485
C,BA-140
            ,NO
                     4.937E+00,
                                    1.787E+01,
                                                   3.019E+01,,
                                                                    0.164
                                                   9.656E+00,,
C, LA-140
            , NO
                     5.019E+00,
                                    5.206E+00,
                                                                    0.520
C, CE-141
            , NO
                     7.162E+00,
                                    6.133E+00,
                                                   8.901E+00,,
                                                                    0.805
C, CE-144
            , NO
                    -3.862E+00,
                                    1.994E+01,
                                                   2.813E+01,,
                                                                   -0.137
                                    7.850E+00,
                                                   1.055E+01,,
C, EU-152
            , NO
                    -1.230E+01,
                                                                   -1.166
C, EU-154
                     3.088E+00,
                                    4.482E+00,
                                                   7.568E+00,,
                                                                     0.408
            , NO
C, U-235
                                                                    0.491
            , NO
                     1.415E+01,
                                    2.098E+01,
                                                   2.880E+01,,
C, U-238
                                                   3.682E+02,,
                                                                   -0.134
            , NO
                    -4.946E+01,
                                    2.332E+02,
```

1.369E+01,

1.972E+01,,

0.890

C, AM-241

NO,

1.756E+01,

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 13-JUN-2006 05:08:59.11

TBE23 03017322 HpGe ******* Aquisition Date/Time: 12-JUN-2006 23:08:27.63

LIMS No., Customer Name, Client ID: WG L28845-6 EX DRES

Sample ID : 23L28845-6 Smple Date: 26-MAY-2006 15:35:00.

Sample Type : WG
Quantity : 3.10810E+00 L
Start Channel : 50
Energy Tol : 1.50000
End Channel : 4090
Pk Srch Sens: 5.00000
Geometry : 233L082404
BKGFILE : 23BG060306MT
Channel : 0 06:00:14.90
Live time : 0 06:00:00.00

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1	9	33.57*	19	30	0.93	67.46	7.93E-02	8.57E-04145.6	5.56E+00
2	9	34.80*	51	102	1.82	69.92	9.81E-02	2.37E-03 84.8	
3	9	36.72*	1	329	2.69	73.76	1.33E-01	3.34E-05****	
4	9	38.10*	71	340	1.95	76.52	1.61E-01	3.28E-03 67.5	
5	0	92.40*	86	7.81	1.15	185.05	1.93E+00	4.00E-03 66.9	
6	0	139.11*	28	795	1.18	278.38	2.32E+00	1.29E-03190.5	
7	0	198.31*	88	526	1.19	396.71	2.11E+00	4.05E-03 51.5	
8	0	238.34*	172	530	1.24	476.72	1.90E+00	7.94E-03 29.5	
9	0	582.64*	49	170	1.20	1164.97	9.72E-01	2.29E-03 61.0	
10	0	595.38	61	165	0.91	1190.44	9.56E-01	2.81E-03 41.8	
11	0	608.68*	30	126	1.69	1217.04	9.41E-01	1.40E-03 88.9	
12	0	912.38*	58	132	5.58	1824.29	7.08E-01	2.70E-03 55.6	
13	0	968.86*	2	57	1.57	1937.25	6.79E-01	9.66E-05858.0	
14	0	1461.02*	61	49	1.78	2921.68	5.10E-01	2.82E-03 42.5	
15	0	1764.29*	10	49	2.16	3528.48	4.38E-01	4.70E-04197.9	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĈi/L	%Error
K-40	1460.81	61	10.67*	5.095E-01	4.513E+01	4.513E+01	85.09
AC-228	835.50		1.75	7.515E-01	Liı	ne Not Found	
	911.07	58	27.70*	7.077E-01	1.198E+01	1.205E+01	111.30
TH-228	238.63	172	44.60*	1.901E+00	8.142E+00	8.284E+00	58.94
	240.98		3.95	1.888E+00	Li	ne Not Found	
TH-232	583.14	49	30.25	9.719E-01	6.761E+00	6.761E+00	121.91
	911.07	58	27.70*	7.077E-01	1.198E+01	1.198E+01	111.30
	969.11	2	16.60	6.794E-01	7.449E-01	7.449E-01	1716.06

Flag: "*" = Keyline

Summary of Nuclide Activity

Sample ID : 23L28845-6 Acquisition date : 12-JUN-2006 23:08:27

Total number of lines in spectrum 15
Number of unidentified lines 10

Number of unidentified lines 10
Number of lines tentatively identified by NID 5 33.33%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	4.513E+01	4.513E+01	3.840E+01	85.09
AC-228	5.75Y	1.01	1.198E+01	1.205E+01	1.342E+01	111.30
TH-228	1.91Y	1.02	8.142E+00	8.284E+00	4.883E+00	58.94
TH-232	1.41E+10Y	1.00	1.198E+01	1.198E+01	1.334E+01	111.30

Total Activity: 7.724E+01 7.745E+01

Grand Total Activity: 7.724E+01 7.745E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 23L28845-6

Page : Acquisition date : 12-JUN-2006 23:08:27

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
9 9 9 9 0 0	33.57 34.80 36.72 38.10 92.40 139.11 198.31 595.38 608.68	19 51 1 71 86 28 88 61 30	30 102 329 340 781 795 526 165	0.93 1.82 2.69 1.95 1.15 1.18 1.19 0.91 1.69	67.46 69.92 73.76 76.52 185.05 278.38 396.71 1190.44	64 64 64 181 276 393 1187	27 27 27 27 8 8 8	8.57E-04 2.37E-03 3.34E-05 3.28E-03 4.00E-03 1.29E-03 4.05E-03 2.81E-03	*** *** *** *** *** *** *** ***	7.93E-02 9.81E-02 1.33E-01 1.61E-01 1.93E+00 2.32E+00 2.11E+00 9.56E-01 9.41E-01	
0	1764.29	10	49	2.16	3528.48		_	4.70E-04	****	4.38E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 15 Number of unidentified lines 10 Number of lines tentatively identified by NID 5 33.33%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	4.513E+01	4.513E+01	3.840E+01	85.09	
AC-228	5.75Y	1.01	6.990E+00	7.030E+00	15.12E+00	215.03	
TH-228	1.91Y	1.02	8.142E+00	8.284E+00	4.883E+00	58.94	
TH-232	1.41E+10Y	1.00	4.995E+00	4.995E+00	6.928E+00	138.71	
	Total Acti	vity:	6.526E+01	6.544E+01			

6.544E+01 Grand Total Activity: 6.526E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Interfe	ring	Interf	ered
Nuclide	Line	Nuclide	Line
TH-232	911.07	AC-228	911.07

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	4.513E+01	3.840E+01	3.399E+01	0.000E+00	1.328
AC-228	7.030E+00	1.512E+01	1.169E+01	0.000E+00	0.601
TH-228	8.284E+00	4.883E+00	7.167E+00	0.000E+00	1.156

TH-232 4.995E+00 6.928E+00 1.394E+01 0.000E+00 0.358

## ---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K. (pCi/L) Id	L. Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	9.129E+00	2.335E+01	3.987E+01	0.000E+00	0.229
NA-24	-8.464E+01	2.702E+02	Half-Life to	oo short	
CR-51	-3.412E+00	2.885E+01	4.874E+01	0.000E+00	-0.070
MN-54	-1.170E+00	2.130E+00	3.538E+00	0.000E+00	-0.331
CO-57	7.921E-02	2.424E+00	4.062E+00	0.000E+00	0.020
CO-58	-1.196E+00	2.470E+00	4.122E+00	0.000E+00	-0.290
FE-59	3.699E-01	4.937E+00	8.621E+00	0.000E+00	0.043
CO-60	-4.632E-01	2.113E+00	3.613E+00	0.000E+00	-0.128
ZN-65	1.324E+00	4.534E+00	7.998E+00	0.000E+00	0.166
SE-75	-8.570E-02	3.341E+00	5.677E+00	0.000E+00	-0.015
SR-85	1.606E+01	3.004E+00	5.783E+00	0.000E+00	2.777
Y-88	-1.257E+00	2.375E+00	4.014E+00	0.000E+00	-0.313
NB-94	6.340E-01	2.098E+00	3.639E+00	0.000E+00	0.174
NB-95	1.229E+00	2.532E+00	4.427E+00	0.000E+00	0.278
ZR-95	-2.439E+00	4.306E+00	7.178E+00	0.000E+00	-0.340
MO-99	2.388E+02	1.234E+03	2.137E+03	0.000E+00	0.112
RU-103	4.936E-01	2.975E+00	5.036E+00	0.000E+00	0.098
RU-106	-5.125E+00	2.130E+01	3.624E+01	0.000E+00	-0.141
AG-110m	-5.599E-02	2.294E+00	3.931E+00	0.000E+00	-0.014
SN-113	4.005E-01	3.187E+00	5.406E+00	0.000E+00	0.074
SB-124	2.479E+00	5.594E+00	4.453E+00	0.000E+00	0.557
SB-125	-7.242E+00	6.573E+00	1.067E+01	0.000E+00	-0.679
TE-129M	1.078E+01	3.441E+01	5.870E+01	0.000E+00	0.184
I-131	-1.450E+00	1.027E+01	1.729E+01	0.000E+00	-0.084
BA-133	6.786E-01	3.132E+00	5.330E+00	0.000E+00	0.127
CS-134	5.645E+00	4.161E+00	4.285E+00	0.000E+00	1.317
CS-136	5.719E+00	5.348E+00	9.590E+00	0.000E+00	0.596
CS-137	2.510E+00	2.399E+00	4.293E+00	0.000E+00	0.585
CE-139	-6.201E-01	2.596E+00	4.302E+00	0.000E+00	-0.144
BA-140	-1.432E+01	1.946E+01	3.170E+01	0.000E+00	-0.452
LA-140	-2.373E+00	6.018E+00	1.032E+01	0.000E+00	-0.230
CE-141	3.897E+00	6.736E+00	9.688E+00	0.000E+00	0.402
CE-144	-1.090E+01	2.231E+01	3.126E+01	0.000E+00	-0.349
EU-152	-6.299E+00	7.266E+00	1.199E+01	0.000E+00	-0.525
EU-154	1.764E+00	4.941E+00	8.325E+00	0.000E+00	0.212
RA-226	-2.891E+01	6.580E+01	1.017E+02	0.000E+00	-0.284
U-235	1.788E+01	2.255E+01	3.154E+01	0.000E+00	0.567
U-238	-5.639E+01	2.584E+02	4.166E+02	0.000E+00	-0.135
AM-241	-1.638E+01	1.358E+01	2.180E+01	0.000E+00	-0.752

```
,06/13/2006 05:09,05/26/2006 15:35,
                                                                 3.108E+00,WG L28845-6 EX
A,23L28845-6
                                             ,06/01/2006 10:14,233L082404
                     ,LIBD
B,23L28845-6
           ,YES,
                    4.513E+01,
                                    3.840E+01,
                                                   3.399E+01,,
                                                                    1.328
C, K-40
                                    1.512E+01,
                                                   1.169E+01,,
                                                                    0.601
C, AC-228
           , YES,
                     7.030E+00,
                                                   7.167E+00,,
                                                                    1.156
           ,YES,
                                    4.883E+00,
C, TH-228
                    8.284E+00,
                                                   1.394E+01,,
                                    6.928E+00,
                                                                    0.358
                     4.995E+00,
C, TH-232
            , YES,
                                                                    0.229
                                                   3.987E+01,,
C, BE-7
            , NO
                     9.129E+00,
                                    2.335E+01,
C, CR-51
                    -3.412E+00,
                                    2.885E+01,
                                                   4.874E+01,,
                                                                   -0.070
            , NO
                                    2.130E+00,
                                                   3.538E+00,,
                                                                   -0.331
C, MN-54
                    -1.170E+00,
            , NO
                                                   4.062E+00,,
                                                                    0.020
                                    2.424E+00,
            , NO
                     7.921E-02,
C, CO-57
                                                   4.122E+00,,
                                                                   -0.290
                                    2.470E+00,
C, CO-58
                    -1.196E+00,
            , NO
                                                   8.621E+00,,
                                                                    0.043
                                    4.937E+00,
C, FE-59
                     3.699E-01,
            , NO
C, CO-60
            ,NO
                    -4.632E-01,
                                    2.113E+00,
                                                   3.613E+00,,
                                                                   -0.128
                                    4.534E+00,
                                                   7.998E+00,,
                                                                    0.166
            ,NO
                     1.324E+00,
C, ZN-65
                    -8.570E-02,
                                    3.341E+00,
                                                   5.677E+00,,
                                                                   -0.015
C, SE-75
            , NO
                                                   5.783E+00,,
                                                                    2.777
                                    3.004E+00,
            , NO
                     1.606E+01,
C, SR-85
                                                                   -0.313
                                    2.375E+00,
                                                   4.014E+00,,
C, Y-88
            , NO
                    -1.257E+00,
                                                   3.639E+00,,
                                                                    0.174
            , NO
                                    2.098E+00,
C, NB-94
                     6.340E-01,
                                    2.532E+00,
                                                   4.427E+00,,
                                                                    0.278
C,NB-95
                     1.229E+00,
            , NO
                                                   7.178E+00,,
                                                                   -0.340
C, ZR-95
            , NO
                    -2.439E+00,
                                    4.306E+00,
                                                   2.137E+03,,
                                                                    0.112
                                    1.234E+03,
                     2.388E+02,
C,MO-99
            , NO
                                                                    0.098
                                                   5.036E+00,,
C, RU-103
            , NO
                     4.936E-01,
                                    2.975E+00,
                                                   3.624E+01,,
                                                                   -0.141
                    -5.125E+00,
                                    2.130E+01,
C,RU-106
            , NO
                                                   3.931E+00,,
                                                                   -0.014
C, AG-110m
            , NO
                    -5.599E-02,
                                    2.294E+00,
                                                                    0.074
                                    3.187E+00,
                                                   5.406E+00,,
            , NO
                     4.005E-01,
C,SN-113
                                                   4.453E+00,,
                                                                    0.557
                                    5.594E+00,
C,SB-124
            , NO
                     2.479E+00,
                                                   1.067E+01,,
                                                                   -0.679
            , NO
                                    6.573E+00,
C,SB-125
                    -7.242E+00,
                                                   5.870E+01,,
                     1.078E+01,
                                    3.441E+01,
                                                                    0.184
C, TE-129M
            , NO
            , NO
                                                   1.729E+01,,
                                                                    -0.084
                                    1.027E+01,
C, I-131
                    -1.450E+00,
                     6.786E-01,
                                    3.132E+00,
                                                   5.330E+00,,
                                                                    0.127
C,BA-133
            , NO
                                                   4.285E+00,,
                                                                    1.317
C, CS-134
            , NO
                     5.645E+00,
                                    4.161E+00,
                                                   9.590E+00,,
                                                                    0.596
                     5.719E+00,
                                    5.348E+00,
C, CS-136
            , NO
                     2.510E+00,
                                    2.399E+00,
                                                   4.293E+00,,
                                                                     0.585
C, CS-137
            , NO
                                                   4.302E+00,,
                                                                    -0.144
                                    2.596E+00,
                    -6.201E-01,
C,CE-139
            , NO
C, BA-140
            , NO
                    -1.432E+01,
                                    1.946E+01,
                                                   3.170E+01,,
                                                                    -0.452
                                                   1.032E+01,,
                                                                    -0.230
                    -2.373E+00,
                                    6.018E+00,
C, LA-140
            , NO
                                    6.736E+00,
                                                   9.688E+00,,
                                                                     0.402
C, CE-141
            , NO
                     3.897E+00,
                                                                    -0.349
            , NO
                    -1.090E+01,
                                    2.231E+01,
                                                   3.126E+01,,
C, CE-144
                                    7.266E+00,
                                                   1.199E+01,,
                                                                    -0.525
                    -6.299E+00,
C, EU-152
            , NO
C, EU-154
                                    4.941E+00,
                                                   8.325E+00,,
                                                                     0.212
            , NO
                     1.764E+00,
                                                                    -0.284
                    -2.891E+01,
                                    6.580E+01,
                                                   1.017E+02,,
C, RA-226
            , NO
                                                                     0.567
C, U-235
            , NO
                     1.788E+01,
                                    2.255E+01,
                                                   3.154E+01,,
                                    2.584E+02,
                                                   4.166E+02,,
                                                                    -0.135
                    -5.639E+01,
C, U-238
            , NO
```

1.358E+01,

-1.638E+01,

C, AM-241

,NO ,

2.180E+01,,

-0.752

Sec. Review: Analyst: LIMS

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 12-JUN-2006 22:56:10.42 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 12-JUN-2006 18:20:47.50

LIMS No., Customer Name, Client ID: WG L28845-7 DRESDEN

Sample ID : 07L28845-7 Smple Date: 26-MAY-2006 17:00:00.

Sample Type : WG Geometry : 073L082504
Quantity : 3.05840E+00 L BKGFILE : 07BG060306MT
Start Channel : 40 Energy Tol : 1.00000 Real Time : 0 04:35:14.64
End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 04:35:11.42

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
_	1	66.28*	148	542		133.13		8.99E-03		
2	1	139.96*	104	401	1.32	280.61	2.36E+00	6.32E-03	37.6	1.61E+00
3	1	595.95	89	82	1.41	1193.07	1.10E+00	5.41E-03	19.8	2.45E+00
4	1	609.35*	170	146	2.21	1219.88	1.09E+00	1.03E-02	18.8	1.09E+00
5	1	1120.69*	41	43	2.13	2242.60	7.03E-01	2.51E-03	40.1	5.48E-01
6	1	1461.29*	51	25	2.69	2923.56	5.83E-01	3.07E-03	39.7	1.13E+00
7	1	1765.13*	41	21	2.89	3530.84	5.12E-01	2.50E-03	35.1	2.93E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Sigma Nuclide %Abn %Eff pCi/L pCi/L %Error Energy Area 4.357E+01 79.50 K-401460.81 51 10.67* 5.826E-01 4.357E+01

Flag: "*" = Keyline

2

Summary of Nuclide Activity

Sample ID : 07L28845-7 Acquisition date : 12-JUN-2006 18:20:47

7

6

Total number of lines in spectrum Number of unidentified lines

Number of lines tentatively identified by NID 1 14.29%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Decay pCi/L pCi/L 2-Sigma Error %Error Flags 1.00 4.357E+01 4.357E+01 3.464E+01 79.50 Nuclide Hlife

K-40 1.28E+09Y 1.00 4.357E+01

Total Activity: 4.357E+01 4.357E+01

Grand Total Activity: 4.357E+01 4.357E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"E" = Manually edited "A" = Nuclide specific abn. limit

0.123

-0.983

0.266

-0.340

0.000E+00

0.000E+00

0.000E+00

0.000E+00

Unidentified Energy Lines Sample ID : 07L28845-7

3 Page: Acquisition date: 12-JUN-2006 18:20:47

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff ]	Flags
	66.28 139.96 595.95 609.35 1120.69 1765.13	148 104 89 170 41 41	401 82 146 43	1.41 2.21 2.13	280.61 1193.07 1219.88 2242.60	277 1190 1213 2236	8 7 14 12	5.41E-03 1.03E-02 2.51E-03	75.2 39.5 37.6 80.3	2.36E+00 1.10E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

7 Total number of lines in spectrum Number of unidentified lines 6 Number of lines tentatively identified by NID 1 14.29%

Nuclide Type : natural

Wtd Mean Wtd Mean Decay Corr 2-Sigma Uncorrected Decay Corr pCi/L 2-Sigma Error %Error Flags Nuclide Hlife Decay pCi/L 3.464E+01 79.50 K-401.28E+09Y 1.00 4.357E+01 4.357E+01 

> 4.357E+01 Total Activity: 4.357E+01

Grand Total Activity: 4.357E+01 4.357E+01

Flags: "K" = Keyline not found "M" = Manually accepted

> "E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

BE-7

NA-24

CR-51

MN-54

CO-57

No interference correction performed

4.800E+00

-5.118E+02

-4.381E+01

1.030E+00

-1.283E+00

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	4.357E+01	3.464E+01	3.911E+01	0.000E+00	1.114
Non-Iden	tified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/L) Ided		MDA (pCi/L)	MDA error	Act/MDA

3.888E+01

4.456E+01

3.866E+00

3.778E+00

Half-Life too short

2.367E+01

2.304E+02

2.824E+01

2.284E+00

2.344E+00

L28845	R3	/	74	of	90

	4.007.00	0 4045 00	2 0057.00	0.000E+00	-0.358
CO-58	-1.429E+00	2.494E+00	3.995E+00 8.966E+00	0.000E+00	0.267
FE-59	2.398E+00	5.262E+00		0.000E+00	0.200
CO-60	7.635E-01	2.280E+00	3.820E+00	0.000E+00	1.455
ZN-65	1.449E+01	5.909E+00	9.953E+00		0.209
SE-75	1.148E+00	3.337E+00	5.507E+00	0.000E+00	3.936
SR-85	2.677E+01	3.366E+00	6.803E+00	0.000E+00	
Y-88	1.166E+00	2.757E+00	4.727E+00	0.000E+00	0.247
NB-94	6.003E-01	2.283E+00	3.774E+00	0.000E+00	0.159
NB-95	5.396E-01	2.686E+00	4.508E+00	0.000E+00	0.120
ZR-95	6.590E-01	4.899E+00	8.013E+00	0.000E+00	0.082
MO-99	1.288E+01	1.314E+03	2.138E+03	0.000E+00	0.006
RU-103	1.962E+00	3.097E+00	5.167E+00	0.000E+00	0.380
RU-106	1.342E+01	2.291E+01	3.776E+01	0.000E+00	0.356
AG-110m	8.791E-01	2.356E+00	3.933E+00	0.000E+00	0.224
SN-113	-1.368E+00	3.200E+00	5.183E+00	0.000E+00	-0.264
SB-124	4.167E+00	5.884E+00	4.707E+00	0.000E+00	0.885
SB-125	-5.581E+00	6.397E+00	1.009E+01	0.000E+00	-0.553
TE-129M	-1.715E+01	3.692E+01	5.908E+01	0.000E+00	-0.290
I-131	-2.833E+00	9.807E+00	1.604E+01	0.000E+00	-0.177
BA-133	5.628E+00	3.295E+00	5.755E+00	0.000E+00	0.978
CS-134	5.253E+00	4.105E+00	4.794E+00	0.000E+00	1.096
CS-136	-3.597E+00	5.115E+00	8.114E+00	0.000E+00	-0.443
CS-137	8.960E-03	2.572E+00	4.214E+00	0.000E+00	0.002
CE-139	-1.005E+00	2.368E+00	3.909E+00	0.000E+00	-0.257
BA-140	2.674E+00	1.964E+01	3.279E+01	0.000E+00	0.082
LA-140	2.504E-01	6.290E+00	1.037E+01	0.000E+00	0.024
CE-141	-1.418E+00	6.416E+00	8.773E+00	0.000E+00	-0.162
CE-144	2.344E+00	2.147E+01	2.986E+01	0.000E+00	0.078
EU-152	-2.413E+01	7.544E+00	1.117E+01	0.000E+00	-2.160
EU-154	-1.485E+00	4.731E+00	7.668E+00	0.000E+00	-0.194
RA-226	-5.638E+01	5.868E+01	9.401E+01	0.000E+00	-0.600
AC-228	-2.111E+00	9.447E+00	1.482E+01	0.000E+00	-0.142
TH-228	2.412E+00	4.687E+00	7.713E+00	0.000E+00	0.313
TH-232	-2.099E+00	9.393E+00	1.474E+01	0.000E+00	-0.142
U-235	2.494E+00	2.075E+01	2.876E+01	0.000E+00	0.087
U-238	1.173E+02	2.513E+02	4.219E+02	0.000E+00	0.278
AM-241	-6.681E+00	2.414E+01	3.430E+01	0.000E+00	-0.195
	0.0012.00				

```
3.058E+00,WG L28845-7 DR
A,07L28845-7
                     ,06/12/2006 22:56,05/26/2006 17:00,
                                             ,06/07/2006 09:32,073L082504
B,07L28845-7
                     ,LIBD
                    4.357E+01,
                                    3.464E+01,
                                                   3.911E+01,
                                                                    1.114
C, K-40
           ,YES,
                                                                    0.123
C, BE-7
           , NO
                    4.800E+00,
                                    2.367E+01,
                                                   3.888E+01,,
C, CR-51
                   -4.381E+01,
                                    2.824E+01,
                                                   4.456E+01,,
                                                                   -0.983
           , NO
                                                                    0.266
C, MN-54
                    1.030E+00,
                                    2.284E+00,
                                                   3.866E+00,,
           , NO
           , NO
                                    2.344E+00,
                                                   3.778E+00,,
                                                                   -0.340
C, CO-57
                   -1.283E+00,
                                                   3.995E+00,,
                                                                   -0.358
                                    2.494E+00,
C, CO-58
           , NO
                   -1.429E+00,
                                                   8.966E+00,,
                                                                    0.267
C, FE-59
                     2.398E+00,
                                    5.262E+00,
           , NO
           , NO
                                                   3.820E+00,,
                                                                    0.200
C, CO-60
                     7.635E-01,
                                    2.280E+00,
                                                   9.953E+00,,
                                                                    1.455
C, ZN-65
           , NO
                     1.449E+01,
                                    5.909E+00,
                                                   5.507E+00,,
                                                                    0.209
C,SE-75
           , NO
                     1.148E+00,
                                    3.337E+00,
                                                                    3.936
                                    3.366E+00,
                                                   6.803E+00,,
C, SR-85
           , NO
                     2.677E+01,
           , NO
                                                                    0.247
C, Y-88
                     1.166E+00,
                                    2.757E+00,
                                                   4.727E+00,,
                                                   3.774E+00,,
                                                                    0.159
C, NB-94
           , NO
                     6.003E-01,
                                    2.283E+00,
C, NB-95
           , NO
                     5.396E-01,
                                    2.686E+00,
                                                   4.508E+00,,
                                                                    0.120
                     6.590E-01,
                                    4.899E+00,
                                                   8.013E+00,,
                                                                    0.082
C, ZR-95
           , NO
                                    1.314E+03,
                                                   2.138E+03,,
C, MO-99
                                                                    0.006
            , NO
                     1.288E+01,
                                    3.097E+00,
                                                   5.167E+00,,
                                                                    0.380
C, RU-103
                     1.962E+00,
            , NO
                                                   3.776E+01,,
                                                                    0.356
C, RU-106
            , NO
                     1.342E+01,
                                    2.291E+01,
C, AG-110m
           , NO
                     8.791E-01,
                                    2.356E+00,
                                                   3.933E+00,,
                                                                    0.224
C, SN-113
                                    3.200E+00,
                                                   5.183E+00,,
                                                                   -0.264
            , NO
                    -1.368E+00,
C,SB-124
            , NO
                     4.167E+00,
                                    5.884E+00,
                                                   4.707E+00,,
                                                                    0.885
                                    6.397E+00,
                                                   1.009E+01,,
                                                                   -0.553
C,SB-125
            , NO
                    -5.581E+00,
C, TE-129M
           , NO
                    -1.715E+01,
                                    3.692E+01,
                                                   5.908E+01,,
                                                                   -0.290
C, I-131
            , NO
                    -2.833E+00,
                                    9.807E+00,
                                                   1.604E+01,,
                                                                   -0.177
                     5.628E+00,
                                    3.295E+00,
                                                   5.755E+00,,
                                                                    0.978
C,BA-133
            , NO
                                                   4.794E+00,,
                                                                    1.096
C, CS-134
                     5.253E+00,
                                    4.105E+00,
            , NO
                                                   8.114E+00,,
                                                                   -0.443
C, CS-136
            , NO
                    -3.597E+00,
                                    5.115E+00,
C, CS-137
            , NO
                     8.960E-03,
                                    2.572E+00,
                                                   4.214E+00,,
                                                                    0.002
C, CE-139
            , NO
                    -1.005E+00,
                                    2.368E+00,
                                                   3.909E+00,,
                                                                   -0.257
C, BA-140
            , NO
                     2.674E+00,
                                    1.964E+01,
                                                   3.279E+01,,
                                                                     0.082
                     2.504E-01,
                                    6.290E+00,
                                                   1.037E+01,,
                                                                    0.024
C, LA-140
            , NO
            , NO
C, CE-141
                    -1.418E+00,
                                    6.416E+00,
                                                   8.773E+00,,
                                                                   -0.162
C, CE-144
            , NO
                     2.344E+00,
                                    2.147E+01,
                                                   2.986E+01,,
                                                                    0.078
C, EU-152
            , NO
                    -2.413E+01,
                                    7.544E+00,
                                                   1.117E+01,,
                                                                   -2.160
C, EU-154
            , NO
                    -1.485E+00,
                                    4.731E+00,
                                                   7.668E+00,,
                                                                   -0.194
                                                                   -0.600
C, RA-226
            , NO
                    -5.638E+01,
                                    5.868E+01,
                                                   9.401E+01,,
                                                                   -0.142
            , NO
                                    9.447E+00,
                                                   1.482E+01,,
C, AC-228
                    -2.111E+00,
C, TH-228
            , NO
                     2.412E+00,
                                    4.687E+00,
                                                   7.713E+00,,
                                                                    0.313
C, TH-232
            , NO
                    -2.099E+00,
                                    9.393E+00,
                                                   1.474E+01,,
                                                                   -0.142
                                                   2.876E+01,,
                                                                    0.087
C, U-235
            , NO
                     2.494E+00,
                                    2.075E+01,
            , NO
C, U-238
                     1.173E+02,
                                    2.513E+02,
                                                   4.219E+02,,
                                                                     0.278
```

2.414E+01,

C,AM-241

,NO,

-6.681E+00,

3.430E+01,,

-0.195

Sec. Review: Analyst: LIMS: _____

_______

_______

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 12-JUN-2006 22:59:13.25 TBE10 12892256 HpGe ******* Aquisition Date/Time: 12-JUN-2006 16:59:04.41

LIMS No., Customer Name, Client ID: WG L28845-8 DRESDEN

Sample ID : 10L28845-8 Smple Date: 26-MAY-2006 10:10:00.

 Sample Type
 : WG
 Geometry
 : 103L083004

 Quantity
 : 3.12770E+00 L
 BKGFILE
 : 10BG060306MT

 Start Channel
 : 80
 Energy Tol
 : 1.00000
 Real Time
 : 0 06:00:03.51

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time
 : 0 06:00:00.00

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM Chann	el %Eff	Cts/Sec %Err	Fit
2 3 4		66.25* 139.84 185.98* 198.27* 583.51* 595.96 609.48*	184 115 28 58 7 104 58	680 568 504 643 131 78 120	1.56 131. 1.28 278. 1.23 371. 1.74 395. 1.57 1166. 1.61 1191. 2.47 1218.	86 1.91E+00 19 1.77E+00 77 1.72E+00 67 7.98E-01 60 7.86E-01	8.53E-03 27.8 5.32E-03 37.2 1.28E-03172.0 2.69E-03 95.0 3.15E-04376.9 4.81E-03 17.6 2.68E-03 46.7	9.41E-01 1.43E+00 1.89E+00 8.96E-01 1.07E+00
8	1	1461.45*	1	32	2.00 2924.	05 3.88E-01	4.79E-05****	1.04E+00

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	1	10.67*	3.885E-01	9.989E-01	9.989E-01	3775.77
RA-226	186.21	28	3.28*	1.770E+00	1.911E+01	1.911E+01	343.96
U-235	143.76		10.50*	1.905E+00	Li	ne Not Found	
	163.35		4.70	1.860E+00	Li	ne Not Found	
	185.71	28	54.00	1.770E+00	1.161E+00	1.161E+00	343.96
	205.31		4.70	1.684E+00	Li:	ne Not Found	

Flag: "*" = Keyline

2

Page : Summary of Nuclide Activity Acquisition date : 12-JUN-2006 16:59:04 Sample ID : 10L28845-8

8 Total number of lines in spectrum Number of unidentified lines 5

3 37.50% Number of lines tentatively identified by NID

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay 377.2E-01 3775.77 1.00 9.989E-01 9.989E-01 K-40 1.28E+09Y 343.96 1.00 1.911E+01 1600.00Y 1.911E+01 6.574E+01 RA-226 3.993E+00 1.161E+00 343.96 K 1.00 1.161E+00 U-235 7.04E+08Y _____

Total Activity : 2.127E+01 2.127E+01

Grand Total Activity: 2.127E+01 2.127E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

0.006

-0.260

0.000E+00

0.000E+00

Unidentified Energy Lines Sample ID : 10L28845-8

Page: Acquisition date : 12-JUN-2006 16:59:04

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1	66.25 139.84	184 115		1.56	131.61					7.25E-01 1.91E+00	
1	198.27	58	643	1.74	395.77	389	12	2.69E-03	***	1.72E+00	
1 1	583.51 595.96	7 104		1.57 1.61				3.15E-04 4.81E-03		7.98E-01 7.86E-01	${f T}$
1	609.48	58	. •				_	2.68E-03		7.72E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

8 Total number of lines in spectrum Number of unidentified lines 5 Number of lines tentatively identified by NID 37.50%

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr pCi/L pCi/L 2-Sigma Error %Error Flags Nuclide Hlife Decay 377.2E-01 3775.77 K-40 1.28E+09Y 1.00 9.989E-01 9.989E-01 6.574E+01 343.96 RA-226 1600.00Y 1.00 1.911E+01 1.911E+01 _____ _____

> Total Activity: 2.011E+01 2.011E+01

Grand Total Activity: 2.011E+01 2.011E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

Nuclide

BE-7

NA-24

CR-51

No interference correction performed

Ided

(pCi/L)

2.398E-01

1.089E+02

-1.404E+01

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226 Non-Idea	9.989E-01 1.911E+01 ntified Nuclides	3.772E+01 6.574E+01	3.415E+01 9.702E+01	0.000E+00 0.000E+00	0.029 0.197
	Key-Line Activity K.L.	Act error	MDA	MDA error	Act/MDA

(pCi/L)

4.212E+01

Half-Life too short

5.399E+01

2.538E+01

3.346E+02

3.324E+01

MN-54	-8.174E-02	2.450E+00 2.520E+00	4.035E+00 4.147E+00	0.000E+00 0.000E+00	-0.020 -0.152
CO-57 CO-58	-6.312E-01 4.773E-02	2.808E+00	4.645E+00	0.000E+00	0.010
FE-59	3.914E+00	5.864E+00	1.013E+01	0.000E+00	0.386
CO-60	1.459E+00	2.616E+00	4.464E+00	0.000E+00	0.327
ZN-65	3.325E+00	5.463E+00	9.388E+00	0.000E+00	0.354
SE-75	-3.284E+00	3.465E+00	5.908E+00	0.000E+00	-0.556
SR-85	2.063E+01	3.380E+00	6.587E+00	0.000E+00	3.131
Y-88	-1.222E-01	3.066E+00	5.003E+00	0.000E+00	-0.024
NB-94	-1.449E+00	2.521E+00	3.987E+00	0.000E+00	-0.363
NB-94 NB-95	-1.443E+00	2.925E+00	4.691E+00	0.000E+00	-0.408
ZR-95	-1.514E+00	5.266E+00	8.613E+00	0.000E+00	-0.176
MO-99	-5.000E+02	1.500E+03	2.451E+03	0.000E+00	-0.204
RU-103	3.890E+00	3.302E+00	5.718E+00	0.000E+00	0.680
RU-106	8.957E+00	2.462E+01	3.994E+01	0.000E+00	0.224
AG-110m	-6.976E-01	2.398E+00	3.854E+00	0.000E+00	-0.181
SN-113	4.162E-01	3.536E+00	5.792E+00	0.000E+00	0.072
SB-124	5.759E+00	5.888E+00	4.915E+00	0.000E+00	1.172
SB-125	5.751E+00	7.189E+00	1.204E+01	0.000E+00	0.478
TE-129M	3.720E+01	4.081E+01	7.004E+01	0.000E+00	0.531
I-131	-1.594E+00	1.143E+01	1.860E+01	0.000E+00	-0.086
BA-133	1.968E+00	3.608E+00	6.014E+00	0.000E+00	0.327
CS-134	5.033E+00	4.154E+00	4.503E+00	0.000E+00	1.118
CS-136	-3.814E+00	5.794E+00	9.218E+00	0.000E+00	-0.414
CS-137	-2.530E+00	2.616E+00	4.052E+00	0.000E+00	-0.624
CE-139	6.109E-02	2.675E+00	4.384E+00	0.000E+00	0.014
BA-140	-9.575E+00	2.233E+01	3.615E+01	0.000E+00	-0.265
LA-140	8.747E-01	7.247E+00	1.210E+01	0.000E+00	0.072
CE-141	2.174E+00	6.946E+00	9.795E+00	0.000E+00	0.222
CE-144	-2.395E+00	2.309E+01	3.225E+01	0.000E+00	-0.074
EU-152	-6.877E+00	8.065E+00	1.287E+01	0.000E+00	-0.535
EU-154	-1.952E+00	5.143E+00	8.438E+00	0.000E+00	-0.231
AC-228	-1.138E+00	9.876E+00	1.516E+01	0.000E+00	-0.075
TH-228	1.801E+00	5.191E+00	8.323E+00	0.000E+00	0.216
TH-232	-1.132E+00	9.819E+00	1.508E+01	0.000E+00	-0.075
U-235	3.159E+01	2.225E+01	3.246E+01	0.000E+00	0.973
U-238	1.793E+02	2.562E+02	4.374E+02	0.000E+00	0.410
AM-241	-2.655E+01	2.431E+01	3.381E+01	0.000E+00	-0.785

```
,06/12/2006 22:59,05/26/2006 10:10,
                                                                3.128E+00,WG L28845-8 DR
A, 10L28845-8
                                             ,06/07/2006 09:32,103L083004
B, 10L28845-8
                     ,LIBD
                    9.989E-01,
                                    3.772E+01,
                                                   3.415E+01,,
                                                                    0.029
           ,YES,
C, K-40
                                    6.574E+01,
                                                   9.702E+01,,
                                                                    0.197
                    1.911E+01,
           ,YES,
C, RA-226
                                                   4.212E+01,,
                                                                    0.006
           ,NO
                                    2.538E+01,
                     2.398E-01,
C, BE-7
                                                                   -0.260
                                                   5.399E+01,,
                                    3.324E+01,
C, CR-51
           , NO
                    -1.404E+01,
                                                   4.035E+00,,
                                                                   -0.020
C, MN-54
           , NO
                    -8.174E-02,
                                    2.450E+00,
                    -6.312E-01,
                                    2.520E+00,
                                                   4.147E+00,,
                                                                   -0.152
           ,NO
C, CO-57
                                                   4.645E+00,,
                                                                    0.010
           ,NO
                     4.773E-02,
                                    2.808E+00,
C, CO-58
                                                   1.013E+01,,
                                                                    0.386
                                    5.864E+00,
                     3.914E+00,
C, FE-59
           , NO
                                                                    0.327
                                                   4.464E+00,,
                     1.459E+00,
                                    2.616E+00,
C, CO-60
            , NO
                                                   9.388E+00,,
                                                                    0.354
                                    5.463E+00,
C, ZN-65
            ,NO
                     3.325E+00,
                                                                   -0.556
                    -3.284E+00,
                                    3.654E+00,
                                                   5.908E+00,,
C,SE-75
            ,NO
                                    3.380E+00,
                                                   6.587E+00,,
                                                                    3.131
                     2.063E+01,
C,SR-85
            , NO
                                    3.066E+00,
                                                   5.003E+00,,
                                                                   -0.024
                    -1.222E-01,
            , NO
C, Y-88
                                                                   -0.363
                                                   3.987E+00,,
                                    2.521E+00,
C, NB-94
            , NO
                    -1.449E+00,
                                                   4.691E+00,,
                                                                   -0.408
                                    2.925E+00,
                    -1.913E+00,
C, NB-95
            , NO
                                                   8.613E+00,,
                                                                   -0.176
                                    5.266E+00,
C, ZR-95
            , NO
                    -1.514E+00,
                                    1.500E+03,
                                                   2.451E+03,,
                                                                   -0.204
                    -5.000E+02,
            , NO
C,MO-99
                                                   5.718E+00,,
                                                                    0.680
                     3.890E+00,
                                    3.302E+00,
C, RU-103
            , NO
                                    2.462E+01,
                                                   3.994E+01,,
                                                                    0.224
                     8.957E+00,
C, RU-106
            , NO
                                                   3.854E+00,,
                                                                   -0.181
                    -6.976E-01,
                                    2.398E+00,
C, AG-110m
           , NO
                                                   5.792E+00,,
                                                                     0.072
            , NO
                                    3.536E+00,
                     4.162E-01,
C, SN-113
                                                   4.915E+00,,
                                                                     1.172
                     5.759E+00,
                                    5.888E+00,
            , NO
C,SB-124
                                                                     0.478
                                    7.189E+00,
                                                   1.204E+01,,
                     5.751E+00,
C,SB-125
            , NO
                                                                     0.531
                                                   7.004E+01,,
                     3.720E+01,
                                    4.081E+01,
            , NO
C,TE-129M
                                                   1.860E+01,,
                                                                    -0.086
            , NO
                    -1.594E+00,
                                    1.143E+01,
C, I-131
                                                                     0.327
                                    3.608E+00,
                                                   6.014E+00,,
                     1.968E+00,
C, BA-133
            , NO
                                                   4.503E+00,,
                                                                     1.118
                                    4.154E+00,
C, CS-134
            , NO
                     5.033E+00,
                                                   9.218E+00,,
                                                                    -0.414
                    -3.814E+00,
                                    5.794E+00,
            ,NO
C,CS-136
                                                   4.052E+00,,
                                                                    -0.624
                    -2.530E+00,
                                    2.616E+00,
C, CS-137
            , NO
                                                   4.384E+00,,
                                                                     0.014
                                    2.675E+00,
                     6.109E-02,
C, CE-139
            , NO
                                                   3.615E+01,,
                                                                    -0.265
                                    2.233E+01,
                    -9.575E+00,
            , NO
C,BA-140
                                                   1.210E+01,,
                                                                     0.072
                                     7.247E+00,
                     8.747E-01,
C, LA-140
            , NO
                                                                     0.222
                                                   9.795E+00,,
                     2.174E+00,
                                    6.946E+00,
            , NO
C, CE-141
                                                   3.225E+01,,
                                                                    -0.074
                                     2.309E+01,
C, CE-144
            , NO
                    -2.395E+00,
                                                                    -0.535
                                                   1.287E+01,,
                    -6.877E+00,
                                     8.065E+00,
            , NO
C, EU-152
                                                                    -0.231
                                     5.143E+00,
                                                    8.438E+00,,
                    -1.952E+00,
C, EU-154
            , NO
                                                   1.516E+01,,
                                                                    -0.075
                                     9.876E+00,
                    -1.138E+00,
 C, AC-228
            ,NO
                                                    8.323E+00,,
                                                                     0.216
                     1.801E+00,
                                     5.191E+00,
 C, TH-228
            , NO
                                                                    -0.075
                                     9.819E+00,
                                                    1.508E+01,,
 C, TH-232
            , NO
                    -1.132E+00,
                                                                     0.973
                      3.159E+01,
                                     2.225E+01,
                                                    3.246E+01,,
            ,NO
 C, U-235
                                                    4.374E+02,,
                                                                     0.410
                                     2.562E+02,
                      1.793E+02,
 C, U-238
            , NO
```

2.431E+01,

-2.655E+01,

C, AM-241

,NO ,

3.381E+01,,

-0.785

Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 12-JUN-2006 22:59:30.51 TBE11 P-20610B HpGe ******** Aquisition Date/Time: 12-JUN-2006 16:59:09.36 ______

LIMS No., Customer Name, Client ID: WG L28845-9 DRESDEN

Smple Date: 26-MAY-2006 10:20:00. : 11L28845-9 Sample ID

Geometry : 113L082304 Sample Type : WG BKGFILE : 11BG060306MT : 3.06400E+00 L Quantity Real Time : 0 06:00:07.51 Energy Tol : 1.00000 Start Channel: 40 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 06:00:00.00 MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
2 3 4	0 0 0 0 0	140.02* 162.46 198.28 238.57* 351.85* 595.85	117 71 163 29 60 91	596 476 506 462 264 156		396.30 477.09 704.15 1192.92	1.88E+00 1.75E+00 1.58E+00 1.20E+00 8.04E-01	7.55E-03 1.36E-03 2.79E-03 4.23E-03	55.1 26.9 164.0 61.3 29.3	
7	0	1460.62*	77	51	2.46	2921.75		3.55E-03		
8	0	1764.86	22	55	1.00	3528.69	3.39E-01	1.03E-03	87.5	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	77	10.67*	3.919E-01	7.495E+01	7.495E+01	64.95
TH-228	238.63	29	44.60*	1.577E+00	1.701E+00	1.731E+00	327.97
	240.98		3.95	1.567E+00	Li:	ne Not Found	

Flag: "*" = Keyline

Page :

2

Summary of Nuclide Activity

Acquisition date: 12-JUN-2006 16:59:09 Sample ID : 11L28845-9

Total number of lines in spectrum

8

Number of unidentified lines

5

Number of lines tentatively identified by NID 3

37.50%

Nuclide Type : natural

Uncorrected	Decay Corr	Decay Corr	2-Sigma

pCi/L pCi/L 2-Sigma Error %Error Flags Nuclide Hlife Decay 4.868E+01 64.95 7.495E+01 7.495E+01 K-40 1.28E+09Y 1.00 5.676E+00 327.97 TH-228 1.91Y 1.02 1.701E+00 1.731E+00

> _____ ______ Total Activity: 7.665E+01 7.668E+01

Grand Total Activity : 7.665E+01 7.668E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit Unidentified Energy Lines Sample ID: 11L28845-9 Page: 3
Acquisition date: 12-JUN-2006 16:59:09

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	140.02	117	596	1.46	279.48	274	10	5.41E-03	86.4	1.90E+00	
0	162.46	71	476	1.44	324.47	319	8	3.27E-03	***	1.88E+00	${f T}$
0	198.28	163	506	1.11	396.30	392	10	7.55E-03	53.8	1.75E+00	
0	351.85	60	264	1.34	704.15	699	11	2.79E-03	****	1.20E+00	
0	595.85	91	156	0.94	1192.92	1187	12	4.23E-03	58.5	8.04E-01	
0	1764.86	22	55	1.00	3528.69	3513	21	1.03E-03	****	3.39E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 8
Number of unidentified lines 5
Number of lines tentatively identified by NID 3

37.50%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	7.495E+01	7.495E+01	4.868E+01	64.95	
TH-228	1.91Y	1.02	1.701E+00	1.731E+00	5.676E+00	327.97	
	Total Acti	vity:	7.665E+01	7.668E+01			

Grand Total Activity : 7.665E+01 7.668E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA	
K-40	7.495E+01	4.868E+01	3.938E+01	0.000E+00	1.903	
TH-228	1.731E+00	5.676E+00	7.138E+00	0.000E+00	0.242	

## ---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L (pCi/L) Ide		MDA (pCi/L)	MDA error	Act/MDA
BE-7	9.150E-02	2.589E+01	4.226E+01	0.000E+00	0.002
NA-24	-3.578E+02	3.235E+02	Half-Life too	short	
CR-51	-4 667E+01	3 235E+01	5 115E+01	0 000E+00	-0.912

L28845	RЗ	/	84	$\circ$ f	90
120013	100	,	0 1	<u> </u>	

MN-54	-7.120E-01	2.555E+00	4.120E+00	0.000E+00	-0.173
CO-57	1.594E-01	2.473E+00	4.083E+00	0.000E+00	0.039
CO-58	-1.942E-01	2.817E+00	4.602E+00	0.000E+00	-0.042
FE-59	-1.436E+00	6.062E+00	9.888E+00	0.000E+00	-0.145
CO-60	5.949E-01	2.483E+00	4.148E+00	0.000E+00	0.143
ZN-65	1.478E+00	5.474E+00	9.205E+00	0.000E+00	0.161
SE-75	-1.456E+00	3.630E+00	5.975E+00	0.000E+00	-0.244
SR-85	1.489E+01	3.377E+00	6.263E+00	0.000E+00	2.378
Y-88	6.721E-01	3.110E+00	5.220E+00	0.000E+00	0.129
NB-94	-5.489E-01	2.395E+00	3.908E+00	0.000E+00	-0.140
NB-95	6.298E-01	2.928E+00	4.866E+00	0.000E+00	0.129
ZR-95	3.052E+00	5.007E+00	8.498E+00	0.000E+00	0.359
MO-99	1.993E+02	1.432E+03	2.375E+03	0.000E+00	0.084
RU-103	2.696E+00	3.477E+00	5.838E+00	0.000E+00	0.462
RU-106	-1.347E+01	2.306E+01	3.719E+01	0.000E+00	-0.362
AG-110m	-1.755E+00	2.455E+00	3.919E+00	0.000E+00	-0.448
SN-113	-9.141E-01	3.489E+00	5.679E+00	0.000E+00	-0.161
SB-124	-1.209E+01	4.023E+00	4.604E+00	0.000E+00	-2.626
SB-125	-2.024E+00	7.059E+00	1.144E+01	0.000E+00	-0.177
TE-129M	3.809E+00	3.821E+01	6.270E+01	0.000E+00	0.061
I-131	-7.581E+00	1.093E+01	1.756E+01	0.000E+00	-0.432
BA-133	6.781E+00	4.002E+00	6.044E+00	0.000E+00	1.122
CS-134	-7.060E-01	3.012E+00	4.282E+00	0.000E+00	-0.165
CS-136	-3.377E+00	6.015E+00	9.549E+00	0.000E+00	-0.354
CS-137	2.232E+00	2.603E+00	4.481E+00	0.000E+00	0.498
CE-139	1.527E+00	3.079E+00	4.345E+00	0.000E+00	0.351
BA-140	5.922E+00	2.155E+01	3.545E+01	0.000E+00	0.167
LA-140	3.950E+00	7.152E+00	1.239E+01	0.000E+00	0.319
CE-141	3.199E+00	6.886E+00	9.738E+00	0.000E+00	0.329
CE-144	-5.584E+00	2.284E+01	3.164E+01	0.000E+00	-0.176
EU-152	-8.320E+00	9.263E+00	1.236E+01	0.000E+00	-0.673
EU-154	2.128E+00	4.970E+00	8.269E+00	0.000E+00	0.257
RA-226	-5.827E+01	6.599E+01	9.922E+01	0.000E+00	-0.587
AC-228	-8.427E+00	1.113E+01	1.526E+01	0.000E+00	-0.552
TH-232	-8.378E+00	1.107E+01	1.517E+01	0.000E+00	-0.552
U-235	2.171E+01	2.222E+01	3.193E+01	0.000E+00	0.680
U-238	3.302E+01	2.648E+02	4.436E+02	0.000E+00	0.074
AM-241	-6.712E+01	3.291E+01	5.140E+01	0.000E+00	-1.306

```
3.064E+00,WG L28845-9 DR
                    ,06/12/2006 22:59,05/26/2006 10:20,
A,11L28845-9
                                             ,06/07/2006 09:40,113L082304
B,11L28845-9
                     ,LIBD
                                   4.868E+01,
C, K-40
           , YES,
                    7.495E+01,
                                                   3.938E+01,,
                                                                    1.903
           , YES,
                                                   7.138E+00,,
C, TH-228
                    1.731E+00,
                                   5.676E+00,
                                                                    0.242
                                    2.589E+01,
                                                                    0.002
C,BE-7
           , NO
                    9.150E-02,
                                                   4.226E+01,,
                                    3.235E+01,
                                                   5.115E+01,,
                                                                   -0.912
C, CR-51
           , NO
                   -4.667E+01,
                                    2.555E+00,
                                                   4.120E+00,,
                                                                   -0.173
C, MN-54
                   -7.120E-01,
           , NO
                                                   4.083E+00,,
                                    2.473E+00,
                                                                    0.039
C, CO-57
           , NO
                    1.594E-01,
C, CO-58
           , NO
                   -1.942E-01,
                                    2.817E+00,
                                                   4.602E+00,,
                                                                   -0.042
                                                   9.888E+00,,
C, FE-59
                   -1.436E+00,
                                    6.062E+00,
                                                                   -0.145
           , NO
           , NO
C, CO-60
                    5.949E-01,
                                    2.483E+00,
                                                   4.148E+00,,
                                                                    0.143
                                    5.474E+00,
                                                   9.205E+00,,
                                                                    0.161
C, ZN-65
           , NO
                    1.478E+00,
                                                   5.975E+00,,
C, SE-75
           , NO
                   -1.456E+00,
                                    3.630E+00,
                                                                   -0.244
                                    3.377E+00,
                                                   6.263E+00,,
                                                                    2.378
C, SR-85
           , NO
                     1.489E+01,
C, Y-88
                     6.721E-01,
                                    3.110E+00,
                                                   5.220E+00,,
                                                                    0.129
           , NO
                                                   3.908E+00,,
                                    2.395E+00,
                                                                   -0.140
C, NB-94
           , NO
                   -5.489E-01,
C, NB-95
                     6.298E-01,
                                    2.928E+00,
                                                   4.866E+00,,
                                                                    0.129
           , NO
                                                                    0.359
C, ZR-95
                     3.052E+00,
                                    5.007E+00,
                                                   8.498E+00,,
           , NO
                                                   2.375E+03,,
           , NO
                                                                    0.084
C, MO-99
                     1.993E+02,
                                    1.432E+03,
           , NO
                     2.696E+00,
                                    3.477E+00,
                                                   5.838E+00,,
                                                                    0.462
C, RU-103
                                                   3.719E+01,,
C, RU-106
                    -1.347E+01,
                                    2.306E+01,
                                                                   -0.362
            , NO
C, AG-110m
           , NO
                    -1.755E+00,
                                    2.455E+00,
                                                   3.919E+00,,
                                                                   -0.448
                                                   5.679E+00,,
                    -9.141E-01,
                                    3.489E+00,
                                                                   -0.161
C, SN-113
            , NO
            , NO
C,SB-124
                    -1.209E+01,
                                    4.023E+00,
                                                   4.604E+00,,
                                                                   -2.626
C,SB-125
            , NO
                    -2.024E+00,
                                    7.059E+00,
                                                   1.144E+01,,
                                                                   -0.177
                                                   6.270E+01,,
C, TE-129M
                     3.809E+00,
                                    3.821E+01,
                                                                    0.061
           , NO
                    -7.581E+00,
                                                   1.756E+01,,
C, I-131
            , NO
                                    1.093E+01,
                                                                   -0.432
                                    4.002E+00,
                                                   6.044E+00,,
C, BA-133
            , NO
                     6.781E+00,
                                                                    1.122
                                                   4.282E+00,,
C,CS-134
            , NO
                    -7.060E-01,
                                    3.012E+00,
                                                                   -0.165
C, CS-136
            , NO
                    -3.377E+00,
                                    6.015E+00,
                                                   9.549E+00,,
                                                                   -0.354
                                                   4.481E+00,,
                                                                    0.498
C,CS-137
            , NO
                     2.232E+00,
                                    2.603E+00,
C, CE-139
                     1.527E+00,
                                    3.079E+00,
                                                   4.345E+00,,
                                                                    0.351
            , NO
            , NO
                                                   3.545E+01,,
C, BA-140
                     5.922E+00,
                                    2.155E+01,
                                                                    0.167
                                                   1.239E+01,,
C, LA-140
            , NO
                     3.950E+00,
                                    7.152E+00,
                                                                    0.319
C, CE-141
            , NO
                     3.199E+00,
                                    6.886E+00,
                                                   9.738E+00,,
                                                                    0.329
                    -5.584E+00,
                                                   3.164E+01,,
                                                                   -0.176
C, CE-144
            , NO
                                    2.284E+01,
                                                   1.236E+01,,
                                                                   -0.673
C, EU-152
                                    9.263E+00,
            , NO
                    -8.320E+00,
C, EU-154
            , NO
                     2.128E+00,
                                    4.970E+00,
                                                   8.269E+00,,
                                                                    0.257
C, RA-226
            , NO
                    -5.827E+01,
                                    6.599E+01,
                                                   9.922E+01,,
                                                                   -0.587
            , NO
                                                   1.526E+01,,
                                                                   -0.552
C, AC-228
                    -8.427E+00,
                                    1.113E+01,
C, TH-232
                                    1.107E+01,
                                                   1.517E+01,,
                                                                   -0.552
            , NO
                    -8.378E+00,
C, U-235
                     2.171E+01,
                                    2.22E+01,
                                                   3.193E+01,,
                                                                    0.680
            , NO
C, U-238
                                                                    0.074
            , NO
                     3.302E+01,
                                    2.648E+02,
                                                   4.436E+02,,
```

3.291E+01,

5.140E+01,,

-1.306

C, AM-241

, NO

-6.712E+01,

Sec. Review: Analysq: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 12-JUN-2006 15:12:36.55 TBE23 03017322 HpGe ******* Aquisition Date/Time: 12-JUN-2006 11:44:44.96

LIMS No., Customer Name, Client ID: WG L28845-10 EXELON/DRESDEN

Sample ID : 23L28845-10 Smple Date: 26-MAY-2006 12:00:00.

 Sample Type
 : WG
 Geometry
 : 233L082404

 Quantity
 : 2.99220E+00 L
 BKGFILE
 : 23BG060306MT

 Start Channel
 : 50
 Energy Tol
 : 1.50000
 Real Time
 : 0 03:27:40.16

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time
 : 0 03:27:31.54

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
7	8	33.82*	59	29	1.27	67.96	8.29E-02	4.72E-03	32.6	2.88E+00
2	4	63.07*	39	299	1.31	126.42	1.03E+00	3.13E-03	80.0	1.07E+00
3	4	66.09	140	418	1.77	132.45	1.15E+00	1.12E-02	28.1	
4	Õ	92.31*	31	601	1.45	184.86	1.93E+00	2.51E-03	160.6	
5	0	139.74*	89	489	1.05	279.66	2.32E+00	7.11E-03	48.3	
6	0	185.50*	19	399	1.42	371.11	2.18E+00	1.49E-032	219.6	
7	0	238,25*	33	278	0.97	476.53	1.90E+00	2.62E-03	100.3	
8	0	595.81	37	75	1.44	1191.31	9.56E-01	3.00E-03	44.7	
9	0	609.13*	32	100	1.28	1217.94	9.40E-01	2.60E-03	75.0	
10	0	883.77	26	52	0.54	1767.09	7.23E-01	2.08E-03	63.9	
11	0	1460.63*	11	36	2.05	2920.90	5.10E-01	8.99E-04	172.8	
12	0	1764.67*	1	8	1.42	3529.25	4.38E-01	1.10E-04	628.2	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	11	10.67*	5.096E-01	1.493E+01	1.493E+01	345.55
RA-226	186.21	19	3.28*	2.175E+00	1.883E+01	1.883E+01	439.11
TH-228	238.63	33	44.60*	1.902E+00	2.787E+00	2.834E+00	200.67
	240.98		3.95	1.888E+00	Li	ne Not Found	

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Sample ID : 23L28845-10 Acquisition date : 12-JUN-2006 11:44:44

12

8

Total number of lines in spectrum Number of unidentified lines

Number of lines tentatively identified by NID 4 33.33%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.493E+01	1.493E+01	5.161E+01	345.55
RA-226	1600.00Y	1.00	1.883E+01	1.883E+01	8.269E+01	439.11
TH-228	1.91Y	1.02	2.787E+00	2.834E+00	5.687E+00	200.67

Total Activity: 3.655E+01 3.660E+01

Grand Total Activity: 3.655E+01 3.660E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 23L28845-10

Page: 3 Acquisition date : 12-JUN-2006 11:44:44

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff I	Flags
8	33.82	59	29	1.27	67.96	65	16	4.72E-03	65.1	8.29E-02	
4	63.07	39	299	1.31	126.42	123	14	3.13E-03	* * * *	1.03E+00	
4	66.09	140	418	1.77	132.45	123	14	1.12E-02	56.2	1.15E+00	
0	92.31	31	601	1.45	184.86	181	10	2.51E-03	* * * *	1.93E+00	
0	139.74	89	489	1.05	279.66	275	9	7.11E-03	96.6	2.32E+00	
0	595.81	37	75	1.44	1191.31	1186	9	3.00E-03	89.4	9.56E-01	
0	609.13	32	100	1.28	1217.94	1212	13	2.60E-03	****	9.40E-01	
0	883.77	26	52	0.54	1767.09	1758	15	2.08E-03	****	7.23E-01	${f T}$
0	1764.67	1	8	1.42	3529.25	3525	9	1.10E-04	****	4.38E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

12 Total number of lines in spectrum Number of unidentified lines 8
Number of lines tentatively identified by NID 4

33.33%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.493E+01	1.493E+01	5.161E+01	345.55	
RA-226	1600.00Y	1.00	1.883E+01	1.883E+01	8.269E+01	439.11	
TH-228	1.91Y	1.02	2.787E+00	2.834E+00	5.687E+00	200.67	
	Total Acti	vity:	3.655E+01	3.660E+01			

Grand Total Activity: 3.655E+01 3.660E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	1.493E+01	5.161E+01	5.024E+01	0.000E+00	0.297
RA-226	1.883E+01	8.269E+01	1.286E+02	0.000E+00	0.146
TH-228	2.834E+00	5.687E+00	9.717E+00	0.000E+00	0.292

#### ---- Non-Identified Nuclides ----

Key-Line					
Activity	K.L.	Act error	MDA	MDA error	Act/MDA

Nuclide	(pCi/L)	Ided		(pCi/L)		
BE-7	2.233E+01		3.117E+01	5.481E+01	0.000E+00	0.407
NA-24	-3.897E+00		2.410E+02		too short	
CR-51	-2.884E+01		3.937E+01	6.545E+01	0.000E+00	-0.441
MN - 54	-8.305E-01		2.831E+00	4.812E+00	0.000E+00	-0.173
CO-57	1.029E+00		3.346E+00	5.667E+00	0.000E+00	0.182
CO-58	-1.084E+00		3.263E+00	5.534E+00	0.000E+00	-0.196
FE-59	4.888E+00		6.737E+00	1.250E+01	0.000E+00	0.391
CO-60	1.610E+00		2.848E+00	5.279E+00	0.000E+00	0.305
ZN-65	7.814E+00		6.481E+00	1.229E+01	0.000E+00	0.636
SE-75	-6.508E-01		4.593E+00	7.822E+00	0.000E+00	-0.083
SR-85	1.567E+01		4.032E+00	7.791E+00	0.000E+00	2.011
Y-88	1.453E+00		3.547E+00	6.619E+00	0.000E+00	0.220
NB-94	2.276E+00		2.851E+00	5.155E+00	0.000E+00	0.441
NB-95	4.758E+00		3.467E+00	6.473E+00	0.000E+00	0.735
ZR-95	-3.549E+00		5.920E+00	9.882E+00	0.000E+00	-0.359
MO-99	-7.634E+02		1.519E+03	2.556E+03	0.000E+00	-0.299
RU-103	1.081E-01		4.036E+00	6.864E+00	0.000E+00	0.016
RU-106	1.243E+01		2.822E+01	4.966E+01	0.000E+00	0.250
AG-110m	3.028E+00		2.923E+00	5.378E+00	0.000E+00	0.563
SN-113	-6.643E-01		4.125E+00	6.990E+00	0.000E+00	-0.095
SB-124	-9.000E+00		9.588E+00	5.755E+00	0.000E+00	-1.564
SB-125	2.187E+00		8.880E+00	1.528E+01	0.000E+00	0.143
TE-129M	-2.932E+01		4.804E+01	7.932E+01	0.000E+00	-0.370
I-131	6.506E+00		1.331E+01	2.314E+01	0.000E+00	0.281
BA-133	1.286E-01		4.368E+00	7.449E+00	0.000E+00	0.017
CS-134	1.554E+00		5.144E+00	5.849E+00	0.000E+00	0.266
CS-136	3.393E+00		6.511E+00	1.171E+01	0.000E+00	0.290
CS-137	3.232E-02		3.182E+00	5.531E+00	0.000E+00	0.006
CE-139	5.183E-01		3.552E+00	5.960E+00	0.000E+00	0.087
BA-140	1.380E+00		2.576E+01	4.394E+01	0.000E+00	0.031
LA-140	4.082E+00		7.842E+00	1.476E+01	0.000E+00	0.277
CE-141	5.550E+00		9.134E+00	1.327E+01	0.000E+00	0.418
CE-144	-2.394E+01		3.132E+01	4.347E+01	0.000E+00	-0.551
EU-152	-7.717E+00		1.014E+01	1.679E+01	0.000E+00	-0.459
EU-154 AC-228	2.999E+00		6.769E+00	1.150E+01	0.000E+00	0.261
	1.172E+01		1.212E+01	2.097E+01	0.000E+00	0.559
TH-232	1.165E+01		1.206E+01	2.085E+01	0.000E+00	0.559
U-235 U-238	3.879E+01		3.021E+01	4.427E+01	0.000E+00	0.876
U-238 AM-241	-1.362E+02		3.269E+02	5.377E+02	0.000E+00	-0.253
₩1.7.4.T	1.230E+01		2.051E+01	2.949E+01	0.000E+00	0.417

```
2.992E+00,WG L28845-10 E
A,23L28845-10
                     ,06/12/2006 15:12,05/26/2006 12:00,
                     ,LIBD
                                             ,06/01/2006 10:14,233L082404
B,23L28845-10
C, K-40
           , YES,
                     1.493E+01,
                                    5.161E+01,
                                                   5.024E+01,,
                                                                    0.297
C, RA-226
           , YES,
                                    8.269E+01,
                     1.883E+01,
                                                   1.286E+02,,
                                                                    0.146
C, TH-228
           , YES,
                     2.834E+00,
                                    5.687E+00,
                                                   9.717E+00,,
                                                                    0.292
C, BE-7
                                                   5.481E+01,,
           , NO
                     2.233E+01,
                                    3.117E+01,
                                                                    0.407
                                    3.937E+01,
C, CR-51
            , NO
                    -2.884E+01,
                                                   6.545E+01,,
                                                                   -0.441
C, MN-54
            , NO
                    -8.305E-01,
                                    2.831E+00,
                                                   4.812E+00,,
                                                                   -0.173
C, CO-57
           , NO
                                    3.346E+00,
                                                   5.667E+00,,
                     1.029E+00,
                                                                    0.182
           , NO
C, CO-58
                    -1.084E+00,
                                    3.263E+00,
                                                   5.534E+00,,
                                                                   -0.196
           , NO
                                                   1.250E+01,,
C, FE-59
                     4.888E+00,
                                    6.737E+00,
                                                                    0.391
C, CO-60
                                                   5.279E+00,,
            , NO
                     1.610E+00,
                                    2.848E+00,
                                                                    0.305
C, ZN-65
            , NO
                     7.814E+00,
                                    6.481E+00,
                                                   1.229E+01,,
                                                                    0.636
C, SE-75
                                    4.593E+00,
                                                   7.822E+00,,
           , NO
                    -6.508E-01,
                                                                   -0.083
C, SR-85
                                                   7.791E+00,,
            , NO
                     1.567E+01,
                                    4.032E+00,
                                                                    2.011
C, Y-88
                     1.453E+00,
                                    3.547E+00,
                                                   6.619E+00,,
                                                                    0.220
            , NO
                                                   5.155E+00,,
C, NB-94
            , NO
                     2.276E+00,
                                    2.851E+00,
                                                                    0.441
C, NB-95
            ,NO
                     4.758E+00,
                                    3.467E+00,
                                                   6.473E+00,,
                                                                    0.735
C, ZR-95
            , NO
                    -3.549E+00,
                                    5.920E+00,
                                                   9.882E+00,,
                                                                   -0.359
                                                   2.556E+03,,
C,MO-99
            , NO
                    -7.634E+02,
                                    1.519E+03,
                                                                   -0.299
C, RU-103
            , NO
                     1.081E-01,
                                    4.036E+00,
                                                   6.864E+00,,
                                                                    0.016
            , NO
                                                   4.966E+01,,
C, RU-106
                     1.243E+01,
                                    2.822E+01,
                                                                    0.250
C, AG-110m
           , NO
                     3.028E+00,
                                    2.923E+00,
                                                   5.378E+00,,
                                                                    0.563
                                                   6.990E+00,,
C,SN-113
            , NO
                    -6.643E-01,
                                    4.125E+00,
                                                                   -0.095
C,SB-124
                                                   5.755E+00,,
            , NO
                    -9.000E+00,
                                    9.588E+00,
                                                                   -1.564
C,SB-125
            , NO
                     2.187E+00,
                                    8.880E+00,
                                                   1.528E+01,,
                                                                    0.143
C, TE-129M
            , NO
                    -2.932E+01,
                                    4.804E+01,
                                                   7.932E+01,,
                                                                   -0.370
C, I-131
            , NO
                     6.506E+00,
                                    1.331E+01,
                                                   2.314E+01,,
                                                                    0.281
C,BA-133
            , NO
                     1.286E-01,
                                    4.368E+00,
                                                   7.449E+00,,
                                                                    0.017
C,CS-134
            , NO
                     1.554E+00,
                                    5.144E+00,
                                                   5.849E+00,,
                                                                    0.266
                                                   1.171E+01,,
C, CS-136
            , NO
                     3.393E+00,
                                    6.511E+00,
                                                                    0.290
C, CS-137
            , NO
                     3.232E-02,
                                    3.182E+00,
                                                   5.531E+00,,
                                                                    0.006
C,CE-139
                     5.183E-01,
                                    3.552E+00,
                                                   5.960E+00,,
            , NO
                                                                    0.087
C,BA-140
            , NO
                     1.380E+00,
                                    2.576E+01,
                                                   4.394E+01,,
                                                                    0.031
C, LA-140
            , NO
                     4.082E+00,
                                    7.842E+00,
                                                   1.476E+01,,
                                                                    0.277
C, CE-141
                     5.550E+00,
            , NO
                                    9.134E+00,
                                                   1.327E+01,,
                                                                    0.418
C, CE-144
            , NO
                    -2.394E+01,
                                    3.132E+01,
                                                   4.347E+01,,
                                                                   -0.551
C, EU-152
                                                   1.679E+01,,
            , NO
                    -7.717E+00
                                    1.014E+01,
                                                                   -0.459
C, EU-154
                     2.999E+00,
            , NO
                                    6.769E+00,
                                                   1.150E+01,,
                                                                    0.261
                                                   2.097E+01,,
C,AC-228
            , NO
                     1.172E+01,
                                    1.212E+01,
                                                                    0.559
C, TH-232
            , NO
                     1.165E+01,
                                    1.206E+01,
                                                   2.085E+01,,
                                                                    0.559
C, U-235
            , NO
                     3.879E+01,
                                    3.021E+01,
                                                   4.427E+01,,
                                                                    0.876
C, U-238
            , NO
                    -1.362E+02,
                                    3.269E+02,
                                                   5.377E+02,,
                                                                   -0.253
```

2.051E+01,

2.949E+01,,

0.417

C, AM-241

,NO ,

1.230E+01,



2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L29515
Exelon
August 14, 2006



Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

# Case Narrative - L29515 EX001-3ESPDRES-06

08/14/2006 15:57

# Sample Receipt

The following samples were received on August 9, 2006 in good condition, unless otherwise noted.

Cross Reference Table

		<b>3</b>	
	Client ID	Laboratory ID	Station ID(if applicable)
T	WG-DN-MW-DN-122I-080806-GL-001	L29515-1	
	WG-DN-MW-DN-122S-080806-GL-002	L29515-2	
	WG-DN-MW-DN-121S-080806-GL-003	L29515-3	
	WG-DN-MW-DN-123I-080806-GL-004	L29515-4	
	RB-DN-MW-DN-120I-080806-GL-005	L29515-5	
	WG-DN-MW-DN-120I-080806-GL-006	L29515-6	
	WG-DN-MW-DN-120S-080806-GL-007	L29515-7	

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3 (DIST)	TBE-2010	
TOTAL SR	TBE-2018	EPA 905.0



# Case Narrative - L29515 EX001-3ESPDRES-06

08/14/2006 15:57

# Gamma Spectroscopy

## **Quality Control**

Quality control samples were analyzed as WG4301.

### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

Laboratory ID

QC Sample #

WG-DN-MW-DN-122I-080806-GL-001

L29515-1

## WG4301-1

## H-3 (DIST)

## **Quality Control**

Quality control samples were analyzed as WG4302.

## Method Blank

All blanks were within acceptance limits, unless otherwise noted.

### **Laboratory Control Sample**

All laboratory control samples were within acceptance limits, unless otherwise noted.

### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID WG-DN-MW-DN-122I-080806-GL-001 Laboratory ID L29515-1

QC Sample # WG4302-3



A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

### Case Narrative - L29515 EX001-3ESPDRES-06

08/14/2006 15:57

### **TOTAL SR**

### **Quality Control**

Quality control samples were analyzed as WG4309.

### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

### **Laboratory Control Sample**

All laboratory control samples were within acceptance limits, unless otherwise noted.

### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-DN-MW-DN-122I-080806-GL-001	L29515-1	WG4309-3

### Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

**Operations Manager** 

### Sample Receipt Summary

ပ္	NESTO	GA-R	CONESTOGA-ROVERS & ASSOCIATES	SHIPPED TO		51560,
		West Chester,	Ohio 45069	(Faboratory Marine	1	ELEDYNE BROWN ENGINEERING LT
	7	13-942-4	fax	REFERENCE NUMBER:	BER:	PROJECT NAME:
	CHY	AIN-OF	CHAIN-OF-CUSTODY RECORD	45136-23-	-6015	EXCELON - DRESDEN FACILITY
SAR	SAMPLER'S SIGNATURE:		PRINTED NAME:		NERS	PARAMETERS
SEQ.	DATE	TIME	SAMPLE IDENTIFICATION	ë Z	SAMPLE 20XTAI	Kein Series Contraction Remarks
	8-8-0	08850	WG-D-MW-DN-122I-680806-61-001	120-19-001	H0 2	
		1005		1 - 1 -002		×
		1205	-1215-	003	2	х
		1430	4-4-4-4-123I-	4 - 4 - CO4	2	
		1440	RB-D-MW- DN-120I-080	DN - 120I-080806-61-005	7	×
			WG-0-MW-DN-120I-08	DN-120I-080806-GL-006	7	×
	€	1610	WG-0-MW-DN-1205-08	-08080-el-anz	2	ļ
			Principal Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of C		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	
			and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	MARK	
			TOTAL NUMBER OF CONTAINERS		エ	
A PEL	RELINQUISHED BY:	\    }	1 X X 1	W/V	-OC RECEIVED BY:	
	REI INOI IISHED BV.	, à		DATE:	<b>3</b>	
<b>8</b>		: a		TIME:	RECEIVED BY:	DAIE:
RELIN	RELINQUISHED BY:	BY:		DATE:	RECEIVED BY:	
ည				TIME:	4	TIME:
<b>E</b>	METHOD OF SHIPMENT:	SHIPM	ENT: DHL		AIR	AIR BILL NO. 45329194046
White		-Fully E	<b>1</b> S	யி		RECEIVED FOR LABORATORY BY;
Pink	70	-Receiving LatShipper Copy	oratory copy	GREG LEWIS RAMIES NACHETI	UETT	DATE: 8/4/2 TIME: 1/120 004826
20i0		-sampler copy	lpy	11		12
1001	1001-00(SOURCE)GN-CO004	CE)GN-C	0004			



EXCELON (DRESDEN FACILITY)

ATTN: CHARLES
REBECCA CHARLES
FROM: GREG LEWIS
CRA, INC.

* PLEASE CALL INEDNESDAY MORNING
TO CORRECT A SMALL ISSUE WITH
THE CHAIN OF CUSTODY
(513) 200-8902

2 pgs INCL. COUER

ලි ව	NESTO 90	GA-F )33 Me	CONESTOGA-ROVERS & ASSOCIATES 9033 Meridian Way	SHIPPED TO	<u>.</u>				
	A	West Chester	West Chester, Ohio 45069		•	TELEDYNIE	VE BROWN	ENGINEERINE	NE.
)	7	513-942-8585	47.50 Julione 8585 fax	REFERENCE NUMBER	۱	ă.	PROJECT NAME:		
	СНА	AIN-OF	CHAIN-OF-CUSTODY RECORD	45136-23-	\$ - 8		EXCELON	- DRESDEN	FACILITY
SAM	SAMPLEKS SIGNATURE:		PRINTED NAME:				RAMETERS		
SEQ.	DATE	TIME	SAMPLE IDENTIFICATIO	N No.	SAMPLE 20 CO		20 40 CO (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		REMARKS
	880	0820	WG- D- MW. DN-122 I-BOBCE	100-19-0080	H,0 2		) ×		
		55 N	-1223-	200.	2 :	یز	×		
		1205		1. 1.5 -003	7	X i	У Х		inguistas in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont
		1470	W-W- 4- 4-123 T.		2	×	×		
		inhhi	RE-0-MW-	BN-1101-080806-61-005	7	×	×		
		16 So	(W/Ga- B - MW)-	DM-120 T-0808 Glo-64-006	2	×	> X		
	•	1640	WG-0-MW- BN-1205	-050806-61-007	<u>~</u> 1	<u>' پر</u> د	×		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	-		•						
									The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
				4					
									a decisional anniamental property and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se
	VALUE AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY		TOTAL NUMBER OF CONTAINERS		<del>.</del> .				
RELIF	RELINQUISHED BY:	, A	7.07	DATE: 8-8-66	<b>!</b>	'ED BY:			DATE:
Ð	<b>191</b>			TIME: /64/5	(2)			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	TIME:
ÆE.	RELINQUISHED BY:	BY:		DATE:	RECEIVED BY:	ÆD BY:			DATE:
9				IME:	(B)		Annah den en en en en en en en en en en en en e		TIME:
	RELINQUISHED BY: (3)	BY:		DATE: ⊤IME:	RECEIVED BY:	/ED BY:			DATE:
							A The second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control o		TIME:
E E	METHOD OF SHIPMENT:	SHIP	MENT: DAL		AIR	AIR BILL No.	No. 45329194046	9,40,4	
White Yellow		-Fully E	d Copy ooratory Copy	SAMPLE TEAM:		_ '	RECEIVED FOR LABORATORY BY:	ORATORY BY:	0000
Gog A	enrod	-Shipp Samp	-Shipper Copy -Sampler Copy		6/2 TT		DATE: TIN	TIME:	004826

and of the period of the

129515

00 /5	VESTO	GA-Ri	CONESTOGA-ROVERS & ASSOCIATES	SHIPPED TO (Laboratory Name):	<b>,</b>			
0		West Chester, E42 042 4750	West Chester, Onlo 45069		/ELEDYN/E	YNE BROWN	カスカートなりに	\$
	<u> </u>	3-942-B		REFERENCE NUMBER:	Ą.	PROJECT NAME:	٠	
	CHA	IN-OF-	CHAIN-OF-CUSTODY RECORD	45136-23-6015	۲	EXCELON -	DRESDEN	Faciumy
SAR	SAMPLER'S SIGNATURE:		PRINTED NAME:		523	PARAMETERS		
5					ю. о ИIА1	28 20 20 20 20 20 20 20 20 20 20 20 20 20		REMARKS
SEQ.	DATE	TIME	SAMPLE IDENTIFICATION NO.		כסאו	Kei Jaho		
	880	08820	126- 158-110. W. 122 E-080	1320-66-001 His		×		
			-5271-   -   -	1 . 1 .002	N			
	<b>/</b>	1205	ì		7	У Х		
		14/30	- TEEL 9 - 7 - 9	- CO-	7	×		
		04,41	RB-04-MW- BN-120I-080806-61-005	0806-61-005	1-1	х х		
		Poso	WG- 01-MW- DN-120I-0808 06-121-006	80806-161-006	L.J	×		
	•	1640	WG. Offemu - DN-1205-050806-61-007	80806-6-004	4	<u>ጉ</u> አ		-
			4.			Total Market		
			Dehanced to					AND AND AND AND AND AND AND AND AND AND
			9					
				96/5/8				entrippide
! 								
								The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
			a manufacture de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante	A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR				
			TOTAL NUMBER OF CONTAI	NERS	7			
E.	RELINQUISHED BY:	<u>i</u>				BY:		DATE:
$\overline{\mathfrak{D}}$				TIME: 1645	ભુ			TIME
HE.	RELINQUISHED BY:	. BY:		SATE:	RECEIVED BY:	·BY:		DATE
9								DATE.
<u> </u>	Secure de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión	JBY:		TIME:	Acceived by.			ПМЕ:
ME	METHOD OF SHIPMENT:	#AIİHS =	MENT: DHL		AIRE	AIR BILL NO. 45329/94046	9,601	
White	e qu	-Fully E	S	SAMPLE TEAM:		RECEIVED FOR LABORATORY BY	RATORY BY.	
Yellow Pink Golden	rellow Pink Goldenrod	-Xecel -Shipp -Samp	Receiving Laboratory Copy -Shipper Copy -Sampler Copy	PACKE / VALUET	مه له	DATE: 8/9/06 TIME:	E. 1030	004826
1,5	1001-00(SOURCE)GN-CO004	RCE)GN-	CO004			3		

### Charles, Rebecca

From: Shaw, Kathy [kshaw@craworld.com]

Sent: Wednesday, August 09, 2006 10:54 AM

To: Charles, Rebecca

Cc: Hoyt, Dennis; Larry.Walton@exeloncorp.com

Subject: Dresden

### Hi Rebecca,

Attached please find a revised copy of the Dresden COC for samples collected yesterday. I changed the D in the sample IDs to DN. Please update your records.

Thanks,

### **Kathy Shaw - Chemist**

Conestoga-Rovers & Associates 45 Farmington Valley Drive Plainville, Connecticut 06062 PH 860 747-1800 Fax 860 747-1900 CRAWORLD.COM

### Charles, Rebecca

From:

Larry.Walton@exeloncorp.com

Sent:

Wednesday, August 09, 2006 11:39 AM

To:

Charles, Rebecca; Wayne.Stotts@exeloncorp.com

Cc:

kshaw@craworld.com

Subject: RE: TAT for Dresden

### 3 day TAT

### Larry

----Original Message----

From: Charles, Rebecca [mailto:Rebecca.Charles@tbe.com]

Sent: Wednesday, August 09, 2006 11:38 AM

To: Stotts, Wayne A.

**Cc:** Walton, Larry; Shaw, Kathy **Subject:** TAT for Dresden

Wayne

We received the samples from Dresden today. What turn-around time do you want for them?

### Thanks

Rebecca Charles Teledyne Brown Engineering Project Manager (865) 934-0379 (865) 934-0396 (fax)

This email and any of its attachments may contain Teledyne Brown Engineering proprietary information, which is privileged, confidential, or subject to copyright belong to Teledyne Brown Engineering. This e-mail is intended solely for the use of the individual or entity to which it is addressed. If you are not the intended recipient of this e-mail, you are hereby notified that any dissemination, distribution, copying, or action taken in relation to the contents and attachments to this e-mail is strictly prohibited and may be unlawful. If you have received this e-mail in error, please notify the sender immediately and permanently delete the original and any copy and printout of this e-mail. Thank You

*******************

*******

This e-mail and any of its attachments may contain Exelon Corporation proprietary information, which is privileged, confidential, or subject to copyright belonging to the Exelon Corporation family of Companies.

This e-mail is intended solely for the use of the individual or entity to which it is addressed. If you are not the intended recipient of this e-mail, you are hereby notified that any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is strictly prohibited and may be unlawful. If you have received this e-mail in error, please notify the sender immediately and permanently

08/09/06 10:44 SR #: SR09823

### Teledyne Brown Engineering Sample Receipt Verification/Variance Report

Client: Exelon Project #: EX001-3ESPDRES-06 LIMS #: L29515

Initiated By: PMARSHALL Init Date: 08/09/06 Receive Date: 08/09/06 Notification of Variance Person Notified: Contacted By: Notify Date: Notify Method: Notify Comment: Client Response Person Responding: Response Date: Response Method: Response Comment Criteria Yes No NA Comment 1 Shipping container custody seals present NA and intact. Sample container custody seals present NA and intact. 3 Sample containers received in good Υ condition 4 Chain of custody received with samples 5 All samples listed on chain of custody received 6 Sample container labels present and legible. 7 Information on container labels correspond with chain of custody 8 Sample(s) properly preserved and in appropriate container(s) Gamma portion of all seven samples required 5mL of nitric to be added to bring pH to 2. 9 Other (Describe) NA

### Internal Chain of Custody

Teledyne Brown Engineering
Internal Chain of Custody

Internal Chain of Custody ****************** Sample # L29515-1 Containernum 1 Analyst Prod H-3 (DIST) DW SR-90 (FAST) LCB GELI Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/09/2006 00:00 030854 Donna Webb Sample Custodian 08/09/2006 12:33 099999 099999 Sample Custodian Donna Webb 08/14/2006 08:05 030854 *************** Containernum 2 Sample # L29515-1 Analyst Prod H-3 (DIST) DW SR-90 (FAST) LCB DW GELI Relinquish Date Relinquish By Received By 099999 Sample Custodian 08/09/2006 00:00 030854 Donna Webb Sample Custodian 08/09/2006 12:33 099999 029728 Lauren Larsen Donna Webb 08/09/2006 12:34 030854 Lauren Larsen 030854 Donna Webb 08/14/2006 08:04 029728 099999 Sample Custodian Donna Webb 08/14/2006 08:05 030854 ***************** Sample # L29515-2 Containernum 1 Analyst Prod H-3 (DIST) DW SR-90 (FAST) LCB **GELI** Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/09/2006 00:00 Donna Webb 030854 Sample Custodian 08/09/2006 12:33 099999 099999 Sample Custodian Donna Webb 08/14/2006 08:05 030854 **************** Containernum 2 Sample # L29515-2 Analyst Prod H-3 (DIST) DW LCB SR-90 (FAST) GELI DW Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/09/2006 00:00 Sample Custodian 030854 Donna Webb 08/09/2006 12:33 099999 029728 Lauren Larsen Donna Webb 08/09/2006 12:34 030854 Lauren Larsen 030854 Donna Webb 08/14/2006 08:04 029728 Donna Webb 099999 Sample Custodian 030854 08/14/2006 08:05

**************

Sample # L29515-3

Containernum 1

Prod Analyst

Teledyne Brown Engineering

08/14/06 15:58	7	Teledyne Brown Engineering Internal Chain of Custody		Page: 1272 62413
**************************************	*****	**************************************	******	****
0 (5.75)	7,17			
H-3 (DIST)	DW LCB			
SR-90 (FAST) GELI	DW			
Relinquish Date Reli			Received By	
08/09/2006 00:00	indaran pa		099999	Sample Custodian
08/09/2006 12:33	099999	Sample Custodian	030854	Donna Webb
08/14/2006 08:05	030854	Donna Webb	099999	Sample Custodian
**************************************	*****	**************************************	******	****
Prod H-3 (DIST)	Ana] DW	Lyst		
SR-90 (FAST)	LCB			
GELI	D <b>W</b>			
Relinquish Date Reli	inquish By		Received By 099999	Sample Custodian
08/09/2006 00:00	099999	Sample Custodian	030854	Donna Webb
08/09/2006 12:33 08/09/2006 12:34	030854	Donna Webb	029728	Lauren Larsen
08/14/2006 08:04	029728	Lauren Larsen	030854	Donna Webb
08/14/2006 08:05	030854	Donna Webb	099999	Sample Custodian
		*****	*****	_
Sample # L29515-4		Containernum 1		
Prod H-3 (DIST)	Ana. DW	lyst		
SR-90 (FAST)	LCB			
GELI	D <b>W</b>			
Relinquish Date Rel	inquish By		Received By 099999	Sample Custodian
08/09/2006 00:00		Sample Custodian	030854	Donna Webb
08/09/2006 12:33	099999	Donna Webb	099999	Sample Custodian
08/14/2006 08:05	030854	*********************		_
Sample # L29515-4		Containernum 2		
Prod H-3 (DIST)	Ana. DW	lyst		
SR-90 (FAST)	LCB			
GELI	D <b>W</b>			
Relinquish Date Rel	inquish By		Received By	
08/09/2006 00:00			099999	Sample Custodian
08/09/2006 12:33	099999	Sample Custodian	030854	Donna Webb
08/09/2006 12:34	030854	Donna Webb	029728	Lauren Larsen
08/14/2006 08:04	029728	Lauren Larsen	030854	Donna Webb
08/14/2006 08:05	030854	Donna Webb	099999	Sample Custodian

*************

Sample # L29515-5

Containernum 1

Prod Analyst

Sample # L29515-7

Prod

Teledyne Brown Engineering
Internal Chain of Custody

***************** Containernum 1 Sample # L29515-5 DW H-3 (DIST) LCB SR-90 (FAST) GELI DW Received By Relinquish Date Relinquish By Sample Custodian 099999 08/09/2006 00:00 030854 Donna Webb Sample Custodian 099999 08/09/2006 12:33 Sample Custodian 099999 Donna Webb 030854 08/14/2006 08:05 ******************* Sample # L29515-5 Containernum 2 Analyst Prod H-3 (DIST) DW SR-90 (FAST) LCB DW **GELI** Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/09/2006 00:00 030854 Donna Webb Sample Custodian 08/09/2006 12:33 099999 Lauren Larsen Donna Webb 029728 08/09/2006 12:34 030854 Donna Webb 030854 Lauren Larsen 029728 08/14/2006 08:04 Sample Custodian Donna Webb 099999 08/14/2006 08:05 030854 ****************** Containernum Sample # L29515-6 Analyst Prod H-3 (DIST) DW SR-90 (FAST) LCB **GELI** Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/09/2006 00:00 Donna Webb Sample Custodian 030854 08/09/2006 12:33 099999 Donna Webb 099999 Sample Custodian 08/14/2006 08:05 030854 ******************* Containernum 2 Sample # L29515-6 Analyst Prod DW H-3 (DIST) LCB SR-90 (FAST) DW GELI Received By Relinquish Date Relinquish By Sample Custodian 099999 08/09/2006 00:00 030854 Donna Webb Sample Custodian 099999 08/09/2006 12:33 Lauren Larsen 029728 Donna Webb 030854 08/09/2006 12:34 Donna Webb 030854 Lauren Larsen 08/14/2006 08:04 029728 Sample Custodian 099999 Donna Webb 030854 08/14/2006 08:05 ****************

Containernum 1

Analyst

Teledyne Brown Engineering
Internal Chain of Custody

******************* Containernum 1 Sample # L29515-7 DW H-3 (DIST) LCB SR-90 (FAST) DW GELI Relinquish Date Relinquish By Received By 099999 Sample Custodian 08/09/2006 00:00 Sample Custodian 030854 Donna Webb 08/09/2006 12:33 099999 Sample Custodian 099999 Donna Webb 08/14/2006 08:05 030854 ***************** Sample # L29515-7 Containernum 2 Analyst Prod H-3 (DIST) DW SR-90 (FAST) LCB DW **GELI** 

Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/09/2006 00:00 Donna Webb 030854 Sample Custodian 08/09/2006 12:33 099999 029728 Lauren Larsen Donna Webb 08/09/2006 12:34 030854 030854 Donna Webb Lauren Larsen 08/14/2006 08:04 029728 Sample Custodian 099999 Donna Webb 08/14/2006 08:05 030854

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

### L29515

L29515-1         WG         WG-DN-MW-DN-122I-08806-GL-001           Process step         Prod         Analyst         Date           Login         CGLI         DW         08/09/06           Aliquot         H-3 (DIST)         DW         08/10/06           Aliquot         SR-90 (FAST)         LCB         08/10/06           Count Room         GELI         KPW         08/10/06           Count Room         H-3 (DIST)         KOJ         08/10/06           Count Room         SR-90 (FAST)         KOJ         08/10/06           Count Room         SR-90 (FAST)         KOJ         08/10/06           Count Room         SR-90 (FAST)         KOJ         08/10/06           Aliquot         GELI         Analyst         Date           Login         B-3 (DIST)         DW         08/09/06           Aliquot         GELI         BW         08/10/06           Count Room         GELI         KPW         08/10/06           Count Room         H-3 (DIST)         KOJ         08/10/06           Count Room         FAST)         KOJ         08/10/06           Count Room         GELI         KOJ         08/10/06           Aliquot
RCHARLES
Aliquot   H-3 (DIST)   DW   08/09/06   Aliquot   H-3 (DIST)   DW   08/10/06   Aliquot   SR-90 (FAST)   LCB   08/10/06   Count Room   GELI   KPW   08/10/06   Count Room   H-3 (DIST)   KOJ   08/10/06   Count Room   SR-90 (FAST)   KOJ   08/14/06    ***********************************
Note
Aliquot   SR-90 (FAST)   LCB   08/10/06
Count Room         GELI         KPW         08/10/06           Count Room         H-3 (DIST)         KOJ         08/10/06           Count Room         SR-90 (FAST)         KOJ         08/14/06           ***********************************
Count Room         H-3 (DIST)         KOJ         08/10/06           Count Room         SR-90 (FAST)         KOJ         08/14/06           ***********************************
Count Room         SR-90 (FAST)         KOJ         08/14/06           ***********************************
***********************************
L29515-2         WG WG-DN-MW-DN-122S-0806-GL-002           Process step         Prod         Analyst         Date           Login         CHARLES         08/09/06           Aliquot         GELI ST)         DW 08/10/06           Aliquot         SR-90 FAST)         LCB 08/10/06           Count Room         GELI ST)         KOJ 08/10/06           Count Room         H-3 (DIST)         KOJ 08/10/06           Count Room         SR-90 FAST)         KOJ 08/10/06           Count Room         SR-90 FAST)         KOJ 08/14/06           ***********************************
Process step         Prod         Analyst         Date           Login         CHARLES         08/09/06           Aliquot         GELI         DW         08/09/06           Aliquot         SR-90 (FAST)         LCB         08/10/06           Count Room         GELI         KPW         08/10/06           Count Room         H-3 (DIST)         KOJ         08/10/06           Count Room         SR-90 (FAST)         KOJ         08/14/06           ***********************************
RCHARLES
Aliquot
Aliquot
Aliquot SR-90 (FAST) LCB 08/10/06  Count Room GELI KPW 08/10/06  Count Room H-3 (DIST) KOJ 08/10/06  Count Room SR-90 (FAST) KOJ 08/14/06  ***********************************
Count Room         GELI         KPW         08/10/06           Count Room         H-3 (DIST)         KOJ         08/10/06           Count Room         SR-90 (FAST)         KOJ         08/14/06           ***********************************
Count Room       H-3 (DIST)       KOJ       08/10/06         Count Room       SR-90 (FAST)       KOJ       08/14/06         ***********************************
Count Room       SR-90 (FAST)       KOJ       08/14/06         ***********************************
**************************************
L29515-3         WG WG-DN-MW-DN-121S-080806-GL-003           Process step         Prod         Analyst         Date           Login         RCHARLES         08/09/06           Aliquot         GELI         DW         08/09/06           Aliquot         H-3 (DIST)         DW         08/10/06           Aliquot         SR-90 (FAST)         LCB         08/10/06           Count Room         GELI         KPW         08/10/06           Count Room         H-3 (DIST)         KOJ         08/10/06           Count Room         SR-90 (FAST)         KOJ         08/14/06
Process step         Prod         Analyst         Date           Login         RCHARLES         08/09/06           Aliquot         GELI         DW         08/09/06           Aliquot         H-3 (DIST)         DW         08/10/06           Aliquot         SR-90 (FAST)         LCB         08/10/06           Count Room         GELI         KPW         08/10/06           Count Room         H-3 (DIST)         KOJ         08/10/06           Count Room         SR-90 (FAST)         KOJ         08/14/06
Login       RCHARLES       08/09/06         Aliquot       GELI       DW       08/09/06         Aliquot       H-3 (DIST)       DW       08/10/06         Aliquot       SR-90 (FAST)       LCB       08/10/06         Count Room       GELI       KPW       08/10/06         Count Room       H-3 (DIST)       KOJ       08/10/06         Count Room       SR-90 (FAST)       KOJ       08/14/06
Aliquot GELI DW 08/09/06 Aliquot H-3 (DIST) DW 08/10/06 Aliquot SR-90 (FAST) LCB 08/10/06 Count Room GELI KPW 08/10/06 Count Room H-3 (DIST) KOJ 08/10/06 Count Room SR-90 (FAST) KOJ 08/14/06
Aliquot H-3 (DIST) DW 08/10/06 Aliquot SR-90 (FAST) LCB 08/10/06 Count Room GELI KPW 08/10/06 Count Room H-3 (DIST) KOJ 08/10/06 Count Room SR-90 (FAST) KOJ 08/14/06
Aliquot SR-90 (FAST) LCB 08/10/06  Count Room GELI KPW 08/10/06  Count Room H-3 (DIST) KOJ 08/10/06  Count Room SR-90 (FAST) KOJ 08/14/06
Count Room         GELI         KPW         08/10/06           Count Room         H-3 (DIST)         KOJ         08/10/06           Count Room         SR-90 (FAST)         KOJ         08/14/06
Count Room H-3 (DIST) KOJ 08/10/06 Count Room SR-90 (FAST) KOJ 08/14/06
Count Room SR-90 (FAST) KOJ 08/14/06
,
******************
L29515-4 WG WG-DN-MW-DN-123I-080806-GL-004
<u>Process step Prod</u> <u>Analyst Date</u>
Login RCHARLES 08/09/06
Aliquot GELI DW 08/09/06
Aliquot H-3 (DIST) DW 08/10/06
Aliquot SR-90 (FAST) LCB 08/10/06
Count Room GELI KPW 08/10/06
Count Room H-3 (DIST) KOJ 08/10/06
Count Room SR-90 (FAST) KOJ 08/14/06
***************
L29515-5 WG RB-DN-MW-DN-120I-080806-GL-005
<u>Process step Prod</u> <u>Analyst Date</u>
Login RCHARLES 08/09/06
Aliquot GELI DW 08/09/06
Aliquot H-3 (DIST) DW 08/10/06
Aliquot SR-90 (FAST) LCB 08/10/06
Count Room GELI KPW 08/10/06

### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

### L29515

L29515-5	WG	RB-DN-MW-DN-120I-08	0806-GL-005	
Count Room	H-3 (D	IST)	KOJ	08/10/06
Count Room	SR-90	(FAST)	KOJ	08/14/06
****	*****	*****	******	******
L29515-6	WG	WG-DN-MW-DN-120I-08	0806-GL-006	
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	08/09/06
Aliquot	GELI		DW	08/09/06
Aliquot	н-3 (С	DIST)	DW	08/10/06
Aliquot	SR-90	(FAST)	LCB	08/10/06
Count Room	GELI		KPW	08/10/06
Count Room	н-3 (г	DIST)	KOJ	08/11/06
Count Room	SR-90	(FAST)	KOJ	08/14/06
*****	*****	*****	*****	*******
L29515-7	WG	WG-DN-MW-DN-120S-08	0806-GL-007	
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			RCHARLES	08/09/06
Aliquot	GELI		DW	08/09/06
Aliquot	H-3 (E	DIST)	DW	08/10/06
Aliquot	SR-90	(FAST)	LCB	08/10/06
Count Room	GELI		KPW	08/10/06
Count Room	H-3 (I	DIST)	KOJ	08/11/06
Count Room	SR-90	(FAST)	KOJ	08/14/06

In Proces	S				
Sample#	<u>Analysis</u>		Clientid		
*****	*****	*****	******	*****	*
In Process	s OC				
Sample #	Analysis	Matrix	Clientid		
		*****	******	******	*
************					
Missing ga	amma nuclides				
Sample #	Nuclide				
******	******	******	*****	******	**
Spec/High	Flags				
Sample#	Analysis		Fla	.g	
_	_	*****		g *******	**
_	- ********	*****			**
**************************************	- ********	*****			**
************  QC Failur  Qc Sample	- ************************************		**************************************	******	
**********  QC Failur  Qc Sample  *****	- ************************************		**************************************	**************************************	
**********  QC Failur  Qc Sample  ***********  Recoverie	- ************************************		**************************************	**************************************	
**********  QC Failur  Qc Sample  *****	- ************************************		**************************************	**************************************	
*********  QC Failur  Qc Sample  *******  Recoveries  Sample#		******	******************  QC type  ***********************************	**************************************	**
*********  QC Failur  Qc Sample  *******  Recoveries  Sample#		******	******************  QC type  ***********************************	***************  Passfail  *******	**

### Analytical Results Summary

TELEDYNE
BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29515

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID:	Sample ID: WG-DN-MW-DN-122I-080806-GL-001	N-1221-080806	5-GL-001		Collect	Start: 0	Collect Start: 08/08/2006 08:50	50		Matrix: Ground Water	ound Wate	er .		(WG)
Station:					Collect Stop:	t Stop:				Volume:				
Description:					Receive	Date: 0	Receive Date: 08/09/2006		% IV	% Moisture:				
LIMS Number: L29515-1	L29515-1													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count	Count	Flag Values	samenen katolisisesi. Si
TI 7 (FIICH)	2010	₹ 805±01	_  _	1 79E+02	nCi/I.		10	m.		90/11/80	09	Σ	n n	
TOTAL SD	2010	-5.73E-01		1.46E+00	pCi/L		450	m	08/08/06 08:50	08/14/06	120	Σ	U	
V-VI	2002	1.04E+02	-	4.06E+01	pCi/L		3206.32	TE	08/08/06 08:50	90/01/80	8238	Sec	<del>\</del> +	Yes
MN-54	2007	-4.71E-01	_	3.87E+00	pCi/L		3206.32	m	08/08/06 08:50	08/10/06	8238	Sec	n	No S
CO-58	2007	-1.72E+00		3.56E+00	pCi/L		3206.32	m	08/08/06 08:50	08/10/06	8238	Sec		No
FF_59	2007	3.32E+00		8.90E+00	pCi/L		3206.32	lm.	08/08/06 08:50 08/10/06	08/10/06	8238	Sec	n	No.
09-00	2007	-1.21E+00		5.75E+00	pCi/L		3206.32	lm.	08/08/06 08:50		8238	Sec		No.
20 02 ZN-65	2007	-6.75E+00	6.60E+00	9.18E+00	pCi/L	Charles	3206.32	lm	08/08/06 08:50		8238	Sec	n	٩ ا
NB-95	2007	9.27E-02	2.51E+00	4.20E+00	pCi/L		3206.32	m ^l	08/08/06 08:50	08/10/06	8238	Sec		No
ZR-95	2007	2.78E+00	4.02E+00	7.26E+00	pCi/L		3206.32	ī	08/08/06 08:50 08/10/06	08/10/09	8238	Sec	0 :	No
CS-134	2007	1.05E+00	2.33E+00	3.54E+00	pCi/L		3206.32	ш	08/08/06 08:50	08/10/06	8238	Sec		No.
CS-137	2007	-2.19E+00	2.87E+00	4.15E+00	pCi/L		3206.32	III	08/08/06 08:50   08/10/06	08/10/06	8238	Sec	0:	No.
BA-140	2007	-9.90E-01	9.69E+00	1.56E+01	pCi/L		3206.32	E	08/08/06 08:50	08/10/06	8238	Sec		No
LA-140	2007	-4.39E-01	3.40E+00	5.42E+00	pCi/L		3206.32	ш	08/08/06 08:50   08/10/06	08/10/06	8238	Sec	_ U	NO

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

7 Page 1 of

Compound/Analyte not detected or less than 3 sigma Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)
Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

Bolded text indicates reportable value. High recovery

Low recovery

| | | | |

U* High Spec

BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29515

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Volume: % Moisture:

(MG)

Ground Water

Matrix:

Collect Start: 08/08/2006 10:05 Collect Stop: WG-DN-MW-DN-122S-080806-GL-002 Sample ID: Station: Description:

Kathy Shaw

Receive Date: 08/09/2006

L29515-2 LIMS Number:

													_	
		Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count		Count	j	
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values	alues
H-3 (DIST)	2010	-5.93E+01	1.06E+02	1.81E+02	pCi/L		10	m		08/10/06	09	M	n	
TOTAL SR	2018	5.47E-01	7.50E-01	1.43E+00	pCi/L		450	lm.	08/08/06 10:05	08/14/06	120	Σ	Ω	
MN-54	2007	8.99E-01	3.58E+00	5.97E+00	pCi/L		3327.53	m	08/08/06 10:05	08/10/06	11239	Sec	D	- 02 
CO-58	2007	-3.47E+00	3.69E+00	5.68E+00	pCi/L		3327.53	lm	08/08/06 10:05	08/10/06	11239	Sec	n	No No
FE-59	2007	5.41E+00	6.81E+00	1.19E+01	pCi/L		3327.53	lm.	08/08/06 10:05	08/10/06	11239	Sec	n	No
09-00	2007	-6.61E-01	4.06E+00	6.92E+00	pCi/L		3327.53	m	08/08/06 10:05	08/10/06	11239	Sec	n	No
22 - NZ	2007	4.00E+01	1.01E+01	1.90E+01	pCi/L		3327.53	m	08/08/06 10:05	08/10/06	11239	Sec	*0	No
NB-95	2007	1.62E+01		8.37E+00	pCi/L		3327.53	lm	08/08/06 10:05	08/10/06	11239	Sec	*^	No
ZR-95	2007	-6.17E+00		1	pCi/L		3327.53	lm	08/08/06 10:05	08/10/06	11239	Sec	n	No
CS-134	2007	1.04E+01	4.68E+00	7.47E+00	pCi/L		3327.53	m.	08/08/06 10:05   08/10/06	08/10/06	11239	Sec	*5	%   
CS-137	2007	1.10E+00	4.33E+00	6.09E+00	pCi/L		3327.53	ш	08/08/06 10:05   08/10/06	08/10/06	11239	Sec	n	%
BA-140	2007	-6.21E+00	1.37E+01	2.20E+01	pCi/L		3327.53	m	08/08/06 10:05	08/10/06	11239	Sec	n	%
LA-140	2007	-1.37E-01	4.48E+00	7.31E+00	pCi/L		3327.53	Ш	08/08/06 10:05 08/10/06	08/10/06	11239	Sec	n	No
TH-228	2007	1.27E+01	7.22E+00	1.07E+01	pCi/L		3327.53	m	08/08/06 10:05	08/10/06	11239	Sec	+	Yes

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

1 of

Page 2

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification **Low recovery** U* High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29515

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Collect Start: 08/08/2006 12:05 Collect Stop: WG-DN-MW-DN-121S-080806-GL-003

Sample ID:

Kathy Shaw

Station

Volume: % Moisture:

(MG)

Ground Water

Matrix:

Yes S_N Š å 2 å S N g ž Flag Values * Þ כ  $\supset$  $\supset$  $\Box$  $\supset$  $\supset$  $\supset$  $\supset$ Units Count Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Σ 10800 10800 10800 10800 10800 10800 10800 10800 Count 10800 10800 10800 10800 Time 120 9 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 90/01/80 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 Count Date 08/08/06 12:05 08/08/06 12:05 08/08/06 12:05 08/08/06 12:05 08/08/06 12:05 08/08/06 12:05 08/08/06 12:05 08/08/06 12:05 08/08/06 12:05 08/08/06 12:05 08/08/06 12:05 08/08/06 12:05 Reference Date Aliquot Units 필필필 国国 E 巨 国国 Ξ E 핕 E E Volume Aliguot 3330.13 3330.13 3330.13 3330.13 3330.13 3330.13 3330.13 3330.13 3330.13 3330.13 Receive Date: 08/09/2006 3330.13 450 10 Run # Units pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L 4.44E+00 5.61E+00 4.41E+00 1.82E+02 3.98E+00 3.90E+00 7.97E+00 9.63E+00 6.74E+00 3.75E+00 5.41E+00 1.61E+01 9.53E-01 MDC 2.92E+00 9.62E+00 1.16E+02 2.73E+00 2.60E+00 4.98E+00 2.67E+00 6.24E+00 3.22E+00 4.16E+00 2.88E+00 3.28E+00 Uncertainty 5.19E-01 2 Sigma -3.12E+00 -3.43E+00 -2.50E+00 -2.06E+00 4.27E+00 8.56E+00 6.04E-01 -1.81E-01 7.54E+01 4.81E-01 -4.19E-01 4.51E-01 -3.49E-01 Activity Conc 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 L29515-3 LIMS Number: Description: Radionuclide TOTAL SR H-3 (DIST)

08/08/06 12:05

3330.13

pCi/L

7.71E+00

7.47E+00

1.83E+01

CS-137 **BA-140** 

LA-140

CS-134

NB-95

ZR-95

**ZN-65** 

09-00

MN-54

CO-58 FE-59

Results are reported on an as received basis No = Peak not identified in gamma spectrum Yes = Peak identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

_ ot

c

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery U* High Spec

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L29515

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

(MG)				Flag Values			No	No	No	No	No	No	No	No	No	No	Zo
				Flag	n	n	n	n	n	Ŋ	Ŋ	n	ם	n	n	n	_
er.				Count Units	M	M	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec
ound Wate				Count	09	120	7200	7200	7200	7200	7200	7200	7200	7200	7200	7200	7200
Matrix: Ground Water	Volume:	% Moisture:		Count Date	90/11/80	08/14/06	08/10/06	08/10/06	08/10/06	90/11/80	90/11/80	08/10/06	08/10/06	08/10/06	90/11/80	08/10/06	08/10/06
	>	Ж Ж		Reference Date		08/08/06 14:30	08/08/06 14:30	08/08/06 14:30 08/10/06	08/08/06 14:30 08/10/06	08/08/06 14:30	08/08/06 14:30 08/10/06	08/08/06 14:30	08/08/06 14:30	08/08/06 14:30   08/10/06	08/08/06 14:30   08/10/06	08/08/06 14:30 08/10/06	08/10/06
30				Aliquot Units	m	m	m	m	m	m	m	m	m	m	ш	ш	-
Collect Start: 08/08/2006 14:30		Receive Date: 08/09/2006		Aliquot Volume	10	450	3206.17	3206.17	3206.17	3206.17	3206.17	3206.17	3206.17	3206.17	3206.17	3206.17	71 3000
t Start: (	Collect Stop:	Date: (		Run #						*******							
Collec	Collec	Receive		Units	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	11:0=
				MDC	1.86E+02	1.41E+00	5.59E+00	5.63E+00	1.20E+01	5.90E+00	1.07E+01	6.53E+00	9.16E+00	4.85E+00	5.22E+00	1.86E+01	101 E
-GL-004				Uncertainty 2 Sigma	1.11E+02	6.00E-01	2.92E+00	2.98E+00	6.33E+00	3.15E+00	7.37E+00	3.93E+00	5.35E+00	3.23E+00	3.15E+00	1.12E+01	2 0511.00
-1231-080806-				Activity Conc	-2.71E+01	-8.99E-01	2.45E+00	2.12E+00	3.40E+00	6.82E-01	-3.03E+00	3.56E+00	-1.63E+00	-3.80E-01	-2.21E+00	-9.12E+00	7 575 00
J-DN-MW-DN			9515-4	SOP#	2010	2018	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2000
Sample ID: WG-DN-IMW-DN-1231-080806-GL-004	Station:	Description:	LIMS Number: L29515-4	Radionuclide	H-3 (DIST)	TOTAL SR	MN-54	CO-58	FE-59	09-02	ZN-65	NB-95	ZR-95	CS-134	CS-137	BA-140	1 4 140

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

**'** of

Page 4

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery U* High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values U =

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

129515

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Collect Start: 08/08/2006 14:40

Kathy Shaw

(MG) å ŝ g å 20 ž å ž Flag Values  $\supset$  $\supset$  $\supset$  $\Box$  $\supset$  $\supset$  $\supset$  $\supset$ Count Units Sec Sec Sec Sec Sec Sec Sec Sec Σ Σ Ground Water Count 8174 8174 Time 8174 8174 8174 8174 8174 120 09 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/14/06 08/10/06 08/10/06 08/10/06 Count Date Matrix: Volume: % Moisture: 08/08/06 14:40 08/08/06 14:40 08/08/06 14:40 08/08/06 14:40 08/08/06 14:40 08/08/06 14:40 08/08/06 14:40 08/08/06 14:40 08/08/06 14:40 Reference Date Aliquot Units Ξ E 百 Ξ Ē 핔 ᄪ Ш 핕 臣 Volume 3257.43 Aliquot 3257.43 3257.43 3257.43 3257.43 3257.43 3257.43 Receive Date: 08/09/2006 3257.43 450 10 Collect Stop: Run # Units pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L 1.80E+02 4.49E+00 3.88E+00 8.77E+00 5.09E+00 9.05E+00 3.93E+00 6.91E+00 3.46E+00 MDC 2.58E+00 4.91E+00 2.82E+00 2.41E+00 2.53E+00 2.50E+00 6.43E+00 4.13E+00 1.05E+02 Uncertainty 4.36E-01 Sample ID: RB-DN-MW-DN-120I-080806-GL-005 2.32E+00 2.27E+00 -9.85E-01 3.42E+00 1.49E-02 -1.35E+00 -5.69E+01 -4.25E-01 2.07E-02 8.90E-01 Activity 2007 2007 2007 2007 2007 2007 2007 2007 L29515-5 LIMS Number: Station: Description: Radionuclide TOTAL SR H-3 (DIST) CS-134 MN-54 09-00 ZN-65 CO-58 FE-59 NB-95 ZR-95

å å ž

Sec

8174

90/01/80

08/10/06

08/08/06 14:40 08/08/06 14:40 08/08/06 14:40

ᄪ 필필

3257.43

pCi/L

4.89E+00

2.73E+00 9.35E+00 3.11E+00

2.60E+00 3.91E+00

2007

pCi/L

pCi/L

5.18E+00 1.62E+01

-3.85E-02

2007

**BA-140** LA-140

CS-137

Sec

8174

08/10/06

Sec

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

7 oę

S

Page

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification High recovery Low recovery High Spec *

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

(WG)

129515

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Ground Water Matrix: Volume: % Moisture: Collect Start: 08/08/2006 16:50 Receive Date: 08/09/2006 Collect Stop: Sample ID: WG-DN-MW-DN-120I-080806-GL-006

Station: Description:

Kathy Shaw

8 Z 8 Z S N No å å S Z ž S N ž 8 N Flag Values  $\supset$  $\Box$  $\supset$  $\supset$  $\supset$  $\supset$  $\Box$  $\Box$  $\supset$  $\Box$ Count Units Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Σ Σ Count Time 8908 8908 8908 8908 8908 8908 8908 8908 8908 8908 8908 8908 120 9 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/14/06 08/10/06 Count Date 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 08/08/06 16:50 Reference Date Aliquot Units Ē 百 百百 国国 ш E 핕 핕 핕 E 핕 Ξ Volume Aliquot 3227.88 3227.88 3227.88 3227.88 3227.88 3227.88 3227.88 3227.88 3227.88 3227.88 3227.88 3227.88 450 Run # Units pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L 7.80E+00 4.29E+00 7.10E+00 3.77E+00 1.82E+02 4.21E+00 4.50E+00 4.68E+00 7.68E+00 4.24E+00 5.64E+00 1.66E+01 3.58E+01 9.38E-01 MDC 1.11E+02 2.40E+00 2.33E+00 4.46E+00 2.44E+00 5.48E+00 2.46E+00 4.07E+00 2.53E+00 2.50E+00 9.88E+00 2.84E+00 5.02E+01 Uncertainty 4.80E-01 -3.19E+00 1.03E+02 1.35E+00 -1.49E+00 -1.10E+00 -1.89E+00 -2.91E-01 -1.96E+00 -3.47E+00 1.11E+01 2.38E-01 -8.89E-01 7.94E-01 7.11E-01 Activity 2007 2007 2007 2007 2007 2007 2007 SOP# 2007 2007 2007 L29515-6 LIMS Number: Radionuclide H-3 (DIST) TOTAL SR CS-134 **BA-140** CS-137 LA-140 MN-54 CO-58 NB-95 FE-59 CO-60 ZN-65 ZR-95 X-40

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

_  $^{\text{o}}$ 

9

Page

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value Compound/Analyte not detected or less than 3 sigma MDC exceeds customer technical specification H U* High Spec

Flag Values

High recovery Low recovery

MDC - Minimum Detectable Concentration

 $^{\text{of}}$ 

7

Page

## Report of Analysis 08/14/06 15:57

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

L29515

Ground Water Matrix: Volume: Collect Start: 08/08/2006 16:10 Collect Stop:

(MG)

% Moisture: Receive Date: 08/09/2006 WG-DN-MW-DN-120S-080806-GL-007 Sample ID: Station: Description:

Units Count Sec Sec Sec Sec Sec Sec Sec Σ Σ 28800 28800 28800 28800 28800 28800 Count 28800 Time 120 9 08/10/06 08/10/06 08/10/06 08/10/06 08/11/06 08/10/06 90/01/80 08/14/06 08/10/06 Count Date 08/08/06 16:10 08/08/06 16:10 08/08/06 16:10 08/08/06 16:10 08/08/06 16:10 08/08/06 16:10 08/08/06 16:10 08/08/06 16:10 Reference Date

å ž

 $\Box$  $\supset$ 

 $\Box$ 

 $\supset$ 

Flag Values

Aliquot Units

Volume Aliquot

Run

Units

MDC

Uncertainty

Activity Conc

SOP#

Radionuclide

H-3 (DIST) TOTAL SR

L29515-7

LIMS Number:

Kathy Shaw

2 Sigma

Ξ 핍 E 耳 EE 핕 핕 E E E 臣

450 10

> pCi/L pCi/L pCi/L

9.02E-01

4.79E-01

4.02E-01 6.00E-03

1.81E+02

1.18E+02

1.32E+02

2852.81 2852.81 2852.81 2852.81 2852.81 2852.81

> pCi/L pCi/L

> 6.03E+00 3.38E+00

> > -3.77E+00

-3.85E-01

09-00 2N-65 NB-95 ZR-95

FE-59

3.42E+00 3.46E+00

> 2.05E+00 4.07E+00 2.06E+00

1.04E+00

2.10E+00

2007 2007 2007 2007 2007 2007 2007 2007 2007

MN-54 CO-58 pCi/L

5.60E+00 3.46E+00

pCi/L

6.69E+00 3.36E+00

5.07E+00

-1.17E+01 4.09E-01 -2.84E-01

2.03E+00

2852.81

No 2

2 ž å

 $\supset$  $\supset$  % ž

 $\supset$ 

 $\supset$ 

28800

08/10/06

08/08/06 16:10

2852.81

3.88E+00

28800

å

 $\Box$ 

Sec Sec Sec Sec

28800

08/10/06

28800

08/10/06 08/10/06

08/08/06 16:10

2852.81

2852.81

2852.81

pCi/L pCi/L

> 2.20E+00 2.24E+00 7.91E+00 2.35E+00

2.74E+00

CS-134

**BA-140** CS-137

LA-140

3.24E+00

-8.37E-03

2007

-1.50E-01

3.43E+00

pCi/L pCi/L pCi/L

3.68E+00 1.34E+01

08/08/06 16:10

08/08/06 16:10

	No = Peak not identified in gamma spectrum Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Į] 11

Bolded text indicates reportable value.

Low recovery

High Spec

### QC Results Summary

# QC Summary Report

8/14/2006

4:00:17PM

L29515

for

TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		Qualifier P/E U P		Range Qualifier P/F 70-130 + P			Range Qualifier P/F <30 *** NE	
		_		Spike Recovery			RPD	
		Units pCi/Total		Units pCi/Total	a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l		Units pCi/L	
	ıary	Blank Result < 1.810E+00	ary	LCS Result 5.830E+02		ry	DUP Result < 1.810E+02	
H-3 (DIST)	Method Blank Summary		LCS Sample Summary	Spike Value 5.05E+002		Duplicate Summary	Original Result        	
	11111	Count Date/Time 08/10/2006 17:02		Count Date/Time 08/10/2006 18:06			Count Date/Time 08/10/2006 18:23	
	- Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Transition - Tra	Matrix WO		<u>Matrix</u> WO			Matrix WG	
		ple ID Radionuclide 1 H-3 (DIST)		ple ID Radionuclide 2 H-3 (DIST)	Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000		<u>ple ID</u> <u>Radionuclide</u> 3 H-3 (DIST)	
		TBE Sample ID WG4302-1		TBE Sample ID WG4302-2	Spike ID: Spike con Spike Vol.	4	TBE Sample ID WG4302-3 L29515-1	

Page:

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated

Nuclide not detected

+ > * *

Spiking level < 5 times activity Pass

Fail Not evaluated ъ В В В В В В В

QC Summary Report

4:00:17PM 8/14/2006

L29515

for-

TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company

		Qualifier P/F U P		Range Qualifier P/F 70-130 + P			Range Qualifier P/F <30 *** NE	
		al		Spike Recovery al 105.9			RPD	
		Units pCi/Total		Units pCi/Total			Units pCi/L	
	lary	Blank Result < 7.930E-01	ary	LCS Result 6.180E+01		ÿ	DUP Result < 1.320E+00	
TOTAL SR	Method Blank Summary		LCS Sample Summary	<u>alue</u> 001		Duplicate Summary	Original Result        	
TOT	M			Spike Value 5.84E+001				
		Count Date/Time 08/14/2006 16:05		Count Date/Time 08/14/2006 16:05		- Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Charles - Char	Count Date/Time 08/14/2006 16:05	
		<u>Matrix</u> WO		<u>Matrix</u> WO			Matrix WG	
		<u>Radionuclide</u> TOTAL SR		<u>Radionuclide</u> TOTAL SR	011905 +002 -001	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	Radionuclide TOTAL SR	
		TBE Sample ID WG4309-1		TBE Sample ID WG4309-2	Spike ID: 90SR-011905 Spike conc: 2.34E+002 Spike Vol: 2.50E-001		TBE Sample ID WG4309-3 L29515-1	

7 Page:

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Positive Result

Nuclide not detected

+ > * *

Spiking level < 5 times activity Pass Fail Not evaluated

** **

### Raw Data

Raw Data Sheet (rawdata) Aug 14 2006, 04:12 pm

Page: 1

Work Order: <u>L29515</u>	Customer: Exelon	300,						Page:	н			
Nuclide: H-3 (DIST)	Project : EX001-3ESPDRES-06	SSPDRES-06									<b>Десау</b> &	
Run Analysis				Mount	Count	Counter	Total	Sample Bkg Bkg dt(min) counts dt(min)	Bkg cunts d		Eff. Ingrowth Factor	Analyst
Client ID # Date/time L29515-1 H-3 DIST	a Aliquot	Date/time Date	Date/time	1	10-aug-06 19:27	LS7	96	09	1.87	09	.207	DW
WG-DN-MW-DN-122I-080806-GL-001	* 20##+02 *											
Activity: -5.89&+01 Error: 1.05&+02 L29515-2 H-3 DIST	10 ml	- Anna Anna Anna Anna Anna Anna Anna Ann		0	10-aug-06 20:31	LS7	96	9	1.87	09	.205	MO
WG-DN-MW-DN-122S-080806-GL-002	* 00.00.00*											and Addition
Activity: -5.93E+01 Error: 1.00E+02 L29515-3 H-3 DIST				0	10-aug-06 21:34	LS7	133	09	1.87	9	.203	ΜQ
WG-DN-MW-DN-121S-080806-GL-003	**************************************										- Trials	
ACLIVILY: 7.548+01 EFFOR: 1.106+02 L29515-4 H-3 DIST wd_nn_mw_pn_1231-080806-GL-004	10 ml	- Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Cont		0	10-aug-06 22:38	LS7	105	9	1.87	09	·.	DW
Activity: -2.71E+01 Error: 1.11E+02 129515-5 H-3 DIST	MDC: 1.86E+02 *			0	10-aug-06 23:41	LS7	97	09	1.87	09	.206	DW
RB-DN-MW-DN-1201-080806-GL-005	1 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC											
Activity: -5.69E+01 Error: 1.05E+02 1.29515-6 H-3 DIST	10 ml			0	11-aug-06 00:45	LS7	115	09	1.87	09	.203	DW
WG-DN-MW-DN-LZUL-UBUSUS-GL-UUS ACLIVILY: 1.11E+01 EXXOX: 1.11E+02 L29515-7 H-3 DIST	MDC: 1.82E+02 *			0	11-aug-06 01:48	LS7	148	9	1.87	0.9	.205	DW
WG-DN-MW-DN-120S-080806-GL-007 Activity: 1.32E+02 Error: 1.18E+02	MDC: 1.81E+02 *				77111							

Raw Data Sheet (rawdata) Aug 14 2006, 04:12 pm

Work Order: <u>L29515</u>	Customer: Exelon						Page:	7			
Nuclide: <u>SR-90 (FAST)</u>	Project : EX001-3ESPDRES-06	SPDRES-06								Десау &	
Sample ID Run Analysis Reference	Volume/	Scavenge Milking	Mount Weight Reco	Count Recovery Date/time	Counter	Total	Sample dt(min) co	Bkg counts dt	Bkg E dt (min)	Eff. Ingrowth Factor	Analyst
TOTAT. SR	36	18		14-aug-06	YIA	67	120	279	400	.341 1	LCB
	450 ml	09:15	71.43								
WG-DN-MW-DN-122I-080806-GL-001											
Activity: -5.73E-01 Error: 6.58E-01	MDC: 1.46E+00 *										
L29515-2 TOTAL SR 08-aug-06	-06	14-aug-06	0	14-aug-06	YIB	100	120	279	400	.351 1	LCB
10:05	450 ml	09:15	70.88	3 16:08							
WG-DN-MW-DN-122S-080806-GL-002											
Activity: 5.47E-01 Error: 7.5E-01	MDC: 1.43E+00 *	AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPER					- Augramman -			1	
L29515-3 TOTAL SR 08-aug-06	-06	14-aug-06	0	14-aug-06	YIC	118	120	300	400	.345 1	LCB
12:05	450 ml	09:15	112.09	16:08							
WG-DN-MW-DN-121S-080806-GL-003											
Activity: 6.04E-01 Error: 5.19E-01	MDC: 9.53E-01 *									١	
L29515-4 TOTAL SR 08-aug-06	- 06	14-aug-06	0	14-aug-06	·Y1D	63	120	305	400	.362 1	LCB
14:30	450 ml	09:15	73.08	16:08							
WG-DN-MW-DN-123I-080806-GL-004											
Activity: -8.99E-01 Error: 6E-01	MDC: 1.41E+00 *									-1	
L29515-5 TOTAL SR 08-aug-06	-06	14-aug-06	0	14-aug-06	YZA	82	120	280	400	.349 1	LCB
14:40	450 ml	09:15	115.38	38 16:08							
RB-DN-MW-DN-120I-080806-GL-005											
Activity: 2.07E-02 Error: 4.36E-01	MDC: 8.86E-01 *									-	
L29515-6 TOTAL SR 08-aug-06	-06	14-aug-06	0	H	YZB	106	120	315	400	.356 1	LCB
16:50	450 ml	09:15	113.19	16:08							
WG-DN-MW-DN-1201-080806-GL-006											
Activity: 2.38E-01 Error: 4.8E-01	MDC: 9.38E-01 *									- [	
	90	14-aug-06	0	М	Y2C	66	120	268	400	.35 1	LCB
16:10	450 ml	09:15	110.44	44 16:08							
WG-DN-MW-DN-120S-080806-GL-007											
Activity: 4.02E-01 Error: 4.79E-01	MDC: 9.02E-01 *	THE RESERVE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA	-								

Sec. Review:

Analyst:

LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 10-AUG-2006 17:55:32.59

TBE04 P-40312B HpGe ******** Aquisition Date/Time: 10-AUG-2006 15:38:05.28

LIMS No., Customer Name, Client ID: WG L29515-1 DRESDEN

Smple Date: 8-AUG-2006 08:50:00.0 : 04L29515-1 Sample ID

Geometry : 043L082004 Sample Type : WG BKGFILE : 04BG072806MT : 3.20630E+00 L Quantity Energy Tol : 1.00000 Real Time : 0 02:17:19.18 Start Channel: 90 Pk Srch Sens: 5.00000 Live time : 0 02:17:17.70 End Channel : 4090

Library Used: LIBD MDA Constant : 0.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.49*	63	235	1.43	133.87		7.62E-03		
2	1	140.10*	38	191	1.43	281.12		4.59E-03		
3	1	198.95*	5	136	0.78	398.85	1.86E+00	5.46E-045	516.7	5.99E+00
4	1	238.54*	16	106	0.87	478.05		1.92E-03		
5	1	295.05*	22	106	1.44	591.09		2.64E-03		
6	1	352.00*	69	71	0.84	704.99		8.40E-03		
7	1	595.73	33	42	1.72	1192.49		4.00E-03		
8	1	609.54*	90	45	2.23	1220.10		1.09E-02		
9	1	847.30*	14	41	2.24	1695.59		1.73E-03		
10	1	1331.47*	38	28	11.04	2663.72		4.56E-03		
11	1	1460.45*	47	6	2.93	2921.57	4.30E-01	5.67E-03	23.2	9.32E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-519ma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	47	10.67*	4.297E-01	1.042E+02	1.042E+02	46.37
TH-228	238.63	16			2.161E+00	2.166E+00	243.32
	240.98		3.95	1.669E+00	Li	ne Not Found	

Flaq: "*" = Keyline

Summary of Nuclide Activity Page: 2

Sample ID: 04L29515-1 Acquisition date: 10-AUG-2006 15:38:05

Total number of lines in spectrum 11
Number of unidentified lines 9

Number of lines tentatively identified by NID 2 18.18%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 1.042E+02 1.042E+02 0.483E+02 46.37

K-40 1.28E+09Y 1.00 1.042E+02 1.042E+02 0.483E+02 46.37 TH-228 1.91Y 1.00 2.161E+00 2.166E+00 5.270E+00 243.32

Total Activity: 1.064E+02 1.064E+02

Grand Total Activity: 1.064E+02 1.064E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page:

Unidentified Energy Lines Sample ID: 04L29515-1

Acquisition date: 10-AUG-2006 15:38:05

18.18%

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1 1	66.49 140.10 198.95 295.05 352.00 595.73 609.54 847.30 1331.47	63 38 5 22 69 33 90 14 38	235 191 136 106 71 42 45 41	1.43 1.43 0.78 1.44 0.84 1.72 2.23 2.24	133.87 281.12 398.85 591.09 704.99 1192.49 1220.10 1695.59 2663.72	1212 1687	8 9 8 7 8 15	5.46E-04 2.64E-03 8.40E-03 4.00E-03 1.09E-02 1.73E-03	**** **** 49.9 65.1 41.6 ***	6.70E-01 2.04E+00 1.86E+00 1.46E+00 1.28E+00 8.63E-01 8.48E-01 6.58E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 11
Number of unidentified lines 9
Number of lines tentatively identified by NID 2

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Siqma pCi/L Nuclide Hlife Decay pCi/L 2-Sigma Error %Error Flags K-40 1.28E+09Y 0.483E+02 46.37 1.00 1.042E+02 1.042E+02 TH-228 1.91Y 1.00 2.161E+00 2.166E+00 5.270E+00 243.32 Total Activity: 1.064E+02 1.064E+02

Grand Total Activity : 1.064E+02 1.064E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	1.042E+02	4.834E+01	4.055E+01	0.000E+00	2.570
TH-228	2.166E+00	5.270E+00	6.745E+00	0.000E+00	0.321

### ---- Non-Identified Nuclides ----

	Key-Line					
	Activity	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L)	Ided		(pCi/L)		

מים מ	C 244E 01	0.0727.01	2 200E 01	0 00011 00	0 010
BE-7 NA-24	-6.344E-01 3.547E+01	2.073E+01	3.388E+01	0.000E+00	-0.019
CR-51	8.664E+00	3.817E+01	7.169E+01	0.000E+00	0.495
MN-54		1.878E+01	3.281E+01	0.000E+00	0.264
MN-54 CO-57	-4.710E-01	2.398E+00	3.872E+00	0.000E+00	-0.122
CO-58	-1.989E-01	1.933E+00	3.215E+00	0.000E+00	-0.062
FE-59	-1.723E+00	2.370E+00	3.556E+00	0.000E+00	-0.485
	3.321E+00	5.037E+00	8.903E+00	0.000E+00	0.373
CO-60	-1.214E+00	3.341E+00	5.754E+00	0.000E+00	-0.211
ZN-65	-6.745E+00	6.597E+00	9.184E+00	0.000E+00	-0.735
SE-75	-1.355E+00	3.201E+00	4.925E+00	0.000E+00	-0.275
SR-85	-7.466E+00	3.444E+00	4.747E+00	0.000E+00	-1.573
Y-88	-2.226E-01	3.144E+00	4.999E+00	0.000E+00	-0.045
NB-94	-1.208E+00	2.222E+00	3.500E+00	0.000E+00	-0.345
NB-95	9.268E-02	2.509E+00	4.201E+00	0.000E+00	0.022
ZR-95	2.777E+00	4.019E+00	7.260E+00	0.000E+00	0.383
MO-99	2.907E+01	3.132E+01	5.781E+01	0.000E+00	0.503
RU-103	-2.760E+00	2.675E+00	3.932E+00	0.000E+00	-0.702
RU-106	8.779E-01	2.392E+01	3.854E+01	0.000E+00	0.023
AG-110m	-2.608E-01	2.487E+00	3.920E+00	0.000E+00	-0.067
SN-113	-1.794E+00	3.076E+00	4.865E+00	0.000E+00	-0.369
SB-124	-1.741E+00	2.636E+00	3.272E+00	0.000E+00	-0.532
SB-125	2.997E+00	6.614E+00	1.139E+01	0.000E+00	0.263
TE-129M	-1.743E+00	2.866E+01	4.687E+01	0.000E+00	-0.037
I-131	-4.351E-01	3.015E+00	4.990E+00	0.000E+00	-0.087
BA-133	7.049E-01	3.428E+00	5.182E+00	0.000E+00	0.136
CS-134	1.047E+00	2.334E+00	3.536E+00	0.000E+00	0.296
CS-136	1.124E+00	2.477E+00	4.352E+00	0.000E+00	0.258
CS-137	-2.188E+00	2.868E+00	4.145E+00	0.000E+00	-0.528
CE-139	-2.111E+00	2.156E+00	3.329E+00	0.000E+00	-0.634
BA-140	-9.902E-01	9.685E+00	1.556E+01	0.000E+00	-0.064
LA-140	-4.387E-01	3.395E+00	5.418E+00	0.000E+00	-0.081
CE-141	1.777E+00	3.543E+00	6.042E+00	0.000E+00	0.294
CE-144	7.323E+00	1.574E+01	2.688E+01	0.000E+00	0.272
EU-152	3.371E-01	7.011E+00	1.182E+01	0.000E+00	0.029
EU-154	7.822E-01	4.263E+00	7.203E+00	0.000E+00	0.109
RA-226	1.625E+01	5.889E+01	1.004E+02	0.000E+00	0.162
AC-228	-1.732E+00	1.048E+01	1.781E+01	0.000E+00	-0.097
TH-232	-1.730E+00	1.047E+01	1.780E+01	0.000E+00	-0.097
U-235	1.255E+00	1.825E+01	2.725E+01	0.000E+00	0.046
U-238	5.839E+01	3.037E+02	5.074E+02	0.000E+00	0.115
AM-241	-7.693E+00	2.292E+01	3.504E+01	0.000E+00	-0.220

```
3.206E+00,WG L29515-1 DR
                     ,08/10/2006 17:55,08/08/2006 08:50,
A,04L29515-1
                                             ,08/07/2006 09:38,043L082004
                     ,LIBD
B,04L29515-1
                    1.042E+02,
                                                                    2.570
                                    4.834E+01,
                                                   4.055E+01,,
C, K-40
           , YES,
                                                   6.745E+00,,
                                                                    0.321
C, TH-228
           , YES,
                                    5.270E+00,
                    2.166E+00,
                                                   3.388E+01,,
                                                                   -0.019
C, BE-7
           , NO
                   -6.344E-01,
                                    2.073E+01,
                                                                    0.495
C, NA-24
                     3.547E+01,
                                    3.817E+01,
                                                   7.169E+01,,
           , NO
                     8.664E+00,
                                    1.878E+01,
                                                   3.281E+01,,
                                                                    0.264
C, CR-51
           , NO
                                                   3.872E+00,,
                                                                   -0.122
C, MN-54
           , NO
                                    2.398E+00,
                    -4.710E-01,
                                                   3.215E+00,,
                                                                   -0.062
                                    1.933E+00,
C, CO-57
                    -1.989E-01,
           , NO
                                                   3.556E+00,,
                                                                   -0.485
C, CO-58
           , NO
                    -1.723E+00,
                                    2.370E+00,
                                                   8.903E+00,,
                                                                    0.373
           , NO
                                    5.037E+00,
C, FE-59
                     3.321E+00,
C, CO-60
                                                   5.754E+00,,
                                                                   -0.211
           ,NO
                    -1.214E+00,
                                    3.341E+00,
                                                   9.184E+00,,
                                                                   -0.735
                                    6.597E+00,
           , NO
                    -6.745E+00,
C, ZN-65
                                                   4.925E+00,,
                                    3.201E+00,
                                                                   -0.275
C, SE-75
                    -1.355E+00,
           , NO
                                                   4.747E+00,,
                                                                   -1.573
                                    3.444E+00,
C,SR-85
           , NO
                    -7.466E+00,
                                                   4.999E+00,,
                                                                   -0.045
C, Y-88
                    -2.226E-01,
                                    3.144E+00,
            , NO
           ,NO
                                    2.22E+00,
                                                   3.500E+00,,
                                                                   -0.345
C, NB-94
                    -1.208E+00,
                     9.268E-02,
                                    2.509E+00,
                                                   4.201E+00,,
                                                                    0.022
C, NB-95
            , NO
                                                   7.260E+00,,
                                                                    0.383
C, ZR-95
                                    4.019E+00,
            , NO
                     2.777E+00,
                                                   5.781E+01,,
                                                                    0.503
                                    3.132E+01,
C, MO-99
            , NO
                     2.907E+01,
                                                                   -0.702
                    -2.760E+00,
                                    2.675E+00,
                                                   3.932E+00,,
C, RU-103
            , NO
                     8.779E-01,
                                    2.392E+01,
                                                   3.854E+01,,
                                                                    0.023
C, RU-106
            , NO
                                                                   -0.067
                                    2.487E+00,
                                                   3.920E+00,,
C, AG-110m
           , NO
                    -2.608E-01,
                                    3.076E+00,
                                                   4.865E+00,,
                                                                   -0.369
                    -1.794E+00,
            , NO
C,SN-113
                                                   3.272E+00,,
                                                                   -0.532
                    -1.741E+00,
                                    2.636E+00,
C,SB-124
            , NO
                                                   1.139E+01,,
                                                                    0.263
            , NO
                     2.997E+00,
                                    6.614E+00,
C,SB-125
                                    2.866E+01,
                                                   4.687E+01,,
                                                                   -0.037
C, TE-129M
           , NO
                    -1.743E+00,
                                                   4.990E+00,,
                                                                   -0.087
                                    3.015E+00,
C, I-131
            , NO
                    -4.351E-01,
                     7.049E-01,
                                    3.428E+00,
                                                   5.182E+00,,
                                                                    0.136
C, BA-133
            , NO
                                                   3.536E+00,,
                                                                     0.296
            ,NO
                     1.047E+00,
                                    2.334E+00,
C, CS-134
                                    2.477E+00,
                                                   4.352E+00,,
                                                                     0.258
C, CS-136
            , NO
                     1.124E+00,
                                    2.868E+00,
                                                   4.145E+00,,
                                                                   -0.528
C, CS-137
                    -2.188E+00,
            , NO
                                                   3.329E+00,,
                                                                   -0.634
                                    2.156E+00,
                    -2.111E+00,
C,CE-139
            , NO
                                                   1.556E+01,,
                                                                   -0.064
C,BA-140
            ,NO
                    -9.902E-01,
                                    9.685E+00,
                                                   5.418E+00,,
                                                                   -0.081
                    -4.387E-01,
                                    3.395E+00,
C, LA-140
            , NO
                                                                     0.294
C, CE-141
            , NO
                     1.777E+00,
                                    3.543E+00,
                                                   6.042E+00,,
                                    1.574E+01,
                                                   2.688E+01,,
                                                                     0.272
                     7.323E+00,
C, CE-144
            , NO
                                    7.011E+00,
                                                   1.182E+01,,
                                                                     0.029
                     3.371E-01,
C, EU-152
            , NO
                                                   7.203E+00,,
C, EU-154
                                                                     0.109
            , NO
                     7.822E-01,
                                    4.263E+00,
                     1.625E+01,
                                    5.889E+01,
                                                   1.004E+02,,
                                                                     0.162
C, RA-226
            , NO
                                                                    -0.097
C, AC-228
                    -1.732E+00,
                                    1.048E+01,
                                                   1.781E+01,,
            , NO
                                    1.047E+01,
                                                   1.780E+01,,
                                                                    -0.097
C, TH-232
                    -1.730E+00,
            , NO
                                                   2.725E+01,,
                                                                     0.046
                     1.255E+00,
                                    1.825E+01,
C, U-235
            , NO
                                    3.037E+02,
                                                   5.074E+02,,
                                                                     0.115
                     5.839E+01,
C, U-238
            , NO
```

2.292E+01,

C, AM-241

, NO

-7.693E+00,

3.504E+01,,

-0.220

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 10-AUG-2006 13:38:53.74 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 10-AUG-2006 10:31:27.56

LIMS No., Customer Name, Client ID: WG L29515-2 DRESDEN

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2	3 3	74.85* 77.05*	137 385	510 434	0.85 0.76	150.61 155.01		1.22E-02 3.43E-02		6.88E-01
3	1	87.24*	130	557	0.97	175.39		1.16E-02		4.98E-01
4	1	198.28*	50	413	1.14	397.52		4.48E-03		1.63E+00
5	2	238.74*	119	320	1.26	478.45	1.52E+00	1.06E-02	28.5	1.08E+00
6	2	241.99	472	264	1.13	484.96	1.51E+00	4.20E-02	7.4	
7	1	275.16	53	177	1.22	551.30	1.39E+00	4.69E-03	42.4	2.65E+00
8	1	295.23*	873	345	1.04	591.45	1.32E+00	7.76E-02	5.4	1.93E+00
9	1	351.90*	1565	252	1.14	704.79	1.17E+00	1.39E-01	3.3	5.58E-01
10	1	609.28*	1313	215	1.35	1219.57	7.73E-01	1.17E-01	3.7	3.58E+00
11	1	666.47	75	104	8.23	1333.97	7.21E-01	6.67E-03	35.1	2.34E+00
12	1	768.33	150	53	1.90	1537.67	6.46E-01	1.33E-02	13.3	3.26E+00
13	1	846.07*	76	44	5.25	1693.12	6.00E-01	6.73E-03	21.9	3.46E+00
14	1	933.93	43	82	1.44	1868.83	5.55E-01	3.84E-03	45.9	8.73E-01
15	1	1120.11*	283	49	1.87	2241.11	4.81E-01	2.52E-02	8.4	1.08E+00
16	1	1154.80	59	45	3.19	2310.48	4.70E-01	5.27E-03	29.8	8.28E-01
17	1	1237.84*	136	38	2.68	2476.51	4.45E-01	1.21E-02	13.2	9.91E-01
18	1	1281.45	62	55	1.19	2563.70	4.33E-01	5.56E-03	25.9	1.15E+01
19	1	1377.80	105	43	3.07	2756.35	4.10E-01	9.35E-03	17.4	1.21E+00
20	1	1509.35	47	37	3.26	3019.34	3.83E-01	4.15E-03	32.9	8.69E-01
21	1	1729.68	68	10	2.37	3459.80	3.48E-01	6.01E-03	16.1	5.92E-01
22	1	1764.25*	255	10	2.50	3528.90	3.43E-01	2.27E-02	7.3	1.06E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Siqma Nuclide Energy Area %Abn %Eff pCi/L pCi/L %Error TH-228 238.63 119 44.60* 1.520E+00 1.265E+01 1.267E+01 56.93 240.98 -----3.95 1.511E+00 ----- Line Not Found

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Sample ID : 04L29515-2 Acquisition date : 10-AUG-2006 10:31:27

Total number of lines in spectrum 22

Number of unidentified lines 21 Number of lines tentatively identified by NID 1 4.55%

_____

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma
Decay pCi/L pCi/L 2-Sigma Error %Error Flags Nuclide Hlife

TH-228 1.91Y 1.00 1.267E+01 0.721E+01 56.93 1.265E+01

> Total Activity : 1.265E+01 1.267E+01

Grand Total Activity : 1.265E+01 1.267E+01

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Page: 3
Sample ID: 04L29515-2 Acquisition date: 10-AUG-2006 10:31:27

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
3 1 1 2 1	74.85 77.05 87.24 198.28 241.99 275.16 295.23	137 385 130 50 472 53 873	510 434 557 413 264 177 345	0.85 0.76 0.97 1.14 1.13 1.22 1.04	150.61 155.01 175.39 397.52 484.96 551.30 591.45	147 147 172 395 475 549	13 7 7 15 6	1.22E-02 3.43E-02 1.16E-02 4.48E-03 4.20E-02 4.69E-03 7.76E-02	20.1 64.2 ***	9.21E-01 9.89E-01 1.27E+00 1.68E+00 1.51E+00 1.39E+00	) ) )
1 1	351.90 609.28	1565 1313	252 215	1.14 1.35	704.79 1219.57	699 1213	13 15	1.39E-01 1.17E-01	6.7 7.4	1.17E+00 7.73E-01	) -
1 1 1	666.47 768.33 846.07	75 150 76	104 53 44	8.23 1.90 5.25	1333.97 1537.67 1693.12	1327 1532 1690		6.67E-03 1.33E-02 6.73E-03		7.21E-01 6.46E-01 6.00E-01	-
1	933.93 1120.11	43 283	82 49	1.44 1.87	1868.83 2241.11	1863	13	3.84E-03 2.52E-02	91.8	5.55E-01 4.81E-01	-
1 1	1154.80 1237.84	59 136	45 38	3.19 2.68	2310.48 2476.51	2470	15	5.27E-03 1.21E-02	26.5	4.70E-01 4.45E-01	-
1 1 1 1	1281.45 1377.80 1509.35 1729.68 1764.25	62 105 47 68 255	55 43 37 10 10	1.19 3.07 3.26 2.37 2.50	2563.70 2756.35 3019.34 3459.80 3528.90	2557 2747 3013 3452 3519	14		34.7 65.7 32.3	4.33E-01 4.10E-01 3.83E-01 3.48E-01 3.43E-01	- - -

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 22
Number of unidentified lines 21
Number of lines tentatively identified by NID 1 4.55%

Nuclide Type : natural

 Wtd Mean
 Wtd Mean

 Uncorrected
 Decay Corr
 Decay Corr
 2-Sigma

 Nuclide
 Hlife
 Decay
 pCi/L
 2-Sigma Error %Error Flags

 TH-228
 1.91Y
 1.00
 1.265E+01
 1.267E+01
 0.721E+01
 56.93

 Total Activity:
 1.265E+01
 1.267E+01

Grand Total Activity : 1.265E+01 1.267E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Activity Act error MDA MDA error Act/MDA

Nuclide	(pCi/L)		(pCi/L)		
TH-228	1.267E+01	7.215E+00	1.069E+01	0.000E+00	1.185
3.7					
Non-10	dentified Nuclide	!S			
	Key-Line				
	Activity K.I	. Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L) Ide		(pCi/L)		1100/11011
D	0 6007 01				
BE-7	-2.602E+01	3.037E+01	4.826E+01	0.000E+00	-0.539
NA-24	-3.907E+01	4.944E+01	6.200E+01	0.000E+00	-0.630
K-40	3.146E+01	4.765E+01	9.047E+01	0.000E+00	0.348
CR-51	-9.975E+00	3.201E+01	5.205E+01	0.000E+00	-0.192
MN-54	8.991E-01	3.582E+00	5.971E+00	0.000E+00	0.151
CO-57	-1.764E+00	3.426E+00	5.655E+00	0.000E+00	-0.312
CO-58	-3.471E+00	3.691E+00	5.683E+00	0.000E+00	-0.611
FE-59	5.409E+00	6.806E+00	1.190E+01	0.000E+00	0.455
CO-60	-6.611E-01	4.057E+00	6.920E+00	0.000E+00	-0.096
ZN-65	3.996E+01	1.011E+01	1.904E+01	0.000E+00	2.099
SE-75	-2.685E+00	4.883E+00	7.994E+00	0.000E+00	-0.336
SR-85	8.731E+00	4.110E+00	7.344E+00	0.000E+00	1.189
Y-88	3.973E-01	4.115E+00	6.868E+00	0.000E+00	0.058
NB-94	-2.721E-01	3.181E+00	5.261E+00	0.000E+00	-0.052
NB-95	1.617E+01	4.762E+00	8.370E+00	0.000E+00	1.932
ZR-95	-6.172E+00	6.161E+00	9.500E+00	0.000E+00	-0.650
MO-99	1.380E+01	4.540E+01	7.657E+01	0.000E+00	0.180
RU-103	1.846E+00	3.563E+00	6.049E+00	0.000E+00	0.305
RU-106	-5.390E+00	3.100E+01	4.980E+01	0.000E+00	-0.108
AG-110m	-2.314E+00	3.913E+00	5.275E+00	0.000E+00	-0.439
SN-113	-1.978E+00	4.825E+00	7.675E+00	0.000E+00	-0.258
SB-124	-2.919E+00	4.745E+00	6.270E+00	0.000E+00	-0.466
SB-125	2.484E+00	1.045E+01	1.766E+01	0.000E+00	0.141
TE-129M I-131	2.585E+00	4.203E+01	7.017E+01	0.000E+00	0.037
BA-133	1.708E+00 7.228E+00	4.159E+00	6.909E+00	0.000E+00	0.247
CS-134	1.041E+01	5.337E+00 4.675E+00	8.134E+00	0.000E+00	0.889
CS-134 CS-136	3.086E+00		7.471E+00	0.000E+00	1.394
CS-136 CS-137	1.103E+00	4.117E+00 4.331E+00	7.078E+00	0.000E+00	0.436
CE-139	1.708E+00		6.094E+00	0.000E+00	0.181
BA-140	-6.214E+00	3.734E+00 1.372E+01	6.212E+00	0.000E+00	0.275
LA-140	-1.373E-01	4.483E+00	2.199E+01	0.000E+00	-0.283
CE-141	5.660E+00	6.371E+00	7.305E+00 1.080E+01	0.000E+00 0.000E+00	-0.019
CE-144	-9.073E+00	2.734E+01	4.512E+01	0.000E+00	0.524
EU-152	7.060E+00	1.283E+01	1.932E+01	0.000E+00	-0.201
EU-154	-7.700E-01	7.275E+00	1.932E+01 1.213E+01	0.000E+00	0.365 -0.063
RA-226	3.162E+01	9.430E+01	1.562E+02	0.000E+00	0.202
AC-228	-1.120E+01	1.400E+01	2.188E+01	0.000E+00	-0.512
TH-232	-1.120E+01	1.399E+01	2.186E+01	0.000E+00	-0.512
U-235	-3.192E+01	2.897E+01	4.667E+01	0.000E+00	-0.512
U-238	4.689E+01	4.211E+02	7.049E+02	0.000E+00	0.067
AM-241	-1.979E+01	3.291E+01	5.314E+01	0.000E+00	-0.372
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J.27221V1	3.31±UT	0.0005700	0.3/2

```
A,04L29515-2
                     ,08/10/2006 13:38,08/08/2006 10:05,
                                                                 3.328E+00,WG L29515-2 DR
B,04L29515-2
                     , LIBD
                                             ,08/07/2006 09:38,0435L090804
C, TH-228
            , YES,
                     1.267E+01,
                                    7.215E+00,
                                                   1.069E+01,,
                                                                     1.185
C, BE-7
           , NO
                   -2.602E+01,
                                    3.037E+01,
                                                   4.826E+01,,
                                                                   -0.539
C, NA-24
           , NO
                   -3.907E+01,
                                    4.944E+01,
                                                   6.200E+01,,
                                                                   -0.630
C, K-40
            , NO
                                                   9.047E+01,,
                     3.146E+01,
                                    4.765E+01,
                                                                    0.348
           , NO
C, CR-51
                   -9.975E+00,
                                    3.201E+01,
                                                   5.205E+01,,
                                                                   -0.192
C, MN-54
           , NO
                                                   5.971E+00,,
                     8.991E-01,
                                    3.582E+00,
                                                                     0.151
C, CO-57
           , NO
                   -1.764E+00,
                                    3.426E+00,
                                                   5.655E+00,,
                                                                   -0.312
C, CO-58
                                                   5.683E+00,,
            , NO
                   -3.471E+00,
                                    3.691E+00,
                                                                   -0.611
C, FE-59
            , NO
                     5.409E+00,
                                    6.806E+00,
                                                   1.190E+01,,
                                                                    0.455
C, CO-60
           , NO
                                    4.057E+00,
                   -6.611E-01,
                                                   6.920E+00,,
                                                                   -0.096
C, ZN-65
           , NO
                     3.996E+01,
                                                   1.904E+01,,
                                    1.011E+01,
                                                                    2.099
C, SE-75
            , NO
                   -2.685E+00,
                                    4.883E+00,
                                                   7.994E+00,,
                                                                   -0.336
C, SR-85
           , NO
                                                   7.344E+00,,
                     8.731E+00,
                                    4.110E+00,
                                                                    1.189
           , NO
C, Y-88
                     3.973E-01,
                                    4.115E+00,
                                                   6.868E+00,,
                                                                     0.058
C, NB-94
           , NO
                   -2.721E-01,
                                    3.181E+00,
                                                   5.261E+00,,
                                                                   -0.052
           , NO
C, NB-95
                     1.617E+01,
                                    4.762E+00,
                                                   8.370E+00,,
                                                                     1.932
C, ZR-95
           ,NO
                   -6.172E+00,
                                    6.161E+00,
                                                   9.500E+00,,
                                                                   -0.650
C, MO-99
           , NO
                     1.380E+01,
                                    4.540E+01,
                                                   7.657E+01,,
                                                                     0.180
C, RU-103
                                                   6.049E+00,,
            , NO
                     1.846E+00,
                                    3.563E+00,
                                                                     0.305
           , NO
C, RU-106
                   -5.390E+00,
                                    3.100E+01,
                                                   4.980E+01,,
                                                                   -0.108
C, AG-110m
           , NO
                   -2.314E+00,
                                    3.913E+00,
                                                   5.275E+00,,
                                                                   -0.439
C,SN-113
           , NO
                   -1.978E+00,
                                    4.825E+00,
                                                   7.675E+00,,
                                                                   -0.258
C,SB-124
            , NO
                   -2.919E+00,
                                                   6.270E+00,,
                                    4.745E+00,
                                                                   -0.466
C,SB-125
            , NO
                     2.484E+00,
                                    1.045E+01,
                                                   1.766E+01,,
                                                                     0.141
                     2.585E+00,
C,TE-129M
           , NO
                                    4.203E+01,
                                                   7.017E+01,,
                                                                     0.037
C, I-131
            , NO
                     1.708E+00,
                                                   6.909E+00,,
                                    4.159E+00,
                                                                     0.247
C, BA-133
            , NO
                     7.228E+00,
                                    5.337E+00,
                                                   8.134E+00,,
                                                                     0.889
C, CS-134
           , NO
                     1.041E+01,
                                                   7.471E+00,,
                                    4.675E+00,
                                                                    1.394
           , NO
C, CS-136
                     3.086E+00,
                                    4.117E+00,
                                                   7.078E+00,,
                                                                     0.436
C, CS-137
           , NO
                     1.103E+00,
                                    4.331E+00,
                                                   6.094E+00,,
                                                                     0.181
C, CE-139
            , NO
                     1.708E+00,
                                    3.734E+00,
                                                   6.212E+00,,
                                                                     0.275
C,BA-140
                                    1.372E+01,
           , NO
                   -6.214E+00,
                                                   2.199E+01,,
                                                                   -0.283
C, LA-140
           , NO
                   -1.373E-01,
                                    4.483E+00,
                                                   7.305E+00,,
                                                                   -0.019
C, CE-141
           , NO
                     5.660E+00,
                                    6.371E+00,
                                                   1.080E+01,,
                                                                    0.524
C, CE-144
           , NO
                   -9.073E+00,
                                                   4.512E+01,,
                                    2.734E+01,
                                                                   -0.201
C, EU-152
           , NO
                     7.060E+00,
                                    1.283E+01,
                                                   1.932E+01,,
                                                                    0.365
C, EU-154
           , NO
                   -7.700E-01,
                                                   1.213E+01,,
                                    7.275E+00,
                                                                   -0.063
            , NO
C, RA-226
                     3.162E+01,
                                    9.430E+01,
                                                   1.562E+02,,
                                                                    0.202
C, AC-228
           , NO
                   -1.120E+01,
                                    1.400E+01,
                                                   2.188E+01,,
                                                                   -0.512
C, TH-232
           , NO
                   -1.120E+01,
                                                   2.186E+01,,
                                    1.399E+01,
                                                                   -0.512
C, U-235
                                    2.897E+01,
                                                   4.667E+01,,
           , NO
                   -3.192E+01,
                                                                   -0.684
C, U-238
           , NO
                     4.689E+01,
                                                   7.049E+02,,
                                    4.211E+02,
                                                                    0.067
C, AM-241
           ,NO ,
                   -1.979E+01,
```

3.291E+01,

5.314E+01,,

-0.372

Sec. Review: A

Analyst: LIMS:

----

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 15:19:43.76 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 10-AUG-2006 10:44:05.85

LIMS No., Customer Name, Client ID: WG L29515-3 DRESDEN

Sample ID : 07L29515-3 Smple Date: 8-AUG-2006 12:05:00.0

Sample Type : WG Geometry : 0735L090904
Quantity : 3.33010E+00 L BKGFILE : 07BG072806MT
Start Channel : 40 Energy Tol : 1.00000 Real Time : 0 03:00:03.07
End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 03:00:00.00

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	53.30	93	336	1.12	107.56	2.92E-01	8.65E-03	32.4	2.55E+00
2	1	66.16*	92	659	1.42	133.33	7.19E-01	8.55E-03	50.2	1.18E+00
3	1	77.00*	270	664	0.77	155.04	1.10E+00	2.50E-02	17.3	1.50E+00
4	1	87.02*	126	608	0.79	175.11	1.41E+00	1.16E-02	35.4	8.49E-01
5	3	238.63*	196	381	1.65	478.71	1.81E+00	1.82E-02	20.5	2.05E+00
6	3	241.94*	479	279	1.31	485.34	1.80E+00	4.43E-02	7.8	
7	1	295.08*	945	347	1.07	591.75	1.61E+00	8.75E-02	5.2	2.29E+00
8	1	351.79*	1628	316	1.18	705.29	1.43E+00	1.51E-01	3.5	1.93E+00
9	1	583.11*	46	122	1.87	1168.36	1.01E+00	4.25E-03	54.4	1.44E+00
10	1	596.10	82	141	3.81	1194.37	9.96E-01	7.62E-03	35.2	2.33E+00
11	1	609.12*	1326	115	1.46	1220.42	9.81E-01	1.23E-01	3.3	2.10E+00
12	1	767.81	104	95	1.67	1538.03	8.29E-01	9.59E-03	20.9	1.14E+00
13	1	934.17	48	65	1.90	1870.94	7.17E-01	4.47E-03	33.5	1.40E+00
14	1	1120.14*	291	56	1.90	2243.00	6.26E-01	2.69E-02	8.5	3.46E+00
15	1	1238.18*	118	52	2.12	2479.14	5.81E-01	1.09E-02	16.3	8.65E-01
16	1	1407.57	57	19	2.24	2817.93	5.29E-01	5.25E-03	20.3	1.12E+00
17	1	1660.67	23	14	2.31	3324.03	4.72E-01	2.17E-03	35.5	3.61E+00
18	1	1764.65*	270	6	2.84	3531.91	4.54E-01	2.50E-02	7.0	1.30E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Sigma Nuclide %Abn Area %Eff pCi/L pCi/L %Error Energy TH-228 238.63 196 44.60* 1.822E+01 40.91 1.815E+00 1.826E+01 3.95 5.055E+02 240.98 479 1.802E+00 5.065E+02 15.58

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2

Sample ID : 07L29515-3 Acquisition date : 10-AUG-2006 10:44:05

Total number of lines in spectrum 18 Number of unidentified lines 14

Number of lines tentatively identified by NID 4 22.22%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Decay pCi/L pCi/L 2-Sigma Error %Error Flags 1.00 1.822E+01 1.826E+01 0.747E+01 40.91 Nuclide Hlife

TH-228 1.91Y

Total Activity: 1.822E+01 1.826E+01

Grand Total Activity: 1.822E+01 1.826E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID: 07L29515-3

Acquisition date : 10-AUG-2006 10:44:05

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	53.30	93	336	1.12	107.56	105	6	8.65E-03	64.7	2.92E-01	
1	66.16	92	659	1.42	133.33	130	8	8.55E-03	***	7.19E-01	
1	77.00	270	664	0.77	155.04	153	7	2.50E-02	34.5	1.10E+00	
1	87.02	126	608	0.79	175.11	172	8	1.16E-02	70.9	1.41E+00	
1	295.08	945	347	1.07	591.75	586	12	8.75E-02	10.4	1.61E+00	
1	351.79	1628	316	1.18	705.29	698	14	1.51E-01	6.9	1.43E+00	
1	583.11	46	122	1.87	1168.36	1163	12	4.25E-03	****	1.01E+00	${f T}$
1	596.10	82	141	3.81	1194.37	1187	17	7.62E-03	70.5	9.96E-01	
1	609.12	1326	115	1.46	1220.42	1213	14	1.23E-01	6.6	9.81E-01	
1	767.81	104	95	1.67	1538.03	1532	11	9.59E-03	41.8	8.29E-01	
1	934.17	48	65	1.90	1870.94	1867	9		67.0	7.17E-01	
1	1120.14	291	56	1.90	2243.00	2235	15	2.69E-02	16.9	6.26E-01	
1	1238.18	118	52	2.12	2479.14	2472	14	1.09E-02	32.6	5.81E-01	
1	1407.57	57	19	2.24	2817.93	2812	11	5.25E-03	40.5	5.29E-01	T
1	1660.67	23	14	2.31	3324.03	3320	9	2.17E-03	71.0	4.72E-01	
1	1764.65	270	6	2.84	3531.91	3520	23	2.50E-02	13.9	4.54E-01	
	_, 01.00	2,0	•			5520	20	U			

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 18 Number of unidentified lines 14 Number of lines tentatively identified by NID 4

22.22%

Nuclide Type : natural

Wtd Mean Wtd Mean Nuclide Hlife Decay TH-228 1.91Y 1.00 1.822E+01 1.826E+01 0.747E+01 40.91 Total Activity: 1.822E+01 1.826E+01

Grand Total Activity: 1.822E+01 1.826E+01

Flags: "K" = Keyline not found "M" = Manually accepted

> "E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-228	1.826E+01	7.470E+00	7.706E+00	0.000E+00	2.370

---- Non-Identified Nuclides ----

	Key-Line	V I Act	0.7070.0.70	MDA	MDA error	Act/MDA
Nuclide		K.L. Act Ided	error	(pCi/L)	MDA elloi	ACC/MDA
BE-7	1.118E+01	2.1	48E+01	3.547E+0	1 0.000E+00	0.315
NA-24	-1.480E+01		03E+01	3.808E+0		-0.389
K-40	-1.899E+01		20E+01	6.949E+0	1 0.000E+00	-0.273
CR-51	-8.769E-01		74E+01	3.727E+0		-0.024
MN-54	-3.431E+00		25E+00	3.975E+0		-0.863
CO-57	-1.631E+00		19E+00	4.296E+0		-0.380
CO-58	-2.498E+00	2.6	01E+00	3.896E+0	0.000E+00	-0.641
FE-59	-2.055E+00	4.9	81E+00	7.971E+0	0.000E+00	-0.258
CO-60	4.811E-01	2.6	71E+00	4.440E+0	0.000E+00	0.108
ZN-65	4.266E+00	6.2	38E+00	9.627E+0	0.000E+00	0.443
SE-75	1.962E+00	3.3	93E+00	5.773E+0	0.000E+00	0.340
SR-85	-1.007E+01	3.1	71E+00	4.595E+0	0.000E+00	-2.191
Y-88	1.681E+00	2.4	67E+00	4.436E+0	0.000E+00	0.379
NB-94	1.111E+00	2.4	03E+00	4.074E+0	0.000E+00	0.273
NB-95	8.556E+00	3.2	21E+00	5.610E+0	0.000E+00	1.525
ZR-95	-4.188E-01	4.1	62E+00	6.741E+0	0.000E+00	-0.062
MO-99	4.929E+00	2.8	40E+01	4.712E+0	0.000E+00	0.105
RU-103	-1.067E+00	2.4	86E+00	4.084E+0	0.000E+00	-0.261
RU-106	-6.524E+00	2.1	61E+01	3.504E+0	0.000E+00	-0.186
AG-110m	2.034E-01	2.2	71E+00	3.774E+0	0.000E+00	0.054
SN-113	-1.318E+00	3.3	83E+00	5.363E+0	0.000E+00	-0.246
SB-124	2.456E+00	3.4	65E+00	3.834E+0	0.000E+00	0.640
SB-125	7.968E+00	7.7	53E+00	1.319E+0	0.000E+00	0.604
TE-129M	4.826E+00	3.0	68E+01	4.960E+0	0.000E+00	0.097
I-131	-8.588E-01	2.9	71E+00	4.760E+0	0.000E+00	-0.180
BA-133	-2.290E+00	4.0	40E+00	5.526E+0	0.000E+00	-0.414
CS-134	4.506E-01	2.9	19E+00	3.754E+0	0.000E+00	0.120
CS-136	-1.571E+00	2.4	14E+00	3.675E+0	0.000E+00	-0.427
CS-137	-3.119E+00		83E+00	4.407E+0		-0.708
CE-139	8.426E-01		06E+00	4.504E+0		0.187
BA-140	-1.810E-01		18E+00	1.609E+0		-0.011
LA-140	-3.487E-01		78E+00	5.412E+0		-0.064
CE-141	-5.936E+00	4.9	05E+00	7.503E+0	0.000E+00	-0.791
CE-144	3.358E+01		49E+01	3.633E+0		0.924
EU-152	-1.921E+00		66E+00	1.336E+0		-0.144
EU-154	-3.498E+00		18E+00	9.027E+0		-0.387
RA-226	-4.508E+01		73E+01	1.148E+0		-0.393
AC-228	-1.262E+00		57E+01	1.788E+0		-0.071
TH-232	-1.261E+00		57E+01	1.787E+0		-0.071
U-235	1.538E+00		76E+01	3.478E+0		0.044
U-238	2.746E+02		22E+02	5.149E+0		0.533
AM-241	-1.884E+00	2.4	42E+01	4.060E+0	0.000E+00	-0.046

```
A,07L29515-3
                     ,08/11/2006 15:19,08/08/2006 12:05,
                                                                3.330E+00,WG L29515-3 DR
B,07L29515-3
                     ,LIBD
                                             ,08/07/2006 09:38,0735L090904
C, TH-228
           ,YES,
                    1.826E+01,
                                    7.470E+00,
                                                   7.706E+00,,
                                                                    2.370
C, BE-7
           , NO
                    1.118E+01,
                                    2.148E+01,
                                                   3.547E+01,,
                                                                    0.315
           , NO
                                                   3.808E+01,,
C, NA-24
                   -1.480E+01,
                                    2.503E+01,
                                                                   -0.389
C, K-40
           , NO
                   -1.899E+01,
                                    3.720E+01,
                                                   6.949E+01,,
                                                                   -0.273
C, CR-51
           , NO
                   -8.769E-01,
                                    2.274E+01,
                                                   3.727E+01,,
                                                                   -0.024
C, MN-54
           ,NO
                   -3.431E+00,
                                    2.725E+00,
                                                   3.975E+00,,
                                                                   -0.863
C, CO-57
           ,NO
                   -1.631E+00,
                                                   4.296E+00,,
                                    2.719E+00,
                                                                   -0.380
C, CO-58
           , NO
                   -2.498E+00,
                                    2.601E+00,
                                                   3.896E+00,,
                                                                   -0.641
C, FE-59
           , NO
                   -2.055E+00,
                                    4.981E+00,
                                                   7.971E+00,,
                                                                   -0.258
C, CO-60
           , NO
                                                   4.440E+00,,
                    4.811E-01,
                                    2.671E+00,
                                                                    0.108
C, ZN-65
           , NO
                     4.266E+00,
                                                   9.627E+00,,
                                    6.238E+00,
                                                                    0.443
C, SE-75
           , NO
                                                   5.773E+00,,
                     1.962E+00,
                                    3.393E+00,
                                                                    0.340
C, SR-85
                    -1.007E+01,
                                                   4.595E+00,,
           , NO
                                    3.171E+00,
                                                                   -2.191
C, Y-88
           , NO
                                                   4.436E+00,,
                     1.681E+00,
                                    2.467E+00,
                                                                    0.379
C, NB-94
           , NO
                     1.111E+00,
                                    2.403E+00,
                                                   4.074E+00,,
                                                                    0.273
C, NB-95
           , NO
                     8.556E+00,
                                    3.221E+00,
                                                   5.610E+00,,
                                                                    1.525
C, ZR-95
           , NO
                    -4.188E-01,
                                    4.162E+00,
                                                   6.741E+00,,
                                                                   -0.062
                     4.929E+00,
C, MO-99
           , NO
                                                   4.712E+01,,
                                    2.840E+01,
                                                                    0.105
C, RU-103
           , NO
                    -1.067E+00,
                                    2.486E+00,
                                                   4.084E+00,,
                                                                   -0.261
C, RU-106
           , NO
                    -6.524E+00,
                                    2.161E+01,
                                                   3.504E+01,,
                                                                   -0.186
C, AG-110m
           , NO
                     2.034E-01,
                                    2.271E+00,
                                                   3.774E+00,,
                                                                    0.054
C, SN-113
           , NO
                    -1.318E+00,
                                    3.383E+00,
                                                   5.363E+00,,
                                                                   -0.246
C,SB-124
           , NO
                     2.456E+00,
                                    3.465E+00,
                                                   3.834E+00,,
                                                                    0.640
C,SB-125
           , NO
                     7.968E+00,
                                    7.753E+00,
                                                   1.319E+01,,
                                                                    0.604
C,TE-129M
           , NO
                     4.826E+00,
                                    3.068E+01,
                                                   4.960E+01,,
                                                                    0.097
           , NO
C, I-131
                    -8.588E-01,
                                    2.971E+00,
                                                   4.760E+00,,
                                                                   -0.180
           ,NO
C,BA-133
                    -2.290E+00,
                                    4.040E+00,
                                                   5.526E+00,,
                                                                   -0.414
C, CS-134
           , NO
                     4.506E-01,
                                    2.919E+00,
                                                   3.754E+00,,
                                                                    0.120
C, CS-136
                    -1.571E+00,
                                                   3.675E+00,,
           , NO
                                    2.414E+00,
                                                                   -0.427
C, CS-137
           , NO
                    -3.119E+00,
                                    2.883E+00,
                                                   4.407E+00,,
                                                                   -0.708
C,CE-139
           , NO
                     8.426E-01,
                                    2.806E+00,
                                                   4.504E+00,,
                                                                    0.187
                                                   1.609E+01,,
C,BA-140
            , NO
                    -1.810E-01,
                                    9.618E+00,
                                                                   -0.011
C, LA-140
           , NO
                    -3.487E-01,
                                    3.278E+00,
                                                   5.412E+00,,
                                                                   -0.064
           , NO
                                                   7.503E+00,,
C, CE-141
                    -5.936E+00,
                                    4.905E+00,
                                                                   -0.791
C, CE-144
           , NO
                     3.358E+01,
                                    2.149E+01,
                                                   3.633E+01,,
                                                                    0.924
            , NO
                                                   1.336E+01,,
C, EU-152
                    -1.921E+00,
                                    8.566E+00,
                                                                   -0.144
C, EU-154
            , NO
                    -3.498E+00,
                                    5.718E+00,
                                                   9.027E+00,,
                                                                   -0.387
C, RA-226
           , NO
                    -4.508E+01,
                                    6.773E+01,
                                                   1.148E+02,,
                                                                   -0.393
C,AC-228
            , NO
                    -1.262E+00,
                                    1.057E+01,
                                                   1.788E+01,,
                                                                   -0.071
C, TH-232
           , NO
                    -1.261E+00,
                                    1.057E+01,
                                                   1.787E+01,,
                                                                   -0.071
C, U-235
           , NO
                     1.538E+00,
                                    2.176E+01,
                                                   3.478E+01,,
                                                                    0.044
C, U-238
                     2.746E+02,
                                    2.922E+02,
                                                   5.149E+02,,
           , NO
                                                                    0.533
```

2.442E+01,

4.060E+01,,

-0.046

C, AM-241

, NO

-1.884E+00,

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 10-AUG-2006 13:25:11.91 TBE23 03017322 HpGe ******* Aquisition Date/Time: 10-AUG-2006 11:24:56.75 

LIMS No., Customer Name, Client ID: WG L29515-4 DRESDEN

Sample ID : 23L29515-4 Smple Date: 8-AUG-2006 14:30:00.0

Geometry : 233L082404 Sample Type : WG Quantity : 3.20620E+00 L BKGFILE : 23BG072806MT End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 02:00:00.00 MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	63.06*	28	239	1.33	126.36	1.03E+00	3.87E-03	97.8	0.00E+00
2	0	77.55*	73	362	0.95	155.32	1.55E+00	1.01E-02	49.3	
3	0	92.80*	68	430	1.07	185.78	1.94E+00	9.38E-03	65.3	
4	0	185.89*	35	237	1.23	371.74	2.17E+00	4.90E-03	85.8	
5	0	238.54*	36	184	1.26	476.94	1.90E+00	5.05E-03	69.3	
6	0	241.76	51	159	1.21	483.37	1.88E+00	7.10E-03	43.4	
7	0	295.55*	155	128	1.25	590.86	1.64E+00	2.15E-02	16.9	
8	0	351.78*	211	107	1.48	703.23	1.43E+00	2.93E-02	12.6	
9	0	511.14*	21	62	2.25	1021.79	1.07E+00	2.87E-03	L15.2	
10	0	583.14*	47	47	1.22	1165.74	9.71E-01	6.53E-03	35.2	
11	0	609.29*	183	70	1.63	1218.02	9.40E-01	2.54E-02	12.7	
12	0	768.65	66	28	3.36	1536.75	7.96E-01	9.16E-03	22.5	
13	0	911.80*		21			7.08E-01			
14	0	933.15	26	14			6.97E-01			
15	0	1024.35	24	6			6.54E-01			
16	0	1033.38	23	3			6.50E-01	3.25E-03	25.3	
17	0	1120.60*	41	17		2241.04		5.69E-03	27.6	
18	0	1377.91	25	16		2756.27		3.44E-03		
19	0	1460.98*	5	15			5.10E-01			
20	0	1667.67	19	2			4.59E-01			
21	0	1763.78*	48	12	1.12	3529.46	4.38E-01	6.73E-03	22.7	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	5	10.67*	5.095E-01	9.709E+00	9.709E+00	553.64
RA-226	186.21	35	3.28*	2.173E+00	5.794E+01	5.794E+01	171.60
AC-228	835.50		1.75	7.515E-01	Li	ne Not Found	
	911.07	24	27.70*	7.080E-01	1.418E+01	1.419E+01	93.16
TH-228	238.63	36	44.60*	1.900E+00	5.018E+00	5.028E+00	138.67
	240.98	51	3.95	1.884E+00	8.045E+01	8.061E+01	86.72
TH-232	583.14	47	30.25	9.713E-01	1.874E+01	1.874E+01	70.40
	911.07	24	27.70*	7.080E-01	1.418E+01	1.418E+01	93.16
	969.11		16.60	6.793E-01	Liı	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2

Sample ID : 23L29515-4 Acquisition date : 10-AUG-2006 11:24:56

Total number of lines in spectrum Number of unidentified lines 21 15

Number of lines tentatively identified by NID 6 28.57%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	9.709E+00	9.709E+00	53.75E+00	553.64
RA-226	1600.00Y	1.00	5.794E+01	5.794E+01	9.942E+01	171.60
AC-228	5.75Y	1.00	1.418E+01	1.419E+01	1.322E+01	93.16
TH-228	1.91Y	1.00	5.018E+00	5.028E+00	6.972E+00	138.67
TH-232	1.41E+10Y	1.00	1.418E+01	1.418E+01	1.321E+01	93.16

Total Activity : 1.010E+02 1.010E+02

Grand Total Activity: 1.010E+02 1.010E+02

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted

"A" = Nuclide specific abn. limit

Unidentified Energy Lines Page: 3 Sample ID : 23L29515-4 Acquisition date : 10-AUG-2006 11:24:56 Ιt Energy Bkgnd FWHM Channel Left Pw Cts/Sec %Err Area %Eff Flags 0 63.06 28 239 1.33 7 3.87E-03 **** 126.36 123 1.03E+000 77.55 73 362 0.95 155.32 152 9 1.01E-02 98.6 1.55E+00 0 92.80 68 430 1.07 185.78 180 12 9.38E-03 **** 1.94E+00 0 295.55 155 128 1.25 590.86 586 12 2.15E-02 33.9 1.64E+00 0 351.78 107 1.48 703.23 697 13 2.93E-02 25.2 211 1.43E+000 511.14 21 1021.79 1014 16 2.87E-03 **** 62 2.25 1.07E+00 0 609.29 70 1.63 183 1218.02 1209 14 2.54E-02 25.3 9.40E-01 66 0 768.65 28 3.36 1536.75 1529 17 9.16E-03 45.0 7.96E-01 933.15 26 14 1.10 1865.88 1861 11 3.61E-03 67.9 6.97E-01 6 4.01 2048.38 2042 12 3.33E-03 57.7 3 2.98 2066.46 2061 12 3.25E-03 50.6 1024.35 0 24 6.54E-01 0 1033.38 23 6.50E-01 0 17 1.23 1120.60 41 2241.04 2235 12 5.69E-03 55.1 6.15E-01 0 1377.91 25 16 1.95 2756.27 2749 13 3.44E-03 78.2 5.32E-01 0 1667.67 19 2 1.56 3336.82 3333 9 2.57E-03 55.1 4.59E-01 1763.78 0 48 12 1.12 3529.46 3521 16 6.73E-03 45.5 4.38E-01 Flags: "T" = Tentatively associated Summary of Nuclide Activity Total number of lines in spectrum 21 Number of unidentified lines 15 Number of lines tentatively identified by NID 6 28.57% Nuclide Type : natural Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide pCi/L pCi/L 2-9.709E+00 9.709E+00 Hlife Decay 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 53.75E+00 553.64 RA-226 1600.00Y 1.00 5.794E+01 5.794E+01 9.942E+01 171.60 TH-228 1.00 5.762E+00 5.773E+00 1.00 1.646E+01 1.646E+01 1.91Y 6.938E+00 120.19 TH-232 1.41E+10Y 0.933E+01 56.70 _____ ______ Total Activity: 8.987E+01 8.988E+01 Grand Total Activity: 8.987E+01 8.988E+01 Flags: "K" = Keyline not found "M" = Manually accepted "E" = Manually edited "A" = Nuclide specific abn. limit

Nuclide TH-232 911.07

Interference Report

Combined Activity-MDA Report

Interfering

Line

---- Identified Nuclides ----

Act error Activity MDA MDA error Act/MDA

Line

Interiereu

AC-228 911.07

Nuclide

Nuclide	(pCi/L)		(pCi/L)		
K-40	9.709E+00	5.375E+01	5.956E+01	0.000E+00	0.163
RA-226	5.794E+01	9.942E+01	1.386E+02	0.000E+00	0.418
TH-228	5.773E+00	6.938E+00	1.042E+01	0.000E+00	0.554
TH-232	1.646E+01	9.335E+00	1.888E+01	0.000E+00	0.872
Non-Id	dentified Nuclides	5			
	Key-Line				
Noolda	Activity K.L.		MDA	MDA error	Act/MDA
Nuclide	(pCi/L) Ideo	1	(pCi/L)		
BE-7	-1.225E+01	2.386E+01	4.084E+01	0.000E+00	-0.300
NA-24	1.475E+01	2.377E+01	4.500E+01	0.000E+00	0.328
CR-51	-1.228E+01	2.815E+01	4.654E+01	0.000E+00	-0.264
MN-54	2.445E+00	2.921E+00	5.589E+00	0.000E+00	0.438
CO-57 CO-58	1.918E+00	3.365E+00	5.895E+00	0.000E+00	0.325
FE-59	2.121E+00 3.404E+00	2.983E+00	5.633E+00	0.000E+00	0.376
CO-60	6.823E-01	6.325E+00 3.147E+00	1.200E+01	0.000E+00	0.284
ZN-65	-3.032E+00	7.373E+00	5.898E+00 1.070E+01	0.000E+00	0.116
SE-75	-1.309E+00	4.193E+00	7.024E+00	0.000E+00 0.000E+00	-0.283 -0.186
SR-85	7.425E+00	3.613E+00	6.464E+00	0.000E+00	1.149
Y-88	1.448E+00	2.752E+00	5.790E+00	0.000E+00	0.250
NB-94	2.137E+00	3.028E+00	5.643E+00	0.000E+00	0.379
NB-95	3.564E+00	3.932E+00	6.529E+00	0.000E+00	0.546
ZR-95	-1.626E+00	5.346E+00	9.161E+00	0.000E+00	-0.177
MO-99	-6.542E+00	3.598E+01	6.250E+01	0.000E+00	-0.105
RU-103	-1.028E+00	3.077E+00	5.322E+00	0.000E+00	-0.193
RU-106	-4.033E+00	3.014E+01	5.256E+01	0.000E+00	-0.077
AG-110m	-1.535E+00	2.934E+00	4.948E+00	0.000E+00	-0.310
SN-113 SB-124	-2.128E-01	4.284E+00	7.229E+00	0.000E+00	-0.029
SB-124 SB-125	-1.490E+00 -2.043E-01	3.506E+00	5.045E+00	0.000E+00	-0.295
TE-129M	-7.583E+00	8.624E+00 3.554E+01	1.530E+01	0.000E+00	-0.013
I-131	3.857E-01	3.613E+00	6.209E+01 6.194E+00	0.000E+00 0.000E+00	-0.122
BA-133	2.720E+00	4.650E+00	7.223E+00	0.000E+00 0.000E+00	0.062 0.377
CS-134	-3.803E-01	3.229E+00	4.845E+00	0.000E+00	-0.078
CS-136	-2.141E+00	3.171E+00	5.200E+00	0.000E+00	-0.412
CS-137	-2.207E+00	3.151E+00	5.220E+00	0.000E+00	-0.423
CE-139	-5.047E-01	3.270E+00	5.563E+00	0.000E+00	-0.091
BA-140	-9.123E+00	1.122E+01	1.860E+01	0.000E+00	-0.490
LA-140	7.572E-02	3.951E+00	7.205E+00	0.000E+00	0.011
CE-141	1.382E+00	5.796E+00	1.002E+01	0.000E+00	0.138
CE-144	2.156E+00	2.531E+01	4.360E+01	0.000E+00	0.049
EU-152	-3.637E+00	1.132E+01	1.692E+01	0.000E+00	-0.215
EU-154 AC-228	4.459E+00	7.070E+00	1.241E+01	0.000E+00	0.359
U-235	1.419E+01 -2.439E+01	1.322E+01	2.277E+01	0.000E+00	0.623
U-238	-2.439E+01 -1.581E+01	2.649E+01 3.062E+02	4.384E+01	0.000E+00	-0.556
AM-241	3.118E+00	1.992E+01	5.749E+02 2.923E+01	0.000E+00 0.000E+00	-0.028
	2 · IIOII / O	エ・フラムロエロエ	2.923E+UI	0.0005+00	0.107

```
A,23L29515-4
                     ,08/10/2006 13:25,08/08/2006 14:30,
                                                                 3.206E+00,WG L29515-4 DR
B,23L29515-4
                     , LIBD
                                             ,08/07/2006 09:53,233L082404
C, K-40
           ,YES,
                     9.709E+00,
                                    5.375E+01,
                                                   5.956E+01,,
                                                                     0.163
            ,YES,
C, RA-226
                     5.794E+01,
                                    9.942E+01,
                                                   1.386E+02,,
                                                                     0.418
C, TH-228
            , YES,
                     5.773E+00,
                                                   1.042E+01,,
                                    6.938E+00,
                                                                     0.554
C, TH-232
            , YES,
                     1.646E+01,
                                    9.335E+00,
                                                   1.888E+01,,
                                                                     0.872
C,BE-7
            , NO
                    -1.225E+01,
                                    2.386E+01,
                                                   4.084E+01,,
                                                                   -0.300
C, NA-24
            , NO
                     1.475E+01,
                                                   4.500E+01,,
                                    2.377E+01,
                                                                     0.328
C, CR-51
            , NO
                    -1.228E+01,
                                    2.815E+01,
                                                   4.654E+01,,
                                                                   -0.264
C, MN-54
            , NO
                     2.445E+00,
                                    2.921E+00,
                                                   5.589E+00,,
                                                                    0.438
C, CO-57
           , NO
                     1.918E+00,
                                    3.365E+00,
                                                   5.895E+00,,
                                                                    0.325
C, CO-58
            , NO
                                                   5.633E+00,,
                     2.121E+00,
                                    2.983E+00,
                                                                    0.376
            , NO
C, FE-59
                     3.404E+00,
                                    6.325E+00,
                                                   1.200E+01,,
                                                                    0.284
C, CO-60
           , NO
                     6.823E-01,
                                    3.147E+00,
                                                   5.898E+00,,
                                                                    0.116
           , NO
C, ZN-65
                    -3.032E+00,
                                    7.373E+00,
                                                   1.070E+01,,
                                                                   -0.283
C, SE-75
            , NO
                                                   7.024E+00,,
                    -1.309E+00,
                                    4.193E+00,
                                                                   -0.186
C, SR-85
            , NO
                     7.425E+00,
                                    3.613E+00,
                                                   6.464E+00,,
                                                                    1.149
C, Y-88
                                    2.752E+00,
            , NO
                     1.448E+00,
                                                   5.790E+00,,
                                                                    0.250
C, NB-94
            , NO
                     2.137E+00,
                                    3.028E+00,
                                                   5.643E+00,,
                                                                    0.379
C, NB-95
            , NO
                     3.564E+00,
                                    3.932E+00,
                                                   6.529E+00,,
                                                                    0.546
C, ZR-95
            , NO
                   -1.626E+00,
                                                   9.161E+00,,
                                    5.346E+00,
                                                                   -0.177
C, MO-99
           , NO
                   -6.542E+00,
                                    3.598E+01,
                                                   6.250E+01,,
                                                                   -0.105
C, RU-103
            , NO
                                                   5.322E+00,,
                   -1.028E+00,
                                    3.077E+00,
                                                                   -0.193
            , NO
C, RU-106
                   -4.033E+00,
                                    3.014E+01,
                                                   5.256E+01,,
                                                                   -0.077
C, AG-110m
           , NO
                   -1.535E+00,
                                    2.934E+00,
                                                   4.948E+00,,
                                                                   -0.310
            , NO
C, SN-113
                    -2.128E-01,
                                    4.284E+00,
                                                   7.229E+00,,
                                                                   -0.029
C,SB-124
            , NO
                                                   5.045E+00,,
                   -1.490E+00,
                                    3.506E+00,
                                                                   -0.295
           , NO
C,SB-125
                   -2.043E-01,
                                    8.624E+00,
                                                   1.530E+01,,
                                                                   -0.013
C, TE-129M
           , NO
                   -7.583E+00,
                                    3.554E+01,
                                                   6.209E+01,,
                                                                   -0.122
C, I-131
            , NO
                     3.857E-01,
                                    3.613E+00,
                                                   6.194E+00,,
                                                                    0.062
C,BA-133
            , NO
                     2.720E+00,
                                                   7.223E+00,,
                                    4.650E+00,
                                                                    0.377
C, CS-134
            , NO
                   -3.803E-01,
                                                   4.845E+00,,
                                    3.229E+00,
                                                                   -0.078
C, CS-136
            , NO
                   -2.141E+00,
                                    3.171E+00,
                                                   5.200E+00,,
                                                                   -0.412
C, CS-137
            , NO
                    -2.207E+00,
                                    3.151E+00,
                                                   5.220E+00,,
                                                                   -0.423
           , NO
C,CE-139
                   -5.047E-01,
                                    3.270E+00,
                                                   5.563E+00,,
                                                                   -0.091
C, BA-140
           , NO
                   -9.123E+00,
                                    1.122E+01,
                                                   1.860E+01,,
                                                                   -0.490
C, LA-140
           , NO
                     7.572E-02,
                                    3.951E+00,
                                                   7.205E+00,,
                                                                    0.011
C, CE-141
           , NO
                     1.382E+00,
                                    5.796E+00,
                                                   1.002E+01,,
                                                                    0.138
C, CE-144
            , NO
                     2.156E+00,
                                    2.531E+01,
                                                   4.360E+01,,
                                                                    0.049
C, EU-152
           , NO
                    -3.637E+00,
                                    1.132E+01,
                                                   1.692E+01,,
                                                                   -0.215
C, EU-154
            , NO
                     4.459E+00,
                                                   1.241E+01,,
                                    7.070E+00,
                                                                    0.359
C, AC-228
            , NO
                     1.419E+01,
                                    1.322E+01,
                                                   2.277E+01,,
                                                                    0.623
C, U-235
           , NO
                   -2.439E+01,
                                    2.649E+01,
                                                   4.384E+01,,
                                                                   -0.556
           , NO
C, U-238
                   -1.581E+01,
                                    3.062E+02,
                                                   5.749E+02,,
                                                                   -0.028
```

1.992E+01,

2.923E+01,,

0.107

C, AM-241

, NO

3.118E+00,

Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 10-AUG-2006 17:56:14.16

TBE07 P-10768B HpGe ******* Aquisition Date/Time: 10-AUG-2006 15:39:47.66

LIMS No., Customer Name, Client ID: WG L29515-5 DRESDEN

LIMS:

: 07L29515-5 Smple Date: 8-AUG-2006 14:40:00.0 Sample ID

Sample Type : WG Geometry : 0735L090904 Quantity : 3.25740E+00 L BKGFILE : 07BG072806MT

Start Channel: 40 Energy Tol : 1.00000 Real Time : 0 02:16:15.62 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 02:16:13.95

Library Used: LIBD MDA Constant : 0.00

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	140.02*	83	233	1.58	281.23	2.09E+00	1.02E-02	37.2	1.71E+00
2	1	351.77*	53	82	1.01	705.25		6.44E-03		
3	1	595.56	46	53	1.84	1193.28	9.97E-01	5.61E-03	32.8	2.32E+00
4	1	608.95*	103	49	2.19	1220.08	9.81E-01	1.26E-02	19.1	1.98E+00
5	1	1121.42	59	22	0.91	2245.57	6.25E-01	7.16E-03	23.9	2.21E+01
6	1	1460.71*	23	15	2.64	2924.20	5.15E-01	2.84E-03	55.5	1.31E+00
7	1	1765.16*	18	15	2.32	3532.94	4.54E-01	2.24E-03	53.4	7.28E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Siqma pCi/L Nuclide %Abn %Eff pCi/L Energy Area %Error 10.67* 5.151E-01 4.291E+01 4.291E+01 K - 401460.81 23 111.04

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2

Acquisition date : 10-AUG-2006 15:39:47 Sample ID : 07L29515-5

Total number of lines in spectrum Number of unidentified lines 6

Number of lines tentatively identified by NID 1 14.29%

_____

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

pCi/L pCi/L 2-Sigma Error %Error Flags .291E+01 4.291E+01 4.765E+01 111.04 Nuclide Hlife Decay

K-40 1.28E+09Y 1.00 4.291E+01

> Total Activity: 4.291E+01 4.291E+01

Grand Total Activity: 4.291E+01 4.291E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID: 07L29515-5

Acquisition date : 10-AUG-2006 15:39:47

14.29%

Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	140.02	83	233	1.58	281.23	276	10	1.02E-02	74.5	2.09E+00	
1	351.77	53	82	1.01	705.25	702	8	6.44E-03	72.6	1.43E+00	
1	595.56	46	53	1.84	1193.28	1188	10	5.61E-03	65.6	9.97E-01	
1	608.95	103	49	2.19	1220.08	1213	15	1.26E-02	38.3	9.81E-01	
1	1121.42	59	22	0.91	2245.57	2239	18	7.16E-03	47.9	6.25E-01	
1	1765.16	18								4.54E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 7
Number of unidentified lines 6
Number of lines tentatively identified by NID 1

Nuclide Type : natural

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags
K-40 1.28E+09Y 1.00 4.291E+01 4.291E+01 4.765E+01 111.04

Total Activity: 4.291E+01 4.291E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

CR-51

MN-54

CO-57

No interference correction performed

1.509E+01

2.271E+00

1.878E+00

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	4.291E+01	4.765E+01	3.541E+01	0.000E+00	1.212
Non-Ider	ntified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24	-3.730E+00 8.411E+00	2.054E+01 2.294E+01	3.223E+01 3.964E+01	0.000E+00 0.000E+00	-0.116 0.212

3.612E+01

3.714E+00

4.489E+00

0.000E+00

0.000E+00

0.000E+00

0.418

0.506

0.506

2.099E+01

2.533E+00

2.194E+00

CO-58	-9.852E-01	2.502E+00	3.883E+00	0.000E+00	-0.254
FE-59	3.421E+00	4.909E+00	8.771E+00	0.000E+00	0.390
CO-60	2.315E+00	2.824E+00	5.092E+00	0.000E+00	0.455
ZN-65	-4.245E-01	6.425E+00	9.054E+00	0.000E+00	-0.047
SE-75	8.250E-01	3.122E+00	5.271E+00	0.000E+00	0.157
SR-85	-6.192E+00	3.179E+00	4.743E+00	0.000E+00	-1.305
Y-88	6.635E-01	2.400E+00	4.163E+00	0.000E+00	0.159
NB-94	-2.296E+00	2.325E+00	3.425E+00	0.000E+00	-0.670
NB-95	1.489E-02	2.405E+00	3.926E+00	0.000E+00	0.004
ZR-95	8.903E-01	4.134E+00	6.912E+00	0.000E+00	0.129
MO-99	-1.866E+01	2.868E+01	4.336E+01	0.000E+00	-0.430
RU-103	-3.197E+00	2.413E+00	3.618E+00	0.000E+00	-0.884
RU-106	5.493E+00	2.155E+01	3.659E+01	0.000E+00	0.150
AG-110m	-3.210E-01	2.333E+00	3.800E+00	0.000E+00	-0.084
SN-113	1.605E+00	2.874E+00	4.878E+00	0.000E+00	0.329
SB-124	-1.712E+00	2.843E+00	3.792E+00	0.000E+00	-0.451
SB-125	1.380E+00	6.702E+00	1.099E+01	0.000E+00	0.126
TE-129M	1.132E+00	2.710E+01	4.357E+01	0.000E+00	0.026
I-131	-8.189E-01	2.924E+00	4.659E+00	0.000E+00	-0.176
BA-133	1.136E+00	3.384E+00	5.016E+00	0.000E+00	0.226
CS-134	-1.346E+00	2.583E+00	3.462E+00	0.000E+00	-0.389
CS-136	1.709E+00	2.655E+00	4.613E+00	0.000E+00	0.370
CS-137	2.595E+00	2.732E+00	4.891E+00	0.000E+00	0.531
CE-139	1.953E-01	2.377E+00	3.792E+00	0.000E+00	0.051
BA-140	3.906E+00	9.353E+00	1.621E+01	0.000E+00	0.241
LA-140	-3.849E-02	3.106E+00	5.175E+00	0.000E+00	-0.007
CE-141	4.628E-01	3.935E+00	6.336E+00	0.000E+00	0.073
CE-144	-5.040E+00	1.810E+01	2.863E+01	0.000E+00	-0.176
EU-152	-4.537E+00	6.976E+00	1.081E+01	0.000E+00	-0.420
EU-154	-2.830E+00	4.725E+00	7.360E+00	0.000E+00	-0.385
RA-226	-4.123E+00	6.051E+01	1.067E+02	0.000E+00	-0.039
AC-228	2.845E-01	1.107E+01	1.934E+01	0.000E+00	0.015
TH-228	-1.098E+00	4.625E+00	8.058E+00	0.000E+00	-0.136
TH-232	2.843E-01	1.106E+01	1.933E+01	0.000E+00	0.015
U-235	-3.591E+00	1.964E+01	2.782E+01	0.000E+00	-0.129
U-238	-1.656E+02	2.663E+02	4.063E+02	0.000E+00	-0.408
AM-241	-3.079E+00	2.136E+01	3.534E+01	0.000E+00	-0.087

```
A,07L29515-5
                     ,08/10/2006 17:56,08/08/2006 14:40,
                                                                 3.257E+00,WG L29515-5 DR
B,07L29515-5
                     ,LIBD
                                             ,08/07/2006 09:38,0735L090904
C, K-40
                     4.291E+01,
                                    4.765E+01,
           , YES,
                                                   3.541E+01,,
                                                                    1.212
           , NO
                                                   3.223E+01,,
C, BE-7
                   -3.730E+00,
                                    2.054E+01,
                                                                   -0.116
C, NA-24
                     8.411E+00,
           , NO
                                    2.294E+01,
                                                   3.964E+01,,
                                                                    0.212
C, CR-51
           , NO
                     1.509E+01,
                                                   3.612E+01,,
                                    2.099E+01,
                                                                    0.418
C, MN-54
                     2.271E+00,
                                                   4.489E+00,,
           , NO
                                    2.533E+00,
                                                                    0.506
C, CO-57
           , NO
                     1.878E+00,
                                    2.194E+00,
                                                   3.714E+00,,
                                                                    0.506
C, CO-58
           , NO
                   -9.852E-01,
                                    2.502E+00,
                                                   3.883E+00,,
                                                                   -0.254
C, FE-59
           , NO
                     3.421E+00,
                                    4.909E+00,
                                                   8.771E+00,,
                                                                    0.390
           , NO
                                                   5.092E+00,,
C,CO-60
                     2.315E+00,
                                    2.824E+00,
                                                                    0.455
C, ZN-65
           , NO
                   -4.245E-01,
                                    6.425E+00,
                                                   9.054E+00,,
                                                                   -0.047
           , NO
C, SE-75
                     8.250E-01,
                                    3.122E+00,
                                                   5.271E+00,,
                                                                    0.157
C, SR-85
                   -6.192E+00,
                                    3.179E+00,
                                                   4.743E+00,,
            , NO
                                                                   -1.305
            , NO
C, Y-88
                     6.635E-01,
                                    2.400E+00,
                                                   4.163E+00,,
                                                                    0.159
C, NB-94
           , NO
                   -2.296E+00,
                                    2.325E+00,
                                                   3.425E+00,,
                                                                   -0.670
C, NB-95
           ,NO
                     1.489E-02,
                                    2.405E+00,
                                                   3.926E+00,,
                                                                    0.004
C, ZR-95
            , NO
                     8.903E-01,
                                    4.134E+00,
                                                   6.912E+00,,
                                                                    0.129
C,MO-99
                                    2.868E+01,
                                                   4.336E+01,,
            , NO
                   -1.866E+01,
                                                                   -0.430
C, RU-103
           , NO
                   -3.197E+00,
                                    2.413E+00,
                                                   3.618E+00,,
                                                                   -0.884
C, RU-106
            , NO
                                                   3.659E+01,,
                     5.493E+00,
                                    2.155E+01,
                                                                    0.150
C, AG-110m
           , NO
                   -3.210E-01,
                                    2.333E+00,
                                                   3.800E+00,,
                                                                   -0.084
C, SN-113
            , NO
                     1.605E+00,
                                    2.874E+00,
                                                   4.878E+00,,
                                                                    0.329
C,SB-124
                                                   3.792E+00,,
            , NO
                    -1.712E+00,
                                    2.843E+00,
                                                                   -0.451
C,SB-125
            , NO
                     1.380E+00,
                                    6.702E+00,
                                                   1.099E+01,,
                                                                    0.126
                                                   4.357E+01,,
C, TE-129M
           , NO
                     1.132E+00,
                                    2.710E+01,
                                                                    0.026
            , NO
C, I-131
                                                   4.659E+00,,
                    -8.189E-01,
                                    2.924E+00,
                                                                   -0.176
C, BA-133
            , NO
                     1.136E+00,
                                    3.384E+00,
                                                   5.016E+00,,
                                                                    0.226
C, CS-134
            , NO
                    -1.346E+00,
                                    2.583E+00,
                                                   3.462E+00,,
                                                                   -0.389
C, CS-136
            , NO
                     1.709E+00,
                                    2.655E+00,
                                                   4.613E+00,,
                                                                    0.370
C, CS-137
            , NO
                     2.595E+00,
                                    2.732E+00,
                                                   4.891E+00,,
                                                                    0.531
C, CE-139
            , NO
                     1.953E-01,
                                    2.377E+00,
                                                   3.792E+00,,
                                                                    0.051
                                                   1.621E+01,,
C,BA-140
            , NO
                     3.906E+00,
                                    9.353E+00,
                                                                    0.241
C, LA-140
            , NO
                    -3.849E-02,
                                    3.106E+00,
                                                   5.175E+00,,
                                                                   -0.007
C, CE-141
            , NO
                     4.628E-01,
                                    3.935E+00,
                                                   6.336E+00,,
                                                                    0.073
C, CE-144
            , NO
                    -5.040E+00,
                                                   2.863E+01,,
                                    1.810E+01,
                                                                   -0.176
                                                   1.081E+01,,
C, EU-152
            , NO
                    -4.537E+00,
                                    6.976E+00,
                                                                   -0.420
C, EU-154
            , NO
                    -2.830E+00,
                                    4.725E+00,
                                                   7.360E+00,,
                                                                   -0.385
C, RA-226
                    -4.123E+00,
                                    6.051E+01,
            , NO
                                                   1.067E+02,,
                                                                   -0.039
C, AC-228
            , NO
                     2.845E-01,
                                    1.107E+01,
                                                   1.934E+01,,
                                                                    0.015
C, TH-228
                    -1.098E+00,
                                                   8.058E+00,,
            , NO
                                    4.625E+00,
                                                                   -0.136
C, TH-232
                                                   1.933E+01,,
            , NO
                     2.843E-01,
                                    1.106E+01,
                                                                     0.015
C, U-235
            , NO
                    -3.591E+00,
                                    1.964E+01,
                                                   2.782E+01,,
                                                                   -0.129
C, U-238
            , NO
                    -1.656E+02,
                                    2.663E+02,
                                                   4.063E+02,,
                                                                   -0.408
```

2.136E+01,

3.534E+01,,

-0.087

C,AM-241

,NO,

-3.079E+00,

LIMS: Analyst: Sec. Review:

______

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 10-AUG-2006 17:54:40.04 TBE23 03017322 HpGe ******* Aquisition Date/Time: 10-AUG-2006 15:39:55.82

LIMS No., Customer Name, Client ID: WG L29515-6 DRESDEN

Smple Date: 8-AUG-2006 16:50:00.0 : 23L29515-6 Sample ID

Sample Type : WG Geometry : 233L082404

Quantity : 3.22790E+00 L BKGFILE : 23BG072806MT Pk Srch Sens: 5.00000 Live time: 0 02:14:27.75 Library Used: LIBD End Channel : 4090

MDA Constant : 0.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	6	33.80*	20	21	1.39	67.94	8.27E-02	2.48E-03	88.0	1.29E+00
2	6	35.96*	62	99	1.86	72.25	1.18E-01	7.62E-03	42.0	
3	6	38.51*	8	116	1.48	77.33	1.70E-01	1.00E-032	223.3	
4	0	41.13	27	136	0.65	82.56	2.35E-01	3.34E-03	70.8	
5	0	66.17	63	275	1.43	132.58	1.15E+00	7.77E-03	45.7	
6	0	92.54*	22	302	0.96	185.26	1.94E+00	2.73E-03	144.7	
7	0	139.85*	77	315	0.89	279.76	2.32E+00	9.50E-03	42.3	
8	0	186.19*	38	292	1.03	372.35	2.17E+00	4.76E-03	89.9	
9	4	238.57*	46	173	1.34	477.00	1.90E+00	5.69E-03	53.5	9.15E-01
10	4	242.33	88	228	1.82	484.51	1.88E+00	1.09E-02	35.1	
11	0	295.21*	48	167	1.10	590.18	1.64E+00	5.92E-03	50.0	
12	0	351.42*	131	167	1.30	702.52	1.44E+00	1.62E-02	22.5	
13	0	584.39	23	52	1.51	1168.23	9.70E-01	2.80E-03	67.7	
14	0	609.33*	128	64	1.44	1218.11	9.40E-01	1.59E-02	16.5	
15	0	969.94	19	28	0.85	1939.49	6.79E-01	2.29E-03	59.6	
16	0	1120.50*	40	17	1.92	2240.84	6.16E-01	4.94E-03	29.6	
17	0	1461.05*	54	4	2.16	2922.82	5.10E-01	6.65E-03	24.5	

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	54	10.67*	5.095E-01	1.025E+02	1.025E+02	49.00
RA-226	186.21	38	3.28*	2.172E+00	5.594E+01	5.594E+01	179.83
TH-228	238.63	46	44.60*	1.900E+00	5.618E+00	5.629E+00	106.92
	240.98		3.95	1.888E+00	Li	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2

Sample ID : 23L29515-6 Acquisition date : 10-AUG-2006 15:39:55

Total number of lines in spectrum 17
Number of unidentified lines 13

Number of lines tentatively identified by NID 4 23.53%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.025E+02	1.025E+02	0.502E+02	49.00
RA-226	1600.00Y	1.00	5.594E+01	5.594E+01	10.06E+01	179.83
TH-228	1.91Y	1.00	5.618E+00	5.629E+00	6.019E+00	106.92

Total Activity: 1.640E+02 1.640E+02

Grand Total Activity : 1.640E+02 1.640E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 23L29515-6

Page: 3 Acquisition date : 10-AUG-2006 15:39:55

23.53%

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
6	33.80	20	21	1.39	67.94	64	17	2.48E-03	***	8.27E-02	
6	35.96	62	99	1.86	72.25	64	17	7.62E-03	84.1	1.18E-01	
6	38.51	8	116	1.48	77.33	64	17	1.00E-03	****	1.70E-01	
0	41.13	27	136	0.65	82.56	81	6	3.34E-03	***	2.35E-01	
0	66.17	63	275	1.43	132.58	130	7	7.77E-03	91.4	1.15E+00	
0	92.54	22	302	0.96	185.26	182	7	2.73E-03	****	1.94E+00	
0	139.85	77	315	0.89	279.76	276	8	9.50E-03	84.7	2.32E+00	
4	242.33	88	228	1.82	484.51	470	21	1.09E-02	70.2	1.88E+00	
0	295.21	48	167	1.10	590.18	587	8	5.92E-03	****	1.64E+00	
0	351.42	131	167	1.30	702.52	698	13	1.62E-02	45.1	1.44E+00	
0	584.39	23	52	1.51	1168.23	1160	11	2.80E-03	***	9.70E-01	
0	609.33	128	64	1.44	1218.11	1212	13	1.59E-02	33.0	9.40E-01	
0	969.94	19	28	0.85	1939.49	1932	11	2.29E-03	***	6.79E-01	${f T}$
0	1120.50	40	17	1.92	2240.84	2234	13	4.94E-03	59.2	6.16E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 17 Number of unidentified lines 13
Number of lines tentatively identified by NID 4

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.025E+02	1.025E+02	0.502E+02	49.00	
RA-226	1600.00Y	1.00	5.594E+01	5.594E+01	10.06E+01	179.83	
TH-228	1.91Y	1.00	5.618E+00	5.629E+00	6.019E+00	106.92	
	Total Acti	ivity :	1.640E+02	1.640E+02			

Grand Total Activity: 1.640E+02 1.640E+02

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	1.025E+02	5.021E+01	3.575E+01	0.000E+00	2.866
RA-226	5.594E+01	1.006E+02	1.027E+02	0.000E+00	0.544
TH-228	5.629E+00	6.019E+00	7.946E+00	0.000E+00	0.708

## ---- Non-Identified Nuclides ----

Nuclide		K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
	<u>-</u>			<u>-</u>		
BE-7	-5.590E+00		2.164E+01	3.665E+01	0.000E+00	-0.153
NA-24	2.080E-01		1.903E+01	3.568E+01	0.000E+00	0.006
CR-51	1.891E+01		2.204E+01	4.019E+01	0.000E+00	0.470
MN-54	-8.889E-01		2.403E+00	4.210E+00	0.000E+00	-0.211
CO-57	8.595E-01		2.528E+00	4.489E+00	0.000E+00	0.191
CO-58	1.354E+00		2.327E+00	4.502E+00	0.000E+00	0.301
FE-59	-1.489E+00		4.462E+00	7.796E+00	0.000E+00	-0.191
CO-60	7.940E-01		2.442E+00	4.681E+00	0.000E+00	0.170
ZN-65	-3.187E+00		5.476E+00	7.675E+00	0.000E+00	-0.415
SE-75	2.528E+00		3.512E+00	6.314E+00	0.000E+00	0.400
SR-85	-1.084E+01		3.369E+00	4.437E+00	0.000E+00	-2.442
Y-88	5.785E-01		2.187E+00	4.519E+00	0.000E+00	0.128
NB-94	1.337E+00		2.229E+00	4.293E+00	0.000E+00	0.311
NB-95	-1.103E+00		2.461E+00	4.285E+00	0.000E+00	-0.257
ZR-95	-1.888E+00		4.069E+00	7.099E+00	0.000E+00	-0.266
MO-99	1.203E+01		2.942E+01	5.576E+01	0.000E+00	0.216
RU-103	-1.509E+00		2.645E+00	4.346E+00	0.000E+00	-0.347
RU-106	-3.056E+01		2.491E+01	3.751E+01	0.000E+00	-0.815
AG-110m	3.085E+00		2.358E+00	4.775E+00	0.000E+00	0.646
SN-113	1.803E+00		3.048E+00	5.546E+00	0.000E+00	0.325
SB-124	-3.160E+00		2.828E+00	3.880E+00	0.000E+00	-0.814
SB-125	4.634E-01		7.365E+00	1.282E+01	0.000E+00	0.036
TE-129M	-1.052E+01		2.845E+01	4.783E+01	0.000E+00	-0.220
I-131	1.390E+00		2.718E+00	4.927E+00	0.000E+00	0.282
BA-133	-3.775E+00		4.124E+00	5.711E+00	0.000E+00	-0.661
CS-134	-2.908E-01		2.529E+00	3.767E+00	0.000E+00	-0.077
CS-136	7.903E-01		2.132E+00	4.137E+00	0.000E+00	0.191
CS-137	-1.955E+00		2.500E+00	4.241E+00	0.000E+00	-0.461
CE-139	6.134E-01		2.558E+00	4.504E+00	0.000E+00	0.136
BA-140	-3.470E+00		9.880E+00	1.655E+01	0.000E+00	-0.210
LA-140	7.106E-01		2.839E+00	5.644E+00	0.000E+00	0.126
CE-141	2.756E+00		4.607E+00	7.987E+00	0.000E+00	0.345
CE-144	-5.044E+00		1.872E+01	3.249E+01	0.000E+00	-0.155
EU-152	-3.726E+00		7.712E+00	1.295E+01	0.000E+00	-0.288
EU-154	2.888E+00		5.285E+00	9.455E+00	0.000E+00	0.305
AC-228	3.243E+00		1.042E+01	1.985E+01	0.000E+00	0.163
TH-232	3.241E+00		1.041E+01	1.984E+01	0.000E+00	0.163
U-235	-4.018E+00		2.332E+01	3.568E+01	0.000E+00	-0.113
U-238	-1.037E+02		2.461E+02	4.450E+02	0.000E+00	-0.233
AM-241	-4.255E+00		1.481E+01	2.437E+01	0.000E+00	-0.175

```
A,23L29515-6
                     ,08/10/2006 17:54,08/08/2006 16:50,
                                                                 3.228E+00,WG L29515-6 DR
                                             ,08/07/2006 09:53,233L082404
B,23L29515-6
                     ,LIBD
C, K-40
           , YES,
                     1.025E+02,
                                    5.021E+01,
                                                   3.575E+01,,
                                                                    2.866
           , YES,
                     5.594E+01,
                                                   1.027E+02,,
C, RA-226
                                    1.006E+02,
                                                                    0.544
C, TH-228
           , YES,
                     5.629E+00,
                                    6.019E+00,
                                                   7.946E+00,,
                                                                    0.708
C, BE-7
           , NO
                                                   3.665E+01,,
                                                                   -0.153
                    -5.590E+00,
                                    2.164E+01,
C, NA-24
           , NO
                     2.080E-01,
                                    1.903E+01,
                                                   3.568E+01,,
                                                                    0.006
C, CR-51
                                                   4.019E+01,,
           , NO
                     1.891E+01,
                                    2.204E+01,
                                                                    0.470
C, MN-54
           , NO
                   -8.889E-01,
                                    2.403E+00,
                                                   4.210E+00,,
                                                                   -0.211
C, CO-57
            , NO
                     8.595E-01,
                                    2.528E+00,
                                                   4.489E+00,,
                                                                    0.191
           , NO
                                                   4.502E+00,,
C, CO-58
                     1.354E+00,
                                    2.327E+00,
                                                                    0.301
C, FE-59
           , NO
                   -1.489E+00,
                                    4.462E+00,
                                                   7.796E+00,,
                                                                   -0.191
           , NO
C, CO-60
                     7.940E-01,
                                    2.442E+00,
                                                   4.681E+00,,
                                                                    0.170
C, ZN-65
            , NO
                   -3.187E+00,
                                    5.476E+00,
                                                   7.675E+00,,
                                                                   -0.415
           , NO
C, SE-75
                     2.528E+00,
                                    3.512E+00,
                                                   6.314E+00,,
                                                                    0.400
C, SR-85
            , NO
                                                   4.437E+00,,
                   -1.084E+01,
                                    3.369E+00,
                                                                   -2.442
C, Y-88
                     5.785E-01,
                                    2.187E+00,
                                                   4.519E+00,,
                                                                    0.128
            , NO
C, NB-94
                                    2.229E+00,
                                                   4.293E+00,,
                                                                    0.311
            ,NO
                     1.337E+00,
C, NB-95
                                                   4.285E+00,,
            , NO
                    -1.103E+00,
                                    2.461E+00,
                                                                   -0.257
C, ZR-95
            , NO
                    -1.888E+00,
                                    4.069E+00,
                                                   7.099E+00,,
                                                                   -0.266
C,MO-99
            , NO
                     1.203E+01,
                                    2.942E+01,
                                                   5.576E+01,,
                                                                    0.216
C, RU-103
            , NO
                    -1.509E+00,
                                    2.645E+00,
                                                   4.346E+00,,
                                                                   -0.347
                                                   3.751E+01,,
C, RU-106
            , NO
                    -3.056E+01,
                                    2.491E+01,
                                                                   -0.815
                                    2.358E+00,
                                                   4.775E+00,,
C, AG-110m
           , NO
                     3.085E+00,
                                                                     0.646
C, SN-113
            , NO
                     1.803E+00,
                                    3.048E+00,
                                                   5.546E+00,,
                                                                     0.325
            , NO
C,SB-124
                    -3.160E+00,
                                    2.828E+00,
                                                   3.880E+00,,
                                                                   -0.814
C,SB-125
            , NO
                     4.634E-01,
                                    7.365E+00,
                                                   1.282E+01,
                                                                     0.036
C, TE-129M
           , NO
                    -1.052E+01,
                                    2.845E+01,
                                                   4.783E+01,,
                                                                   -0.220
                                                   4.927E+00,,
C, I-131
                     1.390E+00,
                                                                     0.282
            , NO
                                    2.718E+00,
C, BA-133
            , NO
                    -3.775E+00,
                                    4.124E+00,
                                                   5.711E+00,,
                                                                   -0.661
C, CS-134
            , NO
                    -2.908E-01,
                                    2.529E+00,
                                                   3.767E+00,,
                                                                   -0.077
C, CS-136
            , NO
                     7.903E-01,
                                    2.132E+00,
                                                   4.137E+00,,
                                                                     0.191
                                                   4.241E+00,,
C, CS-137
            , NO
                    -1.955E+00,
                                    2.500E+00,
                                                                   -0.461
C, CE-139
            , NO
                     6.134E-01,
                                    2.558E+00,
                                                   4.504E+00,,
                                                                     0.136
C, BA-140
            ,NO
                    -3.470E+00,
                                    9.880E+00,
                                                   1.655E+01,,
                                                                   -0.210
C, LA-140
                     7.106E-01,
                                    2.839E+00,
            , NO
                                                   5.644E+00,,
                                                                     0.126
            , NO
                                                   7.987E+00,,
C, CE-141
                     2.756E+00,
                                    4.607E+00,
                                                                     0.345
                    -5.044E+00,
C, CE-144
            , NO
                                                   3.249E+01,,
                                    1.872E+01,
                                                                   -0.155
C, EU-152
                    -3.726E+00,
                                    7.712E+00,
                                                   1.295E+01,,
            , NO
                                                                   -0.288
C, EU-154
            , NO
                     2.888E+00,
                                    5.285E+00,
                                                   9.455E+00,,
                                                                     0.305
C, AC-228
            , NO
                                                   1.985E+01,,
                     3.243E+00,
                                    1.042E+01,
                                                                     0.163
C, TH-232
                     3.241E+00,
                                                   1.984E+01,,
            , NO
                                    1.041E+01,
                                                                     0.163
C, U-235
            , NO
                    -4.018E+00,
                                    2.332E+01,
                                                   3.568E+01,,
                                                                   -0.113
C, U-238
            , NO
                    -1.037E+02,
                                    2.461E+02,
                                                   4.450E+02,,
                                                                   -0.233
```

1.481E+01,

2.437E+01,,

-0.175

C, AM-241

, NO

-4.255E+00,

Sec. Review:

Analyst:

LIMS:

-----

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 09:17:45.73 TBE15 P-10635B HpGe ******* Aquisition Date/Time: 10-AUG-2006 18:10:10.68

TIME No. Co. by Mark Annual Adultation Date/Time: 10-Aug-2006 18:10:10.68

LIMS No., Customer Name, Client ID: L29515-7 WG EX/DRES

Sample ID : 15L29515-7 Smple Date: 8-AUG-2006 16:10:00.0

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.69*	94	791	1.17	120.80	5.05E-01	3.27E-03	53.5	1.11E+00
2	1	140.04*	194	876	1.65	268.44	1.66E+00	6.73E-03	29.3	2.05E+00
3	1	295.26*	221	455	1.58	580.83	1.18E+00	7.67E-03	21.2	2.56E+00
4	1	351.53*	279	344	1.43	694.07	1.02E+00	9.70E-03	15.2	3.16E+00
5	1	595.72	92	185	1.79	1185.29	6.54E-01	3.18E-03	30.6	5.43E-01
6	1	608.62*	192	328	1.59	1211.22	6.43E-01	6.66E-03	24.9	1.06E+00
7	1	1460.90*	57	45	3.11	2924.08	3.23E-01	1.98E-03	40.4	1.26E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Sigma Nuclide Energy %Abn %Eff Area pCi/L pCi/L %Error K - 401460.81 10.67* 57 3.225E-01 5.458E+01 5.458E+01 80.76

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2
Sample ID: 15L29515-7 Acquisition date: 10-AUG-2006 18:10:10

Total number of lines in spectrum 7
Number of unidentified lines 6
Number of lines tentatively identified by NID 1 14.29%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags
K-40 1.28E+09Y 1.00 5.458E+01 5.458E+01 4.408E+01 80.76

0 1.28E+09Y 1.00 5.458E+01 5.458E+01 4.408E+01 80.76

Total Activity: 5.458E+01 5.458E+01

Grand Total Activity: 5.458E+01 5.458E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID : 15L29515-7

Acquisition date : 10-AUG-2006 18:10:10

14.29%

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	66.69	94	791	1.17	120.80	118	7	3.27E-03	***	5.05E-01	
1	140.04	194	876	1.65	268.44	264	9	6.73E-03	58.6	1.66E+00	
1	295.26	221	455	1.58	580.83	576	11	7.67E-03	42.4	1.18E+00	
1	351.53	279	344	1.43	694.07	690	10	9.70E-03	30.5	1.02E+00	
1	595.72	92	185	1.79	1185.29	1180	11	3.18E-03	61.2	6.54E-01	
1	608.62	192	328	1.59	1211.22	1202	18	6.66E-03	49.8	6.43E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 7 Number of unidentified lines Number of lines tentatively identified by NID 1

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags 1.00 5.458E+01 5.458E+01 4.408E+01 80.76 K-40 1.28E+09Y 1.00 ...... Total Activity: 5.458E+01

5.458E+01

Grand Total Activity : 5.458E+01 5.458E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

CR-51

CO-57

MN-54

No interference correction performed

-9.052E+00

5.997E-03

1.601E+00

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA		
K-40	5.458E+01	4.408E+01	3.093E+01	0.000E+00	1.765		
Non-Identified Nuclides							
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA		
BE-7 NA-24	1.758E+01 9.001E-01	1.722E+01 2.375E+01	3.010E+01 3.964E+01	0.000E+00 0.000E+00	0.584 0.023		

1.762E+01

2.098E+00

1.966E+00

2.774E+01

3.424E+00

3.320E+00

0.000E+00

0.000E+00

0.000E+00

-0.326

0.002

0.482

CO-58	1.036E+00	2.049E+00	3.459E+00	0.000E+00	0.300
FE-59	-3.765E+00	4.065E+00	6.032E+00	0.000E+00	-0.624
CO-60	-3.848E-01	2.062E+00	3.378E+00	0.000E+00	-0.114
ZN-65	-1.172E+01	5.073E+00	6.690E+00	0.000E+00	-1.752
SE-75	3.412E+00	2.678E+00	4.522E+00	0.000E+00	0.755
SR-85	-1.149E+01	2.520E+00	3.485E+00	0.000E+00	-3.297
Y-88	-1.723E-01	2.226E+00	3.605E+00	0.000E+00	-0.048
NB-94	1.120E+00	1.996E+00	3.389E+00	0.000E+00	0.330
NB-95	4.093E-01	2.026E+00	3.362E+00	0.000E+00	0.122
ZR-95	-2.835E-01	3.433E+00	5.599E+00	0.000E+00	-0.051
MO-99	-1.046E+00	2.525E+01	4.134E+01	0.000E+00	-0.025
RU-103	1.097E+00	2.010E+00	3.445E+00	0.000E+00	0.318
RU-106	-6.888E+00	1.831E+01	2.965E+01	0.000E+00	-0.232
AG-110m	4.924E-01	2.018E+00	3.377E+00	0.000E+00	0.146
SN-113	7.713E-01	2.542E+00	4.338E+00	0.000E+00	0.178
SB-124	-7.551E-01	2.467E+00	3.261E+00	0.000E+00	-0.232
SB-125	-2.235E+00	5.730E+00	9.475E+00	0.000E+00	-0.236
TE-129M	-6.203E+00	2.340E+01	3.877E+01	0.000E+00	-0.160
I-131	1.345E+00	2.455E+00	4.022E+00	0.000E+00	0.334
BA-133	1.867E+00	3.149E+00	4.552E+00	0.000E+00	0.410
CS-134	2.738E+00	2.204E+00	3.458E+00	0.000E+00	0.792
CS-136	5.690E-01	2.140E+00	3.560E+00	0.000E+00	0.160
CS-137	-1.500E-01	2.238E+00	3.679E+00	0.000E+00	-0.041
CE-139	-5.511E-01	1.891E+00	3.083E+00	0.000E+00	-0.179
BA-140	3.237E+00	7.909E+00	1.344E+01	0.000E+00	0.241
LA-140	-8.374E-03	2.352E+00	3.877E+00	0.000E+00	-0.002
CE-141	1.861E+00	3.631E+00	5.634E+00	0.000E+00	0.330
CE-144	9.018E-01	1.464E+01	2.423E+01	0.000E+00	0.037
EU-152	7.395E-01	6.393E+00	1.030E+01	0.000E+00	0.072
EU-154	3.333E-01	4.387E+00	6.951E+00	0.000E+00	0.048
RA-226	-2.336E+01	5.418E+01	8.357E+01	0.000E+00	-0.280
AC-228	2.844E+00	8.302E+00	1.340E+01	0.000E+00	0.212
TH-228	-3.099E+00	4.314E+00	6.653E+00	0.000E+00	-0.466
TH-232	2.842E+00	8.296E+00	1.339E+01	0.000E+00	0.212
U-235	6.998E+00	1.760E+01	2.515E+01	0.000E+00	0.278
U-238	-1.154E+02	2.637E+02	4.045E+02	0.000E+00	-0.285
AM-241	-1.480E+01	2.226E+01	3.685E+01	0.000E+00	-0.402

```
A,15L29515-7
                     ,08/11/2006 09:17,08/08/2006 16:10,
                                                                 2.853E+00,L29515-7 WG EX
B, 15L29515-7
                     , LIBD
                                             ,08/07/2006 09:53,153L082604
C, K-40
                    5.458E+01,
                                    4.408E+01,
           , YES,
                                                   3.093E+01,,
                                                                     1.765
C, BE-7
                    1.758E+01,
                                    1.722E+01,
                                                   3.010E+01,,
           , NO
                                                                     0.584
C, NA-24
           , NO
                    9.001E-01,
                                    2.375E+01,
                                                   3.964E+01,,
                                                                     0.023
C, CR-51
           , NO
                    -9.052E+00,
                                    1.762E+01,
                                                   2.774E+01,,
                                                                   -0.326
C, MN-54
           , NO
                    5.997E-03,
                                    2.098E+00,
                                                   3.424E+00,,
                                                                     0.002
C, CO-57
                                                   3.320E+00,,
           , NO
                    1.601E+00,
                                    1.966E+00,
                                                                     0.482
C, CO-58
           , NO
                    1.036E+00,
                                    2.049E+00,
                                                   3.459E+00,,
                                                                     0.300
C, FE-59
           , NO
                    -3.765E+00,
                                    4.065E+00,
                                                   6.032E+00,,
                                                                   -0.624
C, CO-60
           , NO
                    -3.848E-01,
                                    2.062E+00,
                                                   3.378E+00,,
                                                                   -0.114
C, ZN-65
                    -1.172E+01,
           , NO
                                    5.073E+00,
                                                   6.690E+00,,
                                                                   -1.752
C, SE-75
           , NO
                     3.412E+00,
                                    2.678E+00,
                                                   4.522E+00,,
                                                                     0.755
C, SR-85
           , NO
                    -1.149E+01,
                                    2.520E+00,
                                                   3.485E+00,,
                                                                   -3.297
C, Y-88
           , NO
                    -1.723E-01,
                                    2.226E+00,
                                                   3.605E+00,,
                                                                   -0.048
           , NO
                                                   3.389E+00,,
C, NB-94
                     1.120E+00,
                                    1.996E+00,
                                                                     0.330
C, NB-95
           , NO
                                                   3.362E+00,,
                    4.093E-01,
                                    2.026E+00,
                                                                     0.122
C, ZR-95
           , NO
                    -2.835E-01,
                                    3.433E+00,
                                                   5.599E+00,,
                                                                   -0.051
C, MO-99
            , NO
                    -1.046E+00,
                                    2.525E+01,
                                                   4.134E+01,,
                                                                   -0.025
C, RU-103
           , NO
                    1.097E+00,
                                    2.010E+00,
                                                   3.445E+00,,
                                                                     0.318
            , NO
C, RU-106
                    -6.888E+00,
                                    1.831E+01,
                                                   2.965E+01,,
                                                                   -0.232
C, AG-110m
           , NO
                     4.924E-01,
                                    2.018E+00,
                                                   3.377E+00,,
                                                                     0.146
C, SN-113
            , NO
                                                   4.338E+00,,
                     7.713E-01,
                                    2.542E+00,
                                                                     0.178
C,SB-124
            , NO
                    -7.551E-01,
                                    2.467E+00,
                                                   3.261E+00,,
                                                                   -0.232
C,SB-125
            ,NO
                    -2.235E+00,
                                    5.730E+00,
                                                   9.475E+00,,
                                                                   -0.236
C, TE-129M
           , NO
                    -6.203E+00,
                                    2.340E+01,
                                                   3.877E+01,,
                                                                   -0.160
            , NO
C, I-131
                    1.345E+00,
                                    2.455E+00,
                                                   4.022E+00,,
                                                                     0.334
C, BA-133
           , NO
                     1.867E+00,
                                    3.149E+00,
                                                   4.552E+00,,
                                                                     0.410
C, CS-134
           , NO
                     2.738E+00,
                                    2.204E+00,
                                                   3.458E+00,,
                                                                     0.792
C, CS-136
                     5.690E-01,
                                    2.140E+00,
                                                   3.560E+00,,
            , NO
                                                                     0.160
C, CS-137
            , NO
                    -1.500E-01,
                                    2.238E+00,
                                                   3.679E+00,,
                                                                   -0.041
C, CE-139
            , NO
                    -5.511E-01,
                                    1.891E+00,
                                                   3.083E+00,,
                                                                   -0.179
C,BA-140
            , NO
                     3.237E+00,
                                    7.909E+00,
                                                   1.344E+01,,
                                                                     0.241
C, LA-140
            , NO
                    -8.374E-03,
                                    2.352E+00,
                                                   3.877E+00,,
                                                                   -0.002
C, CE-141
            , NO
                     1.861E+00,
                                    3.631E+00,
                                                   5.634E+00,,
                                                                     0.330
            , NO
C, CE-144
                     9.018E-01,
                                    1.464E+01,
                                                   2.423E+01,,
                                                                     0.037
C, EU-152
            , NO
                     7.395E-01,
                                    6.393E+00,
                                                   1.030E+01,,
                                                                     0.072
            , NO
C, EU-154
                     3.333E-01,
                                    4.387E+00,
                                                   6.951E+00,,
                                                                     0.048
C, RA-226
            , NO
                    -2.336E+01,
                                    5.418E+01,
                                                   8.357E+01,,
                                                                   -0.280
C, AC-228
            , NO
                     2.844E+00,
                                    8.302E+00,
                                                   1.340E+01,,
                                                                     0.212
C, TH-228
            , NO
                    -3.099E+00,
                                    4.314E+00,
                                                   6.653E+00,,
                                                                   -0.466
C, TH-232
            , NO
                     2.842E+00,
                                    8.296E+00,
                                                   1.339E+01,,
                                                                     0.212
C, U-235
            , NO
                     6.998E+00,
                                    1.760E+01,
                                                   2.515E+01,,
                                                                     0.278
C, U-238
            , NO
                    -1.154E+02,
                                    2.637E+02,
                                                   4.045E+02,,
                                                                   -0.285
```

2.226E+01,

3.685E+01,,

-0.402

C, AM-241

, NO

-1.480E+01,



A Teledyne Technologies Company

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L29543
Exelon
August 15, 2006



Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

# Case Narrative - L29543 EX001-3ESPDRES-06

08/16/2006 09:41

# Sample Receipt

The following samples were received on August 10, 2006 in good condition, unless otherwise noted.

Cross Reference Table

	CI USS ACTOR OTHER & GO.	
Client ID	Laboratory ID	Station ID(if applicable)
WG-DN-MW-DN-113S-080906-GL-008	L29543-1	
WG-DN-MW-DN-113I-080906-GL-009	L29543-2	
WG-DN-MW-DN-113I-080906-GL-010	L29543-3	
WG-DN-MW-DN-116I-080906-GL-011	L29543-4	
WG-DN-MW-DN-116S-080906-GL-012	L29543-5	

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3 (DIST)	TBE-2010	
TOTAL SR	TBE-2018	EPA 905.0
1011E Sit		



## Case Narrative - L29543 EX001-3ESPDRES-06

08/16/2006 09:41

#### Gamma Spectroscopy

#### **Quality Control**

Quality control samples were analyzed as WG4304.

**Duplicate Sample** 

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

WG-DN-MW-DN-113I080906-GL-009

Laboratory ID

QC Sample #

L29543-2

WG4304-1

#### H-3 (DIST)

#### **Quality Control**

Quality control samples were analyzed as WG4307.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### **Laboratory Control Sample**

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

WG-DN-MW-DN-113S-080906-GL-008

Laboratory ID L29543-1 QC Sample # WG4307-3

## TOTAL SR

#### **Quality Control**

Quality control samples were analyzed as WG4318.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

## **Laboratory Control Sample**

All laboratory control samples were within acceptance limits, unless otherwise noted.



# Case Narrative - L29543 EX001-3ESPDRES-06

08/16/2006 09:41

## Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

# Sample Receipt Summary

08/10/06 09:58

### Teledyne brown Engineering Sample Receipt Verification/Variance Report

SR #: SR09852

Client: Exelon

Project #: EX001-3ESPDRES-06 LIMS #: L29543

lient:	Exelo	n		FIC	Jecc π.	EYOOT-2F2	
Initiat	ed By:	PMARSHALL					
		08/10/06	Receive	Date:	08/10/	06	
				Noti	ficatio	n of Va	riance
Person	Notifi	ed:				Contact	ed By:
	ify Da						
	y Meth						
	Comme						
			(	Clien	t Respo	onse	
Person	Respon	nding:					
	sponse						
_	onse M						
Respo	onse Co	mment					
Cr	iteria					Yes No NA	Comment
				anla	present	NA	
1	Shippi and in	ng containe tact.	r custody	Seals	presenc	INA	
2	Sample and in	container tact.	custody se	eals p	resent	NA	
3	Sample condit	containers	received	in go	od	Y	
4	Chain	of custody	received	with s	amples	Y	
5	All sa	amples liste	ed on chai	n of c	custody	Y	
6	Sample legibl	e container Le.	labels pr	esent	and	Y	
7	Infor	nation on cospond with	ontainer l chain of c	abels	¥	Y	
8	Sample appro	e(s) proper priate cont	ly preserv ainer(s)	red and	d in	N	Samples required pH adjustment to get them at or below 2.
9	Other	(Describe)				NA	

CONESTOGA-R	CONESTOGA-ROVERS & ASSOCIATES	SHIPPED TO				19242
9033 Mer West Che	9033 Meridian Way West Chester, Ohio 45069	(Laboratory Name):  Tele DYNE	Teredova	IE BROWN	GNGWEERWA	اُدُ
	4750 phone	REFERENCE NUMBER:	MR:	PROJECT NAME:	40	1
HO-MAHO	CHAIN-DF-CUSTODY RECORD	45136-23-001S	Bis	のよくでにいく	VONES DES	なことと
SAMPLER'S SIGNATURE:	RINTED	GREEDRY TIEWIS	OF AINERS	PARAMETERS		REMARKS
SEQ. DATE TIME	SAMPLE IDENTIFICATION No.		SAMPLE NO. NO. CONT.	Will be the way		
8-9-CC	WE-DN-MW-DN	<del>                                     </del>	120 2 3	× ? × ? × ?		
25.25	121	010-	120 120 120 120 120 120 120 120 120 120	×		
(335)	2	0.	4°C			
350	· · · · · · · · · · · · · · · · · · ·	70-4-9	+	×. ×		
	TOTAL NUMBER OF CONTAINERS	AINERS	0			
RELINQUISHED BY:	304	DATE:	RECEIVED BY:	DBY: Whomen		DATE: 10.06
		DATE. 730	1 0 g	. Va (		DATE:
RELINQUISHED BY:		TIME	3) (3)			TIME:
RELINQUISHED BY:		DATE:	RECEIVED BY:	:D BY:		DATE: TIME:
(3)		11101			1105701010W	
METHOD OF SHIPMENT:	WENT: OHC			AIR BILL NO. 7336		
	-Fully Executed Copy	SAMPLE TEAM:		RECEIVED FOR	RECEIVED FOR LABORATORY BY:	
	-Receiving Laboratory Copy -Shipper Copy	C. LENS	200	DATE:	TIME:	12.8500
Goldenrod -Sam	-Sampler Copy					

1001-00(SOURCE)GN-CO004

AUG 1 0 2006

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

#### ACKNOWLEDGEMENT

This is not an invoice

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville, CT 06062 August 10, 2006

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on August 10, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by August 15, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID: EX001-3ESPDRES-06

P.O. #: 00411203

Release #:

Contract#: 00411203

Kathy Shaw, FAX#:860-747-1900, larry.walton@exeloncorp.com

Client ID/ Station	Laboratory ID Analysis	Vol/Units Price	Start Collect End Collect Date/Time Date/Time
WG-DN-MW-DN-113S-0	80906-GL-0 L29543-1		08/09/06:1000
WG WG WG	GELI H-3 (DIST) SR-90 (FAST)	135.00 135.00 175.00	
WG-DN-MW-DN-113108	0906-GL-00 L29543-2		08/09/06:1125
WG WG	GELI H-3 (DIST) SR-90 (FAST)	135.00 135.00 175.00	
WG-DN-MW-DN-113I-0	80906-GL-0 L29543-3		08/09/06:1145
WG WG WG	GELI H-3 (DIST) SR-90 (FAST)	135.00 135.00 175.00	
WG-DN-MW-DN-116I-0	080906-GL-0 L29543-4		08/09/06:1335
WG WG	GELI H-3 (DIST) SR-90 (FAST)	135.00 135.00 175.00	
WG-DN-MW-DN-116S-(	080906-GL-0 L29543-5		08/09/06:1350

Client ID/	Laboratory ID	Vol/Units	Start Collect End Collect Date/Time Date/Time
Station	Analysis	Price	
WG	GELI	135.00	
WG	H-3 (DIST)	135.00	
WG	SR-90 (FAST)	175.00	

### Internal Chain of Custody

#### Internal Chain of Custody

******************* Containernum 1 Sample # L29543-1 Analyst Prod DW GELI DW H-3 (DIST) LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/10/2006 00:00 030854 Donna Webb Sample Custodian 08/10/2006 12:23 099999 Sample Custodian 099999 Donna Webb 030854 08/11/2006 11:05 ******************* Containernum 2 Sample # L29543-1 Analyst Prod DW GELI DW H-3 (DIST) LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 08/10/2006 00:00 Lauren Larsen Donna Webb 029728 030854 08/10/2006 12:23 Donna Webb Sample Custodian 030854 08/10/2006 12:23 099999 Donna Webb Lauren Larsen 030854 029728 08/14/2006 08:05 Sample Custodian 099999 Donna Webb 030854 08/14/2006 08:06 ****************** Containernum 1 Sample # L29543-2 Analyst Prod DW GELI DW H-3 (DIST) LCB SR-90 (FAST) Received By Relinguish Date Relinguish By 099999 Sample Custodian 08/10/2006 00:00 Donna Webb 030854 Sample Custodian 099999 08/10/2006 12:23 099999 Sample Custodian Donna Webb 030854 08/11/2006 11:05 ******************* Containernum 2 Sample # L29543-2 Analyst Prod DW GELI DW H-3 (DIST) LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 08/10/2006 00:00 Lauren Larsen 029728 Donna Webb 030854 08/10/2006 12:23 Donna Webb 030854 Sample Custodian 099999 08/10/2006 12:23 030854 Donna Webb Lauren Larsen 08/14/2006 08:05 029728 Sample Custodian 099999 Donna Webb 030854 08/14/2006 08:06 *********************** Containernum 1 Sample # L29543-3

Analyst

Prod

#### Internal Chain of Custody

******************* Containernum 1 Sample # L29543-3 DW GELI DW H-3 (DIST) SR-90 (FAST) LCB Received By Relinquish Date Relinquish By Sample Custodian 099999 08/10/2006 00:00 030854 Donna Webb Sample Custodian 08/10/2006 12:23 099999 099999 Sample Custodian Donna Webb 08/11/2006 11:05 030854 ******************** Containernum 2 Sample # L29543-3 Analyst Prod DW GELI DW H-3 (DIST) LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 08/10/2006 00:00 Lauren Larsen 029728 Donna Webb 08/10/2006 12:23 030854 Donna Webb 030854 Sample Custodian 099999 08/10/2006 12:23 030854 Donna Webb Lauren Larsen 08/14/2006 08:05 029728 Sample Custodian Donna Webb 099999 030854 08/14/2006 08:06 ******************* Containernum 1 Sample # L29543-4 Analyst Prod DW **GELI** DW H-3 (DIST) LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 08/10/2006 00:00 Donna Webb 030854 Sample Custodian 099999 08/10/2006 12:23 099999 Sample Custodian Donna Webb 08/11/2006 11:05 030854 ******************* Containernum 2 Sample # L29543-4 Analyst Prod DW GELI DW H-3 (DIST) LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/10/2006 00:00 029728 Lauren Larsen Donna Webb 08/10/2006 12:23 030854 Donna Webb Sample Custodian 030854 08/10/2006 12:23 099999 030854 Donna Webb Lauren Larsen 029728 08/14/2006 08:05 Sample Custodian 099999 Donna Webb 030854 08/14/2006 08:06 *********************** Containernum 1 Sample # L29543-5

Analyst

Prod

Lauren Larsen

Sample Custodian

Donna Webb

Donna Webb

029728

030854

030854

099999

#### Internal Chain of Custody

codian
codian
todian

Donna Webb

Donna Webb

Sample Custodian

Lauren Larsen

08/10/2006 12:23

08/10/2006 12:23

08/14/2006 08:05

08/14/2006 08:06

030854

099999

029728

030854

### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L29543

		L29543		
*****				*******
L29543-1	WG	WG-DN-MW-DN-113S-080		~ .
Process step	Prod		Analyst	Date
Login			RCHARLES	08/10/06
Aliquot	GELI		DW	08/10/06
Aliquot	H-3 (DI	(ST)	DW	08/11/06
Aliquot	SR-90 (	(FAST)	LCB	08/11/06
Count Room	GELI		KPW	08/10/06
Count Room	H-3 (DI	IST)	KOJ	08/11/06
Count Room	SR-90	(FAST)	KOJ	08/15/06
*****				*******
L29543-2	WG	WG-DN-MW-DN-113I-080	906-GL-009	
Process step	Prod		Analyst	Date
Login			RCHARLES	08/10/06
Aliquot	GELI		DM	08/10/06
Aliquot	H-3 (D	IST)	DW	08/11/06
Aliquot	SR-90	(FAST)	LCB	08/11/06
Count Room	GELI		KPW	08/10/06
Count Room	H-3 (D	IST)	KOJ	08/11/06
Count Room	SR-90	(FAST)	KOJ	08/15/06
*****	****	*****	*****	*******
L29543-3	WG	WG-DN-MW-DN-113I-08	0906-GL-010	
Process step	Prod		<u>Analyst</u>	Date
Login			RCHARLES	08/10/06
Aliquot	GELI		DW	08/10/06
Aliquot	H-3 (D	OIST)	DW	08/11/06
Aliquot		(FAST)	LCB	08/11/06
Count Room	GELI		KPW	08/10/06
Count Room	н-3 (Б	OIST)	KOJ	08/11/06
Count Room	SR-90	(FAST)	KOJ	08/15/06
*******	*****	*****	*****	******
L29543-4	WG	WG-DN-MW-DN-116I-08		
Process step	Prod		Analyst	Date
Login			RCHARLES	08/10/06
Aliquot	GELI		DM	08/10/06
Aliquot	н-3 (Г	OTST)	DW	08/11/06
Aliquot		(FAST)	LCB	08/11/06
Count Room	GELI	(2000)	ILL	08/11/06
Count Room	H-3 (I	DTST)	кој	08/11/06
COUNT ROOM	*******	· · · · · · · · · · · · · · · · · · ·	*****	*******
	WG	WG-DN-MW-DN-116S-08		
L29543-5		MG DIV IIN DIV 1100 0	Analyst	Date
Process step	Prod		RCHARLES	08/10/06
Login	CETT		DW	08/10/06
Aliquot	GELI	ひてでゆく	DW	08/11/06
Aliquot	H-3 (		LCB	08/11/06
Aliquot		(FAST)	ILL	08/11/06
Count Room	GELI	DT CM \	KOJ	08/11/06
Count Room	н-3 (	ופזח	1100	· · - · ·

raye & UL &

08/16/06

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L29543

L29543-5

WG

WG-DN-MW-DN-116S-080906-GL-012

Count Room

SR-90 (FAST)

KOJ

08/15/06

### Analytical Results Summary

TELEDYNE BROWN ENGINEERING, IN A Teledyne Technologies Company

L29543

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

(WG)

Matrix: Ground Water

Volume: % Moisture:

Collect Start: 08/09/2006 10:00 Receive Date: 08/10/2006 Collect Stop: WG-DN-MW-DN-113S-080906-GL-008 Sample ID: Station: Description:

L29543-1 LIMS Number:

Kathy Shaw

												-		
		Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	;	•
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values	alues
H-3 (DIST)	2010	4.51E+02	1.36E+02	1.79E+02	pCi/L		10	ml		08/11/06	09	M	+	
TOTAL SR	2018	1.23E+00	7.87E-01	1.39E+00	pCi/L		450	m m	08/09/06 10:00	08/12/06	120	M	ח	
MN-54	2007	-1.32E+00	3.42E+00	5.52E+00	pCi/L		1008.87	lm	08/06/06 10:00	08/10/06	53641	Sec	D	No No
CO-58	2007	-3.30E+00	3.17E+00	4.98E+00	pCi/L		1008.87	lm.	08/09/06 10:00	08/10/06	53641	Sec	- D	No
FE-59	2007	5.60E+00	6.06E+00	1.04E+01	pCi/L		1008.87	m	08/09/06 10:00	90/11/80	53641	Sec	n	No
09-02	2007	2.31E+00	3.15E+00	5.36E+00	pCi/L		1008.87	lm	08/09/06 10:00	08/10/06	53641	Sec	n	No
ZN-65	2007	2.70E+01	8.23E+00	1.36E+01	pCi/L		1008.87	m	08/09/06 10:00	08/10/06	53641	Sec	*\	No
NB-95	2007	6.89E+00	3.26E+00	5.73E+00	pCi/L		1008.87	m	08/06/06 10:00	08/10/06	53641	Sec	- *D	No
ZR-95	2007	-4.21E+00	5.73E+00	9.17E+00	pCi/L		1008.87	m	08/06/06 10:00	08/10/06	53641	Sec	n	No
CS-134	2007	1.81E+01	6.90E+00	7.08E+00	pCi/L		1008.87	m	08/09/06 10:00	08/10/06	53641	Sec	N*	No
CS-137	2007	1.02E+00	3.58E+00	5.96E+00	pCi/L		1008.87	m	08/06/06 10:00	08/10/06	53641	Sec	ם	No
BA-140	2007	5.20E+00	1.27E+01	2.08E+01	pCi/L		1008.87	m	00:01 90/60/80	08/10/06	53641	Sec	n	No
1.A-140	2007	1.60E+00	3.97E+00	6.71E+00	pCi/L		1008.87	lm	08/06/06 10:00	08/10/06	53641	Sec		- 2

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

2 of

Page 1

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values U =

TELEDYNE BROWN ENGINEERING, IN

A Teledyne Technologies Company

L29543

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Volume: % Moisture:

(MG)

Ground Water

Matrix:

Collect Start: 08/09/2006 11:25 Receive Date: 08/10/2006 Collect Stop: WG-DN-MW-DN-113I-080906-GL-009 Sample ID: Station:

LIMS Number: L29543-2 Description:

Kathy Shaw

LIMB Number: E22.5 2						-	7 41 4	A Binney	Defenonce	Count	Count	Count		
9	SOP#	Activity I Conc	Activity Uncertainty Conc 2 Sigma	MDC	Units	Ku #	Anquot	Allquot Units	Reference Date	Date	Time	Units	Flag Values	ılues
	2010	-4 05E+01	1.08E+02	1.82E+02	pCi/L		10	m		08/11/06	09	M	n	
	2018	3.81E-01	8.03E-01	1.58E+00	pCi/L		450	m	08/09/06 11:25	08/12/06	120	Σ	n	
	2007	5.99E+01		3.06E+01	pCi/L		3169.14	m	08/09/06 11:25	08/10/06	28800	Sec	+	Yes
	2007	1.21E+00	1.84E+00	3.11E+00	pCi/L		3169.14	m	08/09/06 11:25	08/10/06	28800	Sec	n	No.
1	2007	2.76E-01	1.80E+00	2.97E+00	pCi/L		3169.14	m	08/09/06 11:25	08/10/06	28800	Sec	n	%
	2007	-5.50E-01	3.51E+00	5.73E+00	pCi/L		3169.14	m	08/09/06 11:25	08/10/06	28800	Sec	n	% 
	2007	-9.82E-03	2.04E+00	3.31E+00	pCi/L		3169.14	m	08/09/06 11:25	08/10/06	28800	Sec	n	oN N
	2007	-1.04E+00	4.74E+00	6.50E+00	pCi/L		3169.14	lm	08/09/06 11:25   08/10/06	08/10/06	28800	Sec	n	oN N
- 1	2007	1.57E+00		3.12E+00	pCi/L		3169.14	m	08/09/06 11:25	08/10/06	28800	Sec	n	No No
1	2007	-4.11E-01	1	5.03E+00	pCi/L		3169.14	m	08/09/06 11:25	90/11/80	28800	Sec	n	No No
	2007	1.06E+00	2.30E+00	2.90E+00	pCi/L		3169.14	m	08/09/06 11:25	08/10/06	28800	Sec	n	No
	2007	2.67E-01	1.93E+00	3.21E+00	pCi/L		3169.14	ш	08/09/06 11:25	08/10/06	28800	Sec	n	No
	2007	1.79E-01	6.70E+00	1.12E+01	pCi/L		3169.14	m	08/09/06 11:25	90/01/80	28800	Sec	n	oN :
	2007	1.85E+00	2.27E+00	3.99E+00	pCi/L		3169.14	ш	08/09/06 11:25 08/10/06	08/10/06	28800	Sec	n	o N
1		TAMAN PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF												

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

2 Jo

7

Page

High recovery

Low recovery

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Flag Values

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

High Spec

TELEDYNE BROWN ENGINEERING, INC

A Teledyne Technologies Company

L29543

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Ground Water Matrix: % Moisture: Collect Start: 08/09/2006 11:45 Receive Date: 08/10/2006 Collect Stop: Sample ID: WG-DN-MW-DN-113I-080906-GL-010

Station: Description:

MN-54

CO-58 FE-59 09-00 **ZN-65** NB-95 ZR-95 CS-134

Kathy Shaw

(MG)

2 ž å å 2 Z 8 N å Flag Values  $\cap$  $\supset$  $\supset$  $\supset$  $\Box$  $\Box$  $\supset$  $\Box$  $\supset$ Units Count Sec Sec Sec Sec Sec Sec Sec Sec  $\sec$ Sec Sec 28800 28800 28800 28800 28800 28800 28800 28800 28800 28800 28800 Count Time 120 9 08/09/06 11:45 08/10/06 08/09/06 11:45 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/10/06 08/11/06 08/12/06 Count Date 08/09/06 11:45 08/09/06 11:45 08/09/06 11:45 08/09/06 11:45 08/09/06 11:45 08/09/06 11:45 08/09/06 11:45 08/09/06 11:45 08/09/06 11:45 08/09/06 11:45 Reference Aliquot Units 핕 国国 E 핕 핍 E 핕 Ξ 国国 핕 Volume 3201.3 3201.3 Aliquot 3201.3 3201.3 3201.3 3201.3 3201.3 3201.3 3201.3 3201.3 3201.3 450 Run Units pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L 2.87E+00 5.49E+00 5.45E+00 2.88E+00 5.04E+00 2.64E+00 1.04E+01 3.51E+00 1.24E+00 2.66E+00 3.07E+00 2.83E+00 1.76E+02MDC 3.98E+00 2.99E+00 2.01E+00 3.16E+00 1.74E+00 2.20E+00 1.89E+00 6.45E+00 1.64E+00 1.72E+00 1.65E+00 Uncertainty 1.05E+02 7.01E-01 2 Sigma 3.01E+00 2.26E+00 -3.57E+00 1.42E+00 -1.85E-02 -1.10E-01 -2.38E+01 1.07E+00 -1.45E-01 -8.69E-01 9.33E-01 8.27E-01 9.82E-01 Activity Conc 2007 2007 2018 2007 2007 2007 2007 2007 SOP# 2007 2007 2007 L29543-3 LIMS Number: Radionuclide H-3 (DIST) TOTAL SR CS-137 BA-140 LA-140

**** Results are reported on an as received basis No = Peak not identified in gamma spectrum Yes = Peak identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

5 oţ

'n

Page

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery U* High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L29543

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Isaniy Dilan											11/oto		(MG)
Sample ID: Station:	Sample ID: WG-DN-MW-DN-116I-080906-GL-011 Station:	N-116I-080906	-GL-011		Collect Start: Collect Stop:	Collect Start: 08/09/2006 Collect Stop:	Collect Start: 08/09/2006 13:35 Collect Stop:	:35	N N	Matrix: Ground Waler Volume: %Moisture:	und wate	<b>L</b>	<b>.</b>
Description: LIMS Number: L29543-4	L29543-4				Kecelve	Date. Vo	10/2000				-		
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count	Count	Units	Flag Values
And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			1 (00:00	2 175:00	/!J~		10	Im		08/11/06	18.37	M	+ High
H-3 (DIST)	2010	4.15E+03	4.68E+02	3.1 /ETU2	DC1/12		450	E	08/09/06 13:35 08/15/06	08/15/06	120	Σ	n
TOTAL SR	2018	8.99E-01	9.91E-01	1.86E+00	pCI/L		450	IIII	30.01 00/00/00	00/11/06	6600	Spr	No
MN_54	2007	4.10E-01	3.16E+00	5.29E+00	pCi/L		3118.24	립	08/09/06 13:35 08/11/00	00/11/00	7000	יייי פייי	ON ON
0.5 0.5	2002	-0 04F-01	2 79E+00	4.37E+00	pCi/L		3118.24	ш	08/09/06 13:35   08/11/06	08/11/06	7000	320	0
CO-38	1000	2 275.00	5 08E+00	8 86F±00	nCi/I.		3118.24	ПE	08/09/06 13:35	08/11/06	6602	Sec	ON O
FE-59	/007	7.32E±00	3.00E+00	0.000.00	2.04	-  -	2110 24	Ε	08/09/06 13:35 08/11/06	08/11/06	6602	Sec	% 
09-00	2007	-8.98E-01	3.52E+00	6.23E+00	pCI/L		2110.24	1111	00/00/00 13:33	20/11/00	6600	Con	No.
59 PZ	2007	6.88E+00	6.56E+00	1.14E+01	pCi/L		3118.24	Ē	08/09/06 13:35	08/11/00	7000	330	ON ON
VID 05	2007	2 20F+00	3.22E+00	5.73E+00	pCi/L		3118.24	m	08/09/06 13:35	08/11/00	7000	Sec	-  -
105-30	7007	1 50E+00	4 87F+00	8 43E+00	pCi/L		3118.24	ml	08/09/06 13:35	08/11/06	6602	Sec	ON
ZK-95	7007	1.335.00	2 105+00	4.050+00	nCi/I.		3118.24	ш	08/09/06 13:35	08/11/06	6602	Sec	No
CS-134	/007	-2.11E±00	3.105+00	4.000	7.00		2118 24	Tu-	08/09/06 13:35	08/11/06	6602	Sec	N - 1
CS-137	2007	1.27E+00	3.01E+00	3.28E+00	PCI/L		7110.24		08/00/06 13:35	08/11/06	6602	Sec	U No
BA-140	2007	-3.71E-01	9.39E+00	1.50E+01	pCi/L		3118.24		20,01,00/00/00	00/11/00	2000	200	No.
1 A 140	7007	5 69F-01	3 87E+00	6.52E+00	pCi/L		3118.24	Ħ	08/09/06 13:35	08/11/00	7000	350	-

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

of

Page 4

Compound/Analyte not detected or less than 3 sigma
Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)
Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma
Activity concentration exceeds customer reporting value
MDC exceeds customer technical specification Low recovery High recovery U* High Spec L L H

Flag Values U =

TELEDYNE BROWN ENGINEERING, IN A Teledyne Technologies Company

## L29543

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: WG-DN-MW-DN-116S-080906-GL-012	N-MW-DI	V-116S-08090	6-GL-012		Collec	Collect Start: 08	Collect Start: 08/09/2006 13:50	50	· ,>	Matrix: Gre Volume:	Ground Water	to		( <u>*</u>
Description:					Receive	Date: 0	Receive Date: 08/10/2006		% W	% Moisture:				
LIMS Number: L29543-5	3-5										l^			
		Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count		Count	į	•
Radionuclide	#dos	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values	alues
H-3 (DIST)	2010	4.31E+02	1.35E+02	1.80E+02	pCi/L		10	ш		08/11/06	09	Σ	+	_
TOTAL SK	2018	5.34E-01	5.56E-01	1.04E+00	pCi/L		450	lm	08/09/06 13:50   08/15/06	90/51/80	120	Σ	n	
MN-54	2007	-1.88E+00	2.51E+00	3.64E+00	pCi/L		3146.28	m	08/09/06 13:50   08/11/06	90/11/80	5061	Sec	n	%
CO-58	2007	2.22E+00	2.87E+00	5.22E+00	pCi/L		3146.28	ш	08/09/06 13:50	08/11/06	5061	Sec	n	No
FE-59	2007	3.23E-01	5.17E+00	8.47E+00	pCi/L		3146.28	ш	08/09/06 13:50	08/11/06	5061	Sec	n	No
09-02	2007	-2.23E-01	2.98E+00	4.92E+00	pCi/L		3146.28	lm	08/09/06 13:50	08/11/06	5061	Sec	n	No
ZN-65	2007	-9.06E+00	6.94E+00	8.86E+00	pCi/L		3146.28	m	08/09/06 13:50	08/11/06	5061	Sec	n	o N
NB-95	2007	2.57E+00	3.06E+00	5.56E+00	pCi/L		3146.28	m	08/09/06 13:50		5061	Sec	n	No
ZR-95	2007	-1.63E+00	4.44E+00	6.99E+00	pCi/L		3146.28	ml	08/09/06 13:50	08/11/06	5061	Sec	n	oZ.
CS-134	2007	-9.68E-01	3.34E+00	4.40E+00	pCi/L		3146.28	lm.	08/09/06 13:50 08/11/06	08/11/06	5061	Sec	n	No
CS-137	2007	1.34E+00	2.83E+00	5.02E+00	pCi/L		3146.28	m	08/09/06 13:50 08/11/06	08/11/06	5061	Sec	n	oZ V
BA-140	2007	6.15E-01	1.10E+01	1.79E+01	pCi/L		3146.28	ml	08/09/06 13:50	08/11/06	5061	Sec	n	o N
LA-140	2007	-1.08E+00	3.25E+00	4.96E+00	pCi/L		3146.28	m	08/09/06 13:50	08/11/06	5061	Sec	n	o N -
				The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa		1								

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

MDC - Minimum Detectable Concentration

oę

Page 5

Bolded text indicates reportable value.

Low recovery

High Spec

### QC Results Summary

# QC Summary Report

L29543

for

8/16/2006

10:16:46AM

H-3 (DIST)



	- Address			Method Blank Summary	lary			
TBE Sample ID WG4307-1	<u>Radionuclide</u> H-3 (DIST)	<u>Matrix</u> WO	Count Date/Time 08/11/2006 15:18		Blank Result < 1.780E+00	<u>Units</u> pCi/Total		Qualifier P
				LCS Sample Summary	ary		- Addition	
TBE Sample ID WG4307-2	Radionuclide H-3 (DIST)	Matrix WO	Count Date/Time 08/11/2006 16:22	Spike Value 5.05E+002	LCS Result 4.620E+02	Units Spike pCi/Total	Spike Recovery 91.5	Range         Qualifier         F           70-130         +
Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000	1706-1 +002 +000							
				Duplicate Summary	Ą			
TBE Sample ID WG4307-3 L29543-1	Radionuclide H-3 (DIST)	<u>Matrix</u> WG	Count Date/Time 08/11/2006 16:42	Original Result 4.510E+02	<b>DUP Result</b> 4.960E+02	Units pCi/L	RPD	Range Qualifier I
			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s					

Page:

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated

Spiking level < 5 times activity Nuclide not detected

+>* *

Pass

X Y X **

Fail Not evaluated

# QC Summary Report

10:16:46AM 8/16/2006

L29543 for

BROWN ENGINEERING
A Teledyne Technologies Company

	Qualifier P/U	Range Qualifier P/ 70-130 + ]	Range Qualifier P/	Page: 2
	<mark>Units</mark> pCi/Total	Units Spike Recovery pCi/Total 115.0	<u>Units</u> <u>RPD</u> pCi/L	
	nk Result .170E+00	CS Result 5.710E+01	DUP Result 1.750E+00	
TOTAL SR	Method Blank Summary Bla < 1	LCS Sample Summary Value -001	Duplicate Summary Original Result < 1.390E+00	d above MDC
TOT	M Count Date/Time 08/15/2006 14:02	Count Date/Time Spike Value 08/15/2006 14:02 5.84E+001	Count Date/Time 08/15/2006 16:21	Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected Spiking level < 5 times activity Pass Fail Not evaluated
	Matrix Co	Matrix C WO 03	Matrix C	lyzed, peak not evaluated vity
	Radionuclide TOTAL SR	Radionuclide TOTAL SR 11905 +002	Radionuclide TOTAL SR	Positive Result Compound/analyte was analyzed, pea < 5 times the MDC are not evaluated Nuclide not detected Spiking level < 5 times activity Pass Fail
	TBE Sample ID WG4318-1	TBE Sample ID         Radi           WG4318-2         TOT/           Spike ID:         90SR-011905           Spike conc:         2.34E+002           Snike Vol:         2.50E-001	TBE Sample ID WG4318-3 L29543-1	+ Positive U Compo * < 5 tim ** Nuclide *** Spiking P Pass F Fail NE Not ev

### Raw Data

Raw Data Sheet (rawdata) Aug 16 2006, 10:15 am

	Analy	P	H	H	I	ı	
	Decay & Eff. Ingrowth Analy	. 204	2.	.208	.209	.203	, const
		60	09	0.9	9	9	
	3kg	1.82	1.82	1.82	1.82	1.82	
Page: 1	Sample Bkg Bkg	dt (min) cor	09	09	18.37	09	
	Total	counts 232	86	103	386	226	
	Counter Total	ID LS7	1.87	LS7	LS7	1.87	
	Count	Recovery Date/time 11-aug-06 17:46	11-aug-06 18:50	11-aug-06 19:54	11-aug-06 20:58	11-aug-06 21:19	
		Recovery					
	Mount	ابد	0	0	0	0	1996
	 Milking	a Date/time					THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P
Customer: Exelon	Project : EX001-3ESPDRES-06		MDC: 1.79E+02	MDC: 1.82E+02 *	MDC: 1.76E+02 *	MDC: 3.17E+02 10 ml	MDC: 1.8E+02
Cu		lysis kererence Date/time H-3 DIST	0906-GL-008 Error: 1.36E+02 H-3 DIST	0906-GL-009 Error: 1.08E+02 H-3 DIST	0906-GL-010 Error: 1.05E+02 H-3 DIST	0906-GL-011 Error: 4.68E+02 H-3 DIST	906-GL-012 Error: 1.35E+02
Work Order: <u>L29543</u>	3	Sample ID Run Analysis Client ID # L29543-1 H-3 Di	WG-DN-MW-DN-113S-080906-GL-008 Activity: 4.51E+02 * Error: 1.36E+02 L29543-2 H-3 DIST	WG-DN-MW-DN-113I-080906-GL-009 Activity: -4.05E+01 Error: 1.08E+02 L29543-3 H-3 DIST	WG-DN-MW-DN-1131-080906-GL-010 Activity: -2.38E+01 Error: 1.05E+02 L29543-4 H-3 DIST	WG-DN-MW-DN-1161-080906-GL-011 Activity: 4.15E+03 * Error: 4.68E+02 L29543-5 H-3 DIST	WG-DN-MW-DN-116S-080906-GL-012 Activity: 4.31E+02 * Error: 1.35E+02
Work	Nuc	Sam Clit	Act	WG Act L	WG Act	WG ACE L	WG

Raw Data Sheet (rawdata) Aug 16 2006, 10:15 am

Nuclide:   Ser-90 (PAST)	Work Order: <u>L29543</u>	Cust	Customer: Exelon							Page: 2	23			
Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Count   Coun	e: SR-90 (FAST)	Pro	ject : <b>EX001-3E</b>	SPDRES-06										
15-aug-06		Reference Date/time		Mi	- 1	ecovery D	ļ	ounter	Total	Sample dt (min) o	Bkg counts c	Bkg t (min)	1 4	
## MDC: 1.39E+00 *   15-aug-06   0   15-aug-06   X1B	#		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	15-aug-06			15-aug-06	XIA	132	120	308	0	4	•
MDC: 1.39E+00 *         15-aug-06 450 ml         0 72.80 15-aug-06 450 ml         15-aug-06 450 ml         XIB         114 120 342 400         400           1g-06 450 ml         MDC: 1.58E+00 *         15-aug-06 450 ml         0 82.42 16:20         15-aug-06 XIC 124 ml         124 120 289 400           1g-06 450 ml         MDC: 1.24E+00 *         15-aug-06 450 ml         0 57.97 19:25         XIA 114 120 308 400           1g-06 450 ml         0 8330 57.97 19:25         19:25 19:25         XIA 114 120 308 400           1g-06 450 ml         0 8330 0 101.10 16:20         101.10 16:20         101.10 16:20	TD 300000 BELL THE TOP 1	10:00	450 ml	08:30	-	/#·/	07:07							
19-06         15-aug-06         NDC: 1.58E+00 *         15-aug-06         XIB         114         120         3*2         *00           19-06         MDC: 1.58E+00 *         15-aug-06         0         15-aug-06         XIC         124         120         289         400           19-06         MDC: 1.24E+00 *         15-aug-06         0         15-aug-06         XIA         114         120         308         400           19-06         450 ml         08:30         0         101.10         15-aug-06         XIA         114         120         308         400           19-06         450 ml         0         101.10         15-aug-06         XIA         114         120         308         400           19-06         450 ml         0         101.10         15-aug-06         XIA         120         289         400           MDC: 1.96E+00 *         15-aug-06         0         101.10         15-aug-06         XIA         109         120         289         400	N-MW-DN-IISS-000900-GD-		DC: 1.39E+00 *							1		90,	1 272	
#50 ml 08:30	543.2 TOTAL SR	g-06		15-aug-06			15-aug-06	ХІВ	114	120	342	0 0	1	
MDC: 1.58E+00 *         1g-06       15-aug-06       0       15-aug-06       XIC       124       120       289       400         1g-06       450 ml       08:30       0       15-aug-06       XIA       114       120       308       400         1g-06       450 ml       08:30       0       57.97       19:25       1120       308       400         1g-06       450 ml       15-aug-06       0       101.10       16:20       289       400         MDC: 1.04E+00 *       101.10       16:20       101.10       16:20       289       400			450 ml	08:30	7.	2.80	16:20							
MDC: 1.58R+00 *         15-aug-06         x1C         124         120         289         400           1g-06         450 ml         08:30         82.42         15-aug-06         X1C         124         120         289         400           1g-06         MDC: 1.24E+00 *         15-aug-06         0         57.97         15-aug-06         X1A         114         120         308         400           1g-06         450 ml         08:30         0         101.10         15-aug-06         X2B         109         120         289         400           MDC: 1.86E+00 *         15-aug-06         0         101.10         16:20         X2B         109         120         289         400	N-MW-DN-1131-080906-GL-	600												
19-06         15-aug-06         NIC: 1.24E+00 *         15-aug-06         XIC: 1.24E+00 *         12-aug-06         XIA         114         120         308         400           19-06         450 ml         08:30         57.97         19:25         13         400           19-06         450 ml         15-aug-06         0         15-aug-06         120         308         400           19-06         450 ml         0         101.10         16:20         289         400	ity: 3.81E-01 Error: 8		DC: 1.58E+00 *								000	400	354 1	
#50 ml 08:30 #2.42 lb:20  MDC: 1.24E+00 * 15-aug-06 0 15-aug-06 X1A 114 120 308 400  MDC: 1.86E+00 * 57.97 19:25  MDC: 1.86E+00 * 15-aug-06 0 15-aug-06 X2B 109 120 289 400  MDC: 1.04E+00 * 15-aug-06 X2B 109 120 289 400	543-3 TOTAL SR	09-ang-06		15-aug-06		;	15-aug-06	XTC	1.24	120	0	9	1	
MDC: 1.24E+00 * 15-aug-06 0 15-aug-06 X1A 114 120 308 400 19-06 450 ml 08:30 57.97 19:25 X1A 114 120 308 400 400 ml 08:30 0 101.10 16:20 X2B 109 120 289 400 MDC: 1.04E+00 * 15-aug-06 X2B 109 120 289 400 MDC: 1.04E+00 * 15-aug-06 X2B 104 105 120 X2B 105 X2B X2B X2B X2B X2B X2B X2B X2B X2B X2B		11:45	450 ml	08:30	60	2.42	16:20							
MDC: 1.24E+00 *  MDC: 1.24E+00 *  15-aug-06	N-MW-DN-113I-080906-GL-													
19-06  450 ml  08:30  57.97  19:25  MDC: 1.86E+00 *  15-aug-06  450 ml  08:30  101.10  16:20  15-aug-06  15-aug-06  101.10  16:20  120  289  400	itv: 1.07E+00 Error: 7							, ,	* * * *	000	308	400	346 1	
450 ml 08:30 57.97 19:25  MDC: 1.86E+00 * 15-aug-06 0 15-aug-06 X2B 109 120 289 400  450 ml 08:30 101.10 16:20	543-4 TOTAL SR	09-ang-06		15-aug-06			15-aug-ub	WTW.	# <del> </del>	0 4 4	2	•	) i	
MDC: 1.86E+00 * 15-aug-06 0 15-aug-06 X2B 109 120 289 400 ag-06 M1 08:30 101.10 16:20 MDC: 1.04E+00 *			450 ml	08:30	in	7.97	19:25							
MDC: 1.86E+00 *  15-aug-06  450 ml  MDC: 1.04E+00 *	N-MW-DN-116I-080906-GL-													
lg-06 15-aug-06 0 15-aug-06 X2B 109 120 209 200 XDC: 1.04E+00 *	itv: 8.99E-01 Error: 9		DC: 1.86E+00 *	***************************************				101	000		000	00.4	7 445 7	
450 ml 08:30 101.10	543-5 TOTAL SR	09-aug-06		15-aug-06		•	15-aug-06	XZB	FOT.	720	700	9		
		13:50	450 ml	08:30	-1	01.10	16:40							
	N-MW-DN-116S-080906-GL-													
	ity: 5.34E-01 Error: 5		DC: 1.04E+00 *			-								

LIMS: V Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 11:39:12.20 TBE23 03017322 HpGe ******* Aquisition Date/Time: 11-AUG-2006 10:16:29.74 

LIMS No., Customer Name, Client ID: WG4304-1 WG EX/DRES

Smple Date: 9-AUG-2006 11:25:00.0
Geometry : 233L082404 Sample ID : 23WG4304-1

Sample Type : WG BKGFILE : 23BG072806MT : 3.16910E+00 L Quantity 

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	9	34.70*	36	16	2.51	69.88	9.66E-02	7.23E-03	44.9	2.30E+00
2	9	37.77*	13	43	1.57	76.01	1.54E-01	2.63E-033	126.3	
3	9	39.77	41	63	1.53	80.00	2.00E-01	8.37E-03	40.1	
4	9	42.78*	43	116	2.54	86.03	2.81E-01	8.59E-03	47.2	
5	0	92.36*	33	242	1.45	185.07	1.93E+00	6.76E-03	95.9	
6	0	185.62*	35	109	1.27	371.39	2.17E+00	6.97E-03	62.2	
7	0	351.65*	61	64	1.25	703.18	1.44E+00	1.23E-02	29.4	
8	0	596.55	37	24	1.45	1192.78	9.55E-01	7.47E-03	31.2	
9	0	609.08*	55	28	1.00	1217.85	9.41E-01	1.11E-02	23.9	
10	0	912.16*	26	7	1.55	1824.11	7.08E-01	5.29E-03	32.1	
11	0	1461.19*	7	14	1.75	2923.27	5.09E-01	1.51E-03	153.3	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					uncorrected	Decay Corr	z-sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	7	10.67*	5.095E-01	2.374E+01	2.374E+01	306.53
RA-226	186.21	35	3.28*	2.175E+00	8.338E+01	8.338E+01	124.50

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Acquisition date : 11-AUG-2006 10:16:29 Sample ID : 23WG4304-1

11

Total number of lines in spectrum

Number of unidentified lines

Number of lines tentatively identified by NID 2 18.18%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags Nuclide Hlife

Decay pCi/L pCi/L 2-Sigma Error %Error 1.00 2.374E+01 2.374E+01 7.277E+01 306.53 1.00 8.338E+01 8.338E+01 10.38E+01 124.50 K-40 1.28E+09Y 1.00 RA-226 1600.00Y

_____ _____ Total Activity: 1.071E+02 1.071E+02

Grand Total Activity: 1.071E+02 1.071E+02

"M" = Manually accepted Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3

Unidentified Energy Lines Sample ID : 23WG4304-1

Acquisition date : 11-AUG-2006 10:16:29

18.18%

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
9 9 9 0 0 0 0 0	34.70 37.77 39.77 42.78 92.36 351.65 596.55 609.08 912.16	36 13 41 43 33 61 37 55 26	16 43 63 116 242 64 24 28	2.51 1.57 1.53 2.54 1.45 1.25 1.45 1.00 1.55	69.88 76.01 80.00 86.03 185.07 703.18 1192.78 1217.85 1824.11	65 65 179 698 1188 1212	26 26 26 11 11 12 10	7.23E-03 2.63E-03 8.37E-03 8.59E-03 6.76E-03 1.23E-02 7.47E-03 1.11E-02 5.29E-03	**** 80.2 94.4 **** 58.8 62.3 47.9	9.66E-02 1.54E-01 2.00E-01 2.81E-01 1.93E+00 1.44E+00 9.55E-01 9.41E-01 7.08E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 11
Number of unidentified lines 9
Number of lines tentatively identified by NID 2

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr pĈi/L pCi/L 2-Sigma Error %Error Flags Nuclide Hlife Decay 2.374E+01 7.277E+01 306.53 1.00 2.374E+01 K-40 1.28E+09Y 10.38E+01 124.50 1.00 8.338E+01 8.338E+01 RA-226 1600.00Y ... ... ... ... ... ... ... _______

1.071E+02

Grand Total Activity: 1.071E+02 1.071E+02

Total Activity: 1.071E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226	2.374E+01 8.338E+01	7.277E+01 1.038E+02	5.063E+01 1.325E+02	0.000E+00 0.000E+00	0.469 0.629
Non-Id	dentified Nuclide	es			

Nuclide		K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
MUCTIUE	(PCI/II)	raca		(10-)		

ים דו	-1.074E+00	2.246E+01	4.043E+01	0.000E+00	-0.027
BE-7 NA-24	-1.074E+00 -4.200E+00	2.638E+01	4.959E+01	0.000E+00	-0.085
	-9.100E-01	2.782E+01	4.913E+01	0.000E+00	-0.019
CR-51	1.067E+00	3.248E+00	6.313E+00	0.000E+00	0.169
MN-54 CO-57	-1.385E+00	3.390E+00	5.461E+00	0.000E+00	-0.254
CO-57	-5.669E-01	2.872E+00	5.320E+00	0.000E+00	-0.107
FE-59	2.073E+00	5.563E+00	1.118E+01	0.000E+00	0.185
CO-60	-1.578E+00	2.896E+00	5.012E+00	0.000E+00	-0.315
ZN-65	-7.857E+00	6.533E+00	9.949E+00	0.000E+00	-0.790
SE-75	-7.275E-01	4.141E+00	7.246E+00	0.000E+00	-0.100
SR-85	-6.741E+00	3.911E+00	5.746E+00	0.000E+00	-1.173
Y-88	1.843E+00	3.279E+00	7.172E+00	0.000E+00	0.257
NB-94	2.243E+00	2.678E+00	5.407E+00	0.000E+00	0.415
NB-95	2.461E+00	3.311E+00	6.443E+00	0.000E+00	0.382
ZR-95	-4.123E+00	4.950E+00	7.702E+00	0.000E+00	-0.535
MO-99	-9.111E+00	3.767E+01	6.521E+01	0.000E+00	-0.140
RU-103	-4.313E-01	3.278E+00	5.748E+00	0.000E+00	-0.075
RU-106	1.293E+01	2.488E+01	4.858E+01	0.000E+00	0.266
AG-110m	-2.644E+00	3.065E+00	4.820E+00	0.000E+00	-0.549
SN-113	7.033E-02	4.246E+00	7.538E+00	0.000E+00	0.009
SB-124	1.140E+00	3.901E+00	5.491E+00	0.000E+00	0.208
SB-125	-2.697E+00	8.885E+00	1.535E+01	0.000E+00	-0.176
TE-129M	-1.274E+01	3.413E+01	5.859E+01	0.000E+00	-0.218
I-131	-1.893E+00	3.715E+00	6.298E+00	0.000E+00	-0.300
BA-133	-8.490E-01	4.761E+00	7.267E+00	0.000E+00	-0.117
CS-134	2.334E+00	3.299E+00	5.760E+00	0.000E+00	0.405
CS-136	-3.880E-01	3.179E+00	5.939E+00	0.000E+00	-0.065
CS-137	6.115E-01	3.530E+00	6.432E+00	0.000E+00	0.095
CE-139	1.679E+00	3.239E+00	5.870E+00	0.000E+00	0.286
BA-140	7.691E+00	1.172E+01	2.262E+01	0.000E+00	0.340
LA-140	-2.517E-01	3.632E+00	6.953E+00	0.000E+00	-0.036
CE-141	-3.306E+00	5.764E+00	9.904E+00	0.000E+00	-0.334
CE-144	-3.562E+01	2.474E+01	4.071E+01	0.000E+00	-0.875
EU-152	4.482E-01	9.447E+00	1.686E+01	0.000E+00	0.027
EU-154	-6.116E+00	7.112E+00	1.113E+01	0.000E+00	-0.549
AC-228	9.189E+00	1.099E+01	2.403E+01	0.000E+00	0.382
TH-228	-2.070E+00	6.119E+00	1.083E+01	0.000E+00	-0.191
TH-232	9.183E+00	1.098E+01	2.401E+01	0.000E+00	0.382
U-235	-2.099E+01	2.660E+01	4.527E+01	0.000E+00	-0.464
U-238	-3.362E+02	3.876E+02	6.659E+02	0.000E+00	-0.505
AM-241	-3.016E-01	1.950E+01	3.271E+01	0.000E+00	-0.009

```
,08/11/2006 11:39,08/09/2006 11:25,
                                                                 3.169E+00, WG4304-1 WG EX
A,23WG4304-1
                                             ,08/11/2006 09:57,233L082404
B,23WG4304-1
                     ,LIBD
                                    7.277E+01,
                                                                    0.469
                                                   5.063E+01,,
                    2.374E+01,
C, K-40
           , YES,
                    8.338E+01,
                                                   1.325E+02,,
                                                                    0.629
           , YES,
                                    1.038E+02,
C, RA-226
                                                                   -0.027
                                                   4.043E+01,,
C, BE-7
           , NO
                   -1.074E+00,
                                    2.246E+01,
C, NA-24
           , NO
                   -4.200E+00,
                                    2.638E+01,
                                                   4.959E+01,,
                                                                   -0.085
                                    2.782E+01,
                                                   4.913E+01,,
                                                                   -0.019
C, CR-51
           , NO
                   -9.100E-01,
                                                   6.313E+00,,
                                                                    0.169
                                    3.248E+00,
                     1.067E+00,
C,MN-54
           , NO
                                                   5.461E+00,,
                                                                   -0.254
C, CO-57
                    -1.385E+00,
                                    3.390E+00,
           , NO
                                                                   -0.107
                                    2.872E+00,
                                                   5.320E+00,,
C, CO-58
           , NO
                    -5.669E-01,
C, FE-59
           , NO
                     2.073E+00,
                                    5.563E+00,
                                                   1.118E+01,,
                                                                    0.185
                                    2.896E+00,
                                                   5.012E+00,,
                                                                   -0.315
                    -1.578E+00,
C,CO-60
           , NO
                                                   9.949E+00,,
                    -7.857E+00,
                                    6.533E+00,
                                                                   -0.790
C, ZN-65
           , NO
                                                   7.246E+00,,
                                                                   -0.100
                    -7.275E-01,
                                    4.141E+00,
C,SE-75
           , NO
                    -6.741E+00,
                                                                   -1.173
                                    3.911E+00,
                                                   5.746E+00,,
C, SR-85
           , NO
                                                   7.172E+00,,
                                                                    0.257
                     1.843E+00,
                                    3.279E+00,
C, Y-88
           , NO
                                    2.678E+00,
                                                   5.407E+00,,
                                                                    0.415
C, NB-94
           , NO
                     2.243E+00,
                                                   6.443E+00,,
                                                                    0.382
                                    3.311E+00,
C, NB-95
            , NO
                     2.461E+00,
                                                   7.702E+00,,
                                                                   -0.535
                    -4.123E+00,
                                    4.950E+00,
C, ZR-95
            , NO
C, MO-99
            , NO
                                                   6.521E+01,,
                                                                   -0.140
                    -9.111E+00,
                                    3.767E+01,
                                                   5.748E+00,,
                                                                   -0.075
                    -4.313E-01,
                                    3.278E+00,
C, RU-103
            , NO
            ,NO
                                                   4.858E+01,,
                                                                     0.266
C, RU-106
                     1.293E+01,
                                    2.488E+01,
                    -2.644E+00,
                                    3.065E+00,
                                                   4.820E+00,,
                                                                   -0.549
C, AG-110m
           , NO
                                                   7.538E+00,,
                                                                     0.009
                     7.033E-02,
                                    4.246E+00,
C, SN-113
            , NO
                                                   5.491E+00,,
                                                                    0.208
                                    3.901E+00,
C,SB-124
            , NO
                     1.140E+00,
C,SB-125
            , NO
                    -2.697E+00,
                                    8.885E+00,
                                                   1.535E+01,,
                                                                   -0.176
                                                   5.859E+01,,
                                                                   -0.218
                    -1.274E+01,
                                    3.413E+01,
C,TE-129M
           , NO
                    -1.893E+00,
                                    3.715E+00,
                                                   6.298E+00,,
                                                                   -0.300
C, I-131
            , NO
                                                   7.267E+00,,
                                                                   -0.117
                    -8.490E-01,
                                    4.761E+00,
C, BA-133
            , NO
                                                   5.760E+00,,
                                                                     0.405
C, CS-134
            ,NO
                     2.334E+00,
                                    3.299E+00,
                                                   5.939E+00,,
C, CS-136
                    -3.880E-01,
                                    3.179E+00,
                                                                   -0.065
            , NO
                                    3.530E+00,
                                                   6.432E+00,,
                                                                     0.095
                     6.115E-01,
C, CS-137
            , NO
            , NO
                                                                     0.286
C, CE-139
                     1.679E+00,
                                    3.239E+00,
                                                   5.870E+00,,
                     7.691E+00,
                                    1.172E+01,
                                                   2.262E+01,,
                                                                     0.340
            , NO
C, BA-140
                                    3.632E+00,
                                                   6.953E+00,,
                                                                    -0.036
C, LA-140
            , NO
                    -2.517E-01,
                                                   9.904E+00,,
                                                                    -0.334
            , NO
                    -3.306E+00,
                                    5.764E+00,
C, CE-141
                                    2.474E+01,
                                                   4.071E+01,,
                                                                    -0.875
            ,NO
                    -3.562E+01,
C, CE-144
                                                                     0.027
            , NO
                                                   1.686E+01,,
                     4.482E-01,
                                    9.447E+00,
C, EU-152
                                                   1.113E+01,,
                                                                    -0.549
C, EU-154
                    -6.116E+00,
                                    7.112E+00,
            ,NO
                                                                     0.382
                                                   2.403E+01,,
C, AC-228
            ,NO
                     9.189E+00,
                                    1.099E+01,
                                                   1.083E+01,,
                                                                    -0.191
C, TH-228
            ,NO
                    -2.070E+00,
                                    6.119E+00,
                                                   2.401E+01,,
                                                                     0.382
                     9.183E+00,
                                    1.098E+01,
C, TH-232
            , NO
                                                   4.527E+01,,
                                                                    -0.464
                    -2.099E+01,
                                    2.660E+01,
C, U-235
            , NO
                                                                    -0.505
C, U-238
            , NO
                    -3.362E+02,
                                    3.876E+02,
                                                   6.659E+02,,
                                                   3.271E+01,,
```

1.950E+01,

C, AM-241

, NO

-3.016E-01,

-0.009

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 09:04:09.33
TBE10 12892256 HpGe ******** Aquisition Date/Time: 10-AUG-2006 18:09:33.15

LIMS No., Customer Name, Client ID: L29543-1 WG EX/DRES

Sample ID : 10L29543-1 Smple Date: 9-AUG-2006 10:00:00.0

Sample Type : WG Geometry : 101L082304
Quantity : 1.00890E+00 L BKGFILE : 10BG072806MT
Start Channel : 80 Energy Tol : 1.00000 Real Time : 0 14:54:09.82
End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 14:54:01.35

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	4	63.35*	102	1275	1.25	125.88	9.84E-01	1.89E-03		1.13E+00
2	4	66.34	256	1656	1.58	131.88	1.14E+00	4.77E-03		
3	3	73.10*	6	1187	1.21	145.40		1.13E-04		1.82E+00
4	3	77.16	322	1230	1.31	153.55	1.68E+00			
5	1	87.33*	77	905	1.31	173.90	2.11E+00	1.43E-03		
6	1	92.75*	61	1377	1.14	184.74	2.29E+00	1.13E-033		
7	1	139.71	215	1388	1.69	278.76	2.89E+00	4.01E-03		3.24E-01
8	1	185.83*	8	1193	1.11	371.09	2.69E+00			
9	1	198.37*	29	1138	1.50	396.18	2.61E+00			1.78E+00
10	1	238.54*	65	1399	0.99	476.62	2.33E+00			
11	1	242.26	171	746	1.30	484.05	2.31E+00		27.7	1.00E+00
12	1	295.27*	329	854	1.21	590.19	1.99E+00	6.13E-03	18.9	
13	1	352.01*	537	591	1.10	703.80	1.73E+00	1.00E-02		
14	1	583.04*	53	257	1.69	1166.37	1.15E+00	9.81E-04	69.8	
15	1	596.10	122	295	2.33	1192.52	1.13E+00			2.41E+00
16	1	609.27*	569	373	1.57	1218.89	1.11E+00		9.5	
17	1	910.80*	34	125	2.11	1822.71	8.00E-01			
18	1	1120.12*	103	157	1.89	2241.94	6.78E-01			
19	1	1238.15*	64	85	1.75	2478.35	6.26E-01		36.1	
20	1	1460.75*	38	85	2.23	2924.23	5.49E-01			
21	1	1764.38*	72	68	2.21	3532.53	4.74E-01	1.33E-03	34.1	5.62E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

	4 L				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	38	10.67*	5.491E-01	3.244E+01	3.244E+01	179.47
RA-226	186.21	8	3.28*	2.693E+00	4.402E+00	4.402E+00	1875.72
AC-228	835.50		1.75	8.569E-01	Li:	ne Not Found	
110 220	911.07	34	27.70*	7.997E-01	7.638E+00	7.642E+00	160.79
TH-228	238.63	65	44.60*	2.331E+00		3.114E+00	250.79
	240.98		3.95	2.315E+00	Li:	ne Not Found	
TH-232	583.14	53	30.25	1.146E+00	7.578E+00	7.578E+00	139.64
	911.07	34	27.70*	7.997E-01	7.638E+00	7.638E+00	160.79
	969.11		16.60	7.610E-01	Li	ne Not Found	

U-235	143.76 -		10.50*	2.888E+00	Line Not Found
0-233	163 35 -		4.70	2.826E+00	Line Not Found
	185 71	8	54.00	2.693E+00	2.674E-01 2.674E-01 1875.72
	205.31 -		4.70	2.559E+00	Line Not Found

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Acquisition date : 10-AUG-2006 18:09:33 Sample ID : 10L29543-1

21

Total number of lines in spectrum Number of unidentified lines

16 Number of lines tentatively identified by NID 5 23.81%

Nuclide Type : natural

RA-226 AC-228	Hlife 1.28E+09Y 1600.00Y 5.75Y 1.91Y	Decay 1.00 1.00 1.00	Uncorrected pCi/L 3.244E+01 4.402E+00 7.638E+00 3.109E+00	Decay Corr pCi/L 3.244E+01 4.402E+00 7.642E+00 3.114E+00	Decay Corr 2-Sigma Error 5.822E+01 82.56E+00 12.29E+00 7.810E+00	179.47 1875.72 160.79 250.79	
TH-228				3.114E+00 7.638E+00	7.810E+00 12.28E+00	250.79 160.79	
TH-232 U-235	1.41E+10Y 7.04E+08Y	1.00	7.638E+00 2.674E-01	2.674E-01	50.15E-01	1875.72	K
0 233	,.012.002						

Total Activity : 5.550E+01 5.550E+01

Grand Total Activity: 5.550E+01 5.550E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 10L29543-1

Page: 3 Acquisition date : 10-AUG-2006 18:09:33

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
4	63.35	102	1275	1.25	125.88	120	17	1.89E-03	***	9.84E-01	•
4	66.34	256	1656	1.58	131.88	120	17	4.77E-03	60.3	1.14E+00	)
3	73.10	6	1187	1.21	145.40	142	16	1.13E-04	***	1.49E+00	)
3	77.16	322	1230	1.31	153.55	142	16	6.00E-03	41.2	1.68E+00	)
1	87.33	77	905	1.31	173.90	172	6	1.43E-03	****	2.11E+00	)
1	92.75	61	1377	1.14	184.74	181	9	1.13E-03	***	2.29E+00	)
1	139.71	215	1388	1.69	278.76	275	9	4.01E-03	63.9	2.89E+00	)
1	198.37	29	1138	1.50	396.18	392	9	5.42E-04	***	2.61E+00	)
1	242.26	171	746	1.30	484.05	481	7	3.18E-03	55.4	2.31E+00	)
1	295.27	329	854	1.21	590.19	586	10	6.13E-03	37.8	1.99E+00	)
1	352.01	537	591	1.10	703.80	699	9	1.00E-02	21.5	1.73E+00	)
1	596.10	122	295	2.33	1192.52	1188	10	2.28E-03	55.7	1.13E+00	)
1	609.27	569	373	1.57	1218.89	1211	14	1.06E-02	18.9	1.11E+00	)
1	1120.12	103	157	1.89	2241.94	2235	14	1.93E-03	60.8	6.78E-01	Ĺ
1	1238.15	64	85	1.75	2478.35	2475	11	1.19E-03	72.2	6.26E-01	L
1	1764.38	72	68	2.21	3532.53	3523	17	1.33E-03	68.1	4.74E-01	l

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

21 Total number of lines in spectrum Number of unidentified lines 16 Number of lines tentatively identified by NID 5 23.81%

Nuclide Type : natural

Nucliuc	Type . Hack	ar ar	Wtd Mean	Wtd Mean	
			Uncorrected	Decay Corr	Decay Corr 2-Sigma
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error %Error Flags
K-40	1.28E+09Y	1.00	3.244E+01	3.244E+01	5.822E+01 179.47
RA-226	1600.00Y	1.00	4.402E+00	4.402E+00	82.56E+00 1875.72
AC-228	5.75Y	1.00	5.968E-02	5.971E-02	1622.E-02 27166.14
TH-228	1.91Y	1.00	3.109E+00	3.114E+00	7.810E+00 250.79
TH-232	1.41E+10Y	1.00	7.578E+00	7.578E+00	10.58E+00 139.64
	Total Act	ivity :	4.759E+01	4.759E+01	

Grand Total Activity: 4.759E+01 4.759E+01

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Interference Report

Interfe	ring	Interf	ered
Nuclide	Line	Nuclide	Line
TH-232	911.07	AC-228	911.07

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226 AC-228 TH-228 TH-232	3.244E+01 4.402E+00 5.971E-02 3.114E+00 7.578E+00	5.822E+01 8.256E+01 1.622E+01 7.810E+00 1.058E+01	5.034E+01 1.253E+02 1.889E+01 9.496E+00 2.104E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.644 0.035 0.003 0.328 0.360
Non-Ide	entified Nuclides				
Nuclide	<pre>Key-Line Activity K.L.   (pCi/L) Ided</pre>	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-136 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 U-235	-2.178E+00 -2.564E+01 5.595E+00 -1.318E+00 1.485E+00 -3.298E+00 5.599E+00 2.308E+00 2.699E+01 -1.872E+00 4.067E+01 -4.820E+00 -4.269E+00 -4.210E+00 1.728E+01 -3.427E+00 -2.689E+00 -4.556E-01 2.704E-01 3.076E+00 -8.864E-01 6.754E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00 -1.820E+00	2.873E+01 2.092E+01 2.832E+00 3.420E+00 2.932E+00 3.170E+00 6.064E+00 3.151E+00 4.315E+00 4.315E+00 3.482E+00 3.260E+00 3.482E+00 3.260E+01 3.482E+01 3.482E+01 3.482E+00 3.538E+00 3.616E+01 3.482E+00 3.879E+01 3.847E+00 5.789E+00 3.879E+01 3.847E+00 5.789E+00 3.898E+00 3.393E+00 3.575E+00 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01 3.968E+01	4.676E+01 3.193E+01 4.704E+00 4.874E+00 4.874E+00 4.984E+00 1.041E+01 5.358E+00 7.129E+00 7.880E+00 5.188E+00 5.209E+00 5.725E+00 9.169E+00 6.044E+01 5.520E+00 5.023E+01 5.293E+00 6.930E+00 5.627E+00 1.585E+01 6.272E+00 9.139E+00 7.082E+00 9.139E+00 5.515E+00 5.515E+00 5.959E+00 5.711E+00 8.724E+01 6.711E+00 8.724E+01 1.654E+01 1.654E+01 1.023E+01 6.087E+02	O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00 O.000E+00	-0.047 -0.803 0.119 -0.239 0.305 -0.662 0.538 0.431 1.983 -0.263 5.161 -0.929 -0.820 1.204 -0.459 0.286 -0.621 -0.054 -0.054 -0.054 -0.054 -0.054 -0.054 -0.106 -0.290 2.992 2.548 -0.113 0.171 0.505 0.238 0.535 0.022 -1.246 0.904 0.804
U-238 AM-241	4.894E+02 2.165E+01	2.842E+01	3.977E+01	0.000E+00	0.544

```
A, 10L29543-1
                     ,08/11/2006 09:04,08/09/2006 10:00,
                                                                 1.009E+00,L29543-1 WG EX
B, 10L29543-1
                     ,LIBD
                                             ,08/07/2006 09:39,101L082304
           ,YES,
C, K-40
                                                   5.034E+01,,
                     3.244E+01,
                                    5.822E+01,
                                                                    0.644
C, RA-226
           , YES,
                     4.402E+00,
                                    8.256E+01,
                                                   1.253E+02,,
                                                                    0.035
C, AC-228
                     5.971E-02,
           ,YES,
                                    1.622E+01,
                                                   1.889E+01,,
                                                                    0.003
C, TH-228
           , YES,
                     3.114E+00,
                                    7.810E+00,
                                                   9.496E+00,,
                                                                    0.328
C, TH-232
           , YES,
                     7.578E+00,
                                    1.058E+01,
                                                   2.104E+01,,
                                                                    0.360
C, BE-7
           , NO
                    -2.178E+00,
                                                   4.676E+01,,
                                    2.873E+01,
                                                                   -0.047
C, NA-24
           , NO
                   -2.564E+01,
                                    2.092E+01,
                                                   3.193E+01,,
                                                                   -0.803
C, CR-51
                                                   4.704E+01,,
           , NO
                     5.595E+00,
                                    2.832E+01,
                                                                    0.119
C, MN-54
           , NO
                   -1.318E+00,
                                    3.420E+00,
                                                   5.517E+00,,
                                                                   -0.239
C, CO-57
           , NO
                                                   4.874E+00,,
                     1.485E+00,
                                    2.932E+00,
                                                                    0.305
C, CO-58
           , NO
                   -3.298E+00,
                                                   4.984E+00,,
                                    3.170E+00,
                                                                   -0.662
C, FE-59
           , NO
                                                   1.041E+01,,
                     5.599E+00,
                                    6.064E+00,
                                                                    0.538
C, CO-60
                     2.308E+00,
           , NO
                                    3.151E+00,
                                                   5.358E+00,,
                                                                    0.431
C, ZN-65
           , NO
                     2.699E+01,
                                    8.231E+00,
                                                   1.361E+01,,
                                                                    1.983
C, SE-75
           , NO
                    -1.872E+00,
                                    4.315E+00,
                                                   7.129E+00,,
                                                                   -0.263
C,SR-85
           , NO
                     4.067E+01,
                                    4.079E+00,
                                                   7.880E+00,,
                                                                    5.161
C, Y-88
           , NO
                    -4.820E+00,
                                                   5.188E+00,,
                                    3.482E+00,
                                                                   -0.929
C, NB-94
           , NO
                    -4.269E+00,
                                    3.294E+00,
                                                   5.209E+00,,
                                                                   -0.820
C, NB-95
           , NO
                     6.892E+00,
                                    3.260E+00,
                                                   5.725E+00,,
                                                                    1.204
C, ZR-95
           , NO
                    -4.210E+00,
                                    5.730E+00,
                                                   9.169E+00,,
                                                                   -0.459
C,MO-99
           , NO
                     1.728E+01,
                                                   6.044E+01,,
                                    3.616E+01,
                                                                    0.286
C, RU-103
           ,NO
                    -3.427E+00,
                                    3.482E+00,
                                                   5.520E+00,,
                                                                   -0.621
C, RU-106
                                                   5.023E+01,,
           , NO
                    -2.689E+00,
                                    3.080E+01,
                                                                   -0.054
C, AG-110m , NO
                    -4.556E-01,
                                    3.216E+00,
                                                   5.293E+00,,
                                                                   -0.086
C, SN-113
           , NO
                     2.704E-01,
                                    4.211E+00,
                                                   6.930E+00,,
                                                                    0.039
C,SB-124
           , NO
                     3.076E+00,
                                    7.538E+00,
                                                   5.627E+00,,
                                                                    0.547
           , NO
C,SB-125
                    -8.864E-01,
                                    9.697E+00,
                                                   1.585E+01,,
                                                                   -0.056
C, TE-129M
           , NO
                     6.754E+00,
                                    3.879E+01,
                                                   6.364E+01,,
                                                                    0.106
           ,NO
C, I-131
                    -1.820E+00,
                                    3.847E+00,
                                                   6.272E+00,,
                                                                   -0.290
C, BA-133
                                    5.789E+00,
                                                   9.139E+00,,
           , NO
                     2.735E+01,
                                                                    2.992
C, CS-134
           , NO
                     1.805E+01,
                                    6.898E+00,
                                                   7.082E+00,,
                                                                    2.548
C, CS-136
                                                   5.515E+00,,
           , NO
                    -6.216E-01,
                                    3.393E+00,
                                                                   -0.113
C, CS-137
                     1.022E+00,
           , NO
                                    3.575E+00,
                                                   5.959E+00,,
                                                                    0.171
C, CE-139
           , NO
                     2.593E+00,
                                    3.098E+00,
                                                   5.137E+00,,
                                                                    0.505
C, BA-140
           ,NO
                     5.204E+00,
                                    1.266E+01,
                                                   2.081E+01,,
                                                                    0.250
           , NO
                     1.597E+00,
C, LA-140
                                    3.968E+00,
                                                   6.711E+00,,
                                                                    0.238
C, CE-141
            , NO
                     4.663E+00,
                                    6.155E+00,
                                                   8.724E+00,,
                                                                    0.535
C, CE-144
           , NO
                     8.195E-01,
                                    2.690E+01,
                                                   3.766E+01,,
                                                                    0.022
C, EU-152
           , NO
                    -2.060E+01,
                                    1.248E+01,
                                                   1.654E+01,,
                                                                   -1.246
C, EU-154
                                                   1.023E+01,,
           , NO
                     2.310E+00,
                                    6.163E+00,
                                                                    0.226
            , NO
C, U-235
                     3.575E+01,
                                    2.760E+01,
                                                   3.956E+01,,
                                                                    0.904
C, U-238
           ,NO
                     4.894E+02,
                                    3.474E+02,
                                                   6.087E+02,,
                                                                    0.804
C, AM-241
           ,NO,
```

2.842E+01,

3.977E+01,,

0.544

2.165E+01,

Sec. Review: Analyst: LIMS:

______

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 09:07:51.58
TBE11 P-20610B HpGe ******* Aguisition Date/Time: 10-AUG-2006 18:09:41.92

LIMS No., Customer Name, Client ID: L29543-2 L29543-2 WG EX/DRES

Sample ID : 11L29543-2 Smple Date: 9-AUG-2006 11:25:00.0

Sample Type : WG
Quantity : 3.16910E+00 L
Start Channel : 40
End Channel : 4090
Pk Srch Sens: 5.00000

Geometry : 113L082304
BKGFILE : 11BG072806MT
1.00000
Real Time : 0.08:00:11.68
End Channel : 4090
Pk Srch Sens: 5.00000
Live time : 0.08:00:00.00

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	66.45	157	1312	0.98	132.49	6.91E-01	5.45E-03	39.2	
2	7	82.49	190	664	1.39	164.66	1.21E+00	6.61E-03	19.4	7.39E+00
3	7	84.52*	58	1216	1.38	168.74	1.27E+00	2.03E-033	113.0	
4	0	139.69*	201	653	1.55	279.42	1.90E+00	6.98E-03	23.1	
5	0	185.06*	104	930	1.26	370.39	1.80E+00	3.61E-03	63.4	
6	0	198.31*	154	662	1.39	396.97	1.75E+00	5.34E-03	32.8	
7	0	238.49*	63	443	1.42	477.55	1.58E+00	2.18E-03	65.5	
8	0	241.68	144	469	1.35	483.93	1.56E+00	4.99E-03	27.5	
9	0	295.11*	117	533	1.22	591.06	1.37E+00	4.07E-03	40.0	
10	0	351.79*	240	356	1.25	704.67	1.20E+00	8.32E-03	17.7	
11	0	596.05	152	195	1.22	1194.02	8.03E-01	5.29E-03	20.0	
12	0	609.04*	242	220	1.47	1220.02	7.90E-01	8.40E-03	15.4	
13	0	911.60*	21	140	1.87	1825.56	5.74E-01	7.12E-04	154.7	
14	0	1120.76*	36	122	1.63	2243.79	4.86E-01	1.26E-03	74.7	
15	0	1460.62*	85	54	1.98	2922.71	3.92E-01	2.94E-03	29.6	
16	0	1761.96	95	37	2.48	3524.01	3.39E-01	3.31E-03	17.5	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĈi/L	%Error
K-40	1460.81	85	10.67*	3.919E-01	5.993E+01	5.993E+01	59.29
AC-228	835.50		1.75	6.158E-01	Lir	ne Not Found	
	911.07	21	27.70*	5.743E-01	3.818E+00	3.820E+00	309.37
TH-228	238.63	63	44.60*	1.577E+00	2.646E+00	2.650E+00	131.07
	240.98	144	3.95	1.564E+00	6.885E+01	6.895E+01	54.93
U-235	143.76		10.50*	1.906E+00	Lir	ne Not Found	
	163.35		4.70	1.876E+00	Lir	ne Not Found	
	185.71	104	54.00	1.802E+00	3.163E+00	3.163E+00	126.76
	205.31		4.70	1.718E+00	Lir	ne Not Found	

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity Sample ID : 11L29543-2 Acquisition date : 10-AUG-2006 18:09:41

Total number of lines in spectrum

16 11

Number of unidentified lines Number of lines tentatively identified by NID 5

31.25%

Nuclide Type : natural

Nuclide K-40 AC-228 TH-228 U-235	Hlife 1.28E+09Y 5.75Y 1.91Y 7.04E+08Y	Decay 1.00 1.00 1.00	pCi/L 5.993E+01 3.818E+00 2.646E+00	Decay Corr pCi/L 5.993E+01 3.820E+00 2.650E+00 3.163E+00	Decay Corr 2-Sigma Error 3.554E+01 11.82E+00 3.473E+00 4.010E+00	2-Sigma %Error 59.29 309.37 131.07 126.76	

Total Activity: 6.956E+01 6.957E+01

Grand Total Activity: 6.956E+01 6.957E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 11L29543-2 Page: 3
Acquisition date: 10-AUG-2006 18:09:41

Samp	)10 10		_								
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0 7 7 0 0 0 0 0	66.45 82.49 84.52 139.69 198.31 295.11 351.79 596.05 609.04 1120.76 1761.96	157 190 58 201 154 117 240 152 242 36 95	1312 664 1216 653 662 533 356 195 220 122 37	0.98 1.39 1.38 1.55 1.39 1.22 1.25 1.25 1.22 1.47 1.63 2.48	2243.79	276 393 587 700 1189 1214 2236	11 7 9 10 10 12 13 16	8.32E-03	38.8 **** 46.1 65.6 80.0 35.3 40.1 30.8 ****	6.91E-03 1.21E+00 1.27E+00 1.90E+00 1.75E+00 1.37E+00 1.20E+00 8.03E-00 7.90E-0 4.86E-0 3.39E-0	0 0 0 0 0 0 1 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 16
Number of unidentified lines 11
Number of lines tentatively identified by NID 5 31.25%

Nuclide Type : natural

Nuclide	Type: nacus	Lai	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	7
Nuclide K-40 AC-228 TH-228 U-235	Hlife 1.28E+09Y 5.75Y 1.91Y 7.04E+08Y	Decay 1.00 1.00 1.00 1.00	pCi/L 5.993E+01 3.818E+00 2.646E+00 3.163E+00	pCi/L 5.993E+01 3.820E+00 2.650E+00 3.163E+00  6.957E+01	2-Sigma Error 3.554E+01 11.82E+00 3.473E+00 4.010E+00	%Error 59.29 309.37 131.07 126.76	Flags

Grand Total Activity: 6.956E+01 6.957E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	5.993E+01	3.554E+01	3.064E+01	0.000E+00	1.956
AC-228	3.820E+00	1.182E+01	1.050E+01	0.000E+00	0.364
TH-228	2.650E+00	3.473E+00	5.129E+00	0.000E+00	0.517
U-235	3.163E+00	4.010E+00	2.221E+01	0.000E+00	0.142

## ---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.I (pCi/L) Ide		MDA (pCi/L)	MDA error	Act/MDA
BE-7	-2.064E+00	1.499E+01	2.417E+01	0.000E+00	-0.085
NA-24	-1.681E+00	9.702E+00	1.555E+01	0.000E+00	-0.108
CR-51	-9.969E+00	1.558E+01	2.534E+01	0.000E+00	-0.393
MN-54	1.211E+00	1.843E+00	3.105E+00	0.000E+00	0.390
CO-57	8.559E-01	1.622E+00	2.717E+00	0.000E+00	0.315
CO-58	2.762E-01	1.804E+00	2.966E+00	0.000E+00	0.093
FE-59	-5.499E-01	3.505E+00	5.731E+00	0.000E+00	-0.096
CO-60	-9.822E-03	2.036E+00	3.312E+00	0.000E+00	-0.003
ZN-65	-1.044E+00	4.735E+00	6.500E+00	0.000E+00	-0.161
SE-75	-2.115E+00	2.390E+00	3.907E+00	0.000E+00	-0.541
SR-85	3.055E+00	2.239E+00	3.770E+00	0.000E+00	0.810
Y-88	5.211E-01	2.195E+00	3.661E+00	0.000E+00	0.142
NB-94	-1.642E+00	1.721E+00	2.699E+00	0.000E+00	-0.608
NB-95	1.567E+00	1.826E+00	3.117E+00	0.000E+00	0.503
ZR-95	-4.113E-01	3.093E+00	5.030E+00	0.000E+00	-0.082
MO-99	1.518E+00	1.934E+01	3.186E+01	0.000E+00	0.048
RU-103	-5.282E-01	1.808E+00	2.887E+00	0.000E+00	-0.183
RU-106	-1.424E+01	1.655E+01	2.635E+01	0.000E+00	-0.540
AG-110m	4.564E-01	1.742E+00	2.915E+00	0.000E+00	0.157
SN-113	-2.228E-01	2.291E+00	3.745E+00	0.000E+00	-0.059
SB-124	1.183E+00	3.168E+00	2.812E+00	0.000E+00	0.421
SB-125	4.347E+00	5.023E+00	8.478E+00	0.000E+00	0.513
TE-129M	2.273E+00	2.087E+01	3.408E+01	0.000E+00	0.067
I-131	1.208E+00	1.925E+00	3.242E+00	0.000E+00	0.373 -0.068
BA-133	-2.535E-01	2.657E+00	3.745E+00	0.000E+00	
CS-134	1.059E+00	2.303E+00	2.902E+00	0.000E+00	0.365
CS-136	6.047E-02	1.825E+00	2.979E+00	0.000E+00	0.020 0.083
CS-137	2.669E-01	1.932E+00	3.213E+00	0.000E+00	0.305
CE-139	8.494E-01	1.685E+00	2.789E+00	0.000E+00	
BA-140	1.788E-01	6.701E+00	1.123E+01	0.000E+00	0.016
LA-140	1.848E+00	2.274E+00	3.994E+00	0.000E+00	0.463 0.342
CE-141	1.689E+00	3.138E+00	4.932E+00	0.000E+00	-0.041
CE-144	-8.613E-01	1.340E+01	2.081E+01	0.000E+00	
EU-152	7.326E-01	5.803E+00	9.187E+00	0.000E+00	0.080 0.205
EU-154	1.174E+00	3.434E+00	5.726E+00	0.000E+00	0.203
RA-226	2.790E+00	5.408E+01	7.500E+01	0.000E+00	
TH-232	0.020	+ 1.181E+01	1.212E+01	0.000E+00	0.315
U-238	1.199E+02	1.863E+02	3.217E+02	0.000E+00	0.373
AM-241	-2.263E+01	2.050E+01	3.217E+01	0.000E+00	-0.703

```
3.169E+00,L29543-2 L2954
                     ,08/11/2006 09:07,08/09/2006 11:25,
A,11L29543-2
                                             ,08/07/2006 09:39,113L082304
                     , LIBD
B,11L29543-2
                                                                    1.956
           ,YES,
                                    3.554E+01,
                                                   3.064E+01,,
                     5.993E+01,
C, K-40
                                                                    0.364
                                                   1.050E+01,,
                     3.820E+00,
                                    1.182E+01,
C,AC-228
           ,YES,
                                                   5.129E+00,,
                                                                    0.517
                                    3.473E+00,
           , YES,
C, TH-228
                     2.650E+00,
                                                                    0.142
                                                   2.221E+01,
                     3.163E+00,
                                    4.010E+00,
C, U-235
            , YES,
                                                   2.417E+01,,
                                                                   -0.085
            , NO
                    -2.064E+00,
                                    1.499E+01,
C, BE-7
                                    9.702E+00,
                                                   1.555E+01,,
                                                                   -0.108
                    -1.681E+00,
C, NA-24
            , NO
                                                   2.534E+01,,
                                                                   -0.393
                                    1.558E+01,
                    -9.969E+00,
C, CR-51
            , NO
                                                                     0.390
                                                   3.105E+00,,
                                    1.843E+00,
            , NO
C, MN-54
                     1.211E+00,
                                                                     0.315
                                                   2.717E+00,,
                     8.559E-01,
C, CO-57
            , NO
                                    1.622E+00,
                                    1.804E+00,
                                                   2.966E+00,,
                                                                     0.093
            , NO
                     2.762E-01,
C, CO-58
                                                                   -0.096
                                    3.505E+00,
                                                   5.731E+00,,
                    -5.499E-01,
            , NO
C, FE-59
                                                   3.312E+00,,
                                                                   -0.003
                                    2.036E+00,
C, CO-60
            , NO
                    -9.822E-03,
                                                                    -0.161
                                                   6.500E+00,,
                                    4.735E+00,
                    -1.044E+00,
C, ZN-65
            , NO
                                                                    -0.541
                                                   3.907E+00,,
                                    2.390E+00,
                    -2.115E+00,
C,SE-75
            , NO
                                                                     0.810
                                                   3.770E+00,,
                     3.055E+00,
                                    2.239E+00,
C, SR-85
            , NO
                                                                     0.142
                                    2.195E+00,
                                                   3.661E+00,,
C,Y-88
                     5.211E-01,
            , NO
                                                   2.699E+00,,
                                                                    -0.608
                                    1.721E+00,
                    -1.642E+00,
            , NO
C, NB-94
                                                   3.117E+00,,
                                                                     0.503
                                    1.826E+00,
                     1.567E+00,
C, NB-95
            , NO
                                                   5.030E+00,,
                                                                    -0.082
                                    3.093E+00,
                    -4.113E-01,
C, ZR-95
            , NO
                                                                     0.048
                                                   3.186E+01,,
                     1.518E+00,
                                    1.934E+01,
C, MO-99
            , NO
                                    1.808E+00,
                                                   2.887E+00,,
                                                                    -0.183
            ,NO
                    -5.282E-01,
C, RU-103
                                                   2.635E+01,,
                                                                    -0.540
                                    1.655E+01,
                    -1.424E+01,
            , NO
C,RU-106
                                                   2.915E+00,,
                                                                     0.157
                                    1.742E+00,
                     4.564E-01,
C, AG-110m
            , NO
                                                                    -0.059
                                                   3.745E+00,,
                                    2.291E+00,
            , NO
                    -2.228E-01,
C, SN-113
                                                                     0.421
                                                   2.812E+00,,
                     1.183E+00,
                                     3.168E+00,
            , NO
C,SB-124
                                                                     0.513
                                     5.023E+00,
                                                    8.478E+00,,
                     4.347E+00,
C,SB-125
            , NO
                                                    3.408E+01,,
                                                                     0.067
                                     2.087E+01,
                     2.273E+00,
C, TE-129M
            , NO
                                     1.925E+00,
                                                    3.242E+00,,
                                                                     0.373
                     1.208E+00,
C, I-131
            , NO
                                                    3.745E+00,,
                                                                    -0.068
                                     2.657E+00,
C, BA-133
            , NO
                    -2.535E-01,
                                                    2.902E+00,,
                                                                     0.365
                     1.059E+00,
                                     2.303E+00,
            ,NO
C, CS-134
                                                                     0.020
                                                    2.979E+00,,
            , NO
                     6.047E-02,
                                     1.825E+00,
C, CS-136
                                                    3.213E+00,,
                                                                     0.083
                                     1.932E+00,
            ,NO
                     2.669E-01,
C, CS-137
                                                                     0.305
                                                    2.789E+00,,
                                     1.685E+00,
                      8.494E-01,
C, CE-139
            , NO
                                                                     0.016
                                                    1.123E+01,,
            , NO
                                     6.701E+00,
C, BA-140
                     1.788E-01,
                                                                     0.463
                                                    3.994E+00,,
            , NO
                      1.848E+00,
                                     2.274E+00,
 C, LA-140
                                                                     0.342
                                     3.138E+00,
                                                    4.932E+00,,
                      1.689E+00,
C, CE-141
            , NO
                                                    2.081E+01,,
                                                                    -0.041
                     -8.613E-01,
                                     1.340E+01,
 C, CE-144
            , NO
                                                                     0.080
                                     5.803E+00,
                                                    9.187E+00,,
            , NO
                      7.326E-01,
 C, EU-152
                                                    5.726E+00,,
                                                                     0.205
                                     3.434E+00,
            ,NO
                      1.174E+00,
 C, EU-154
                                                                     0.037
                                                    7.500E+01,,
                      2.790E+00,
                                     5.408E+01,
 C, RA-226
            , NO
                                     1.181E+01,
                                                    1.212E+01,,
                                                                     0.315
             , NO
                      3.818E+00,
 C, TH-232
                                                    3.217E+02,,
                                                                     0.373
                      1.199E+02,
                                     1.863E+02,
             , NO
 C, U-238
                                                    3.217E+01,,
                                                                    -0.703
                                     2.050E+01,
 C, AM-241
             , NO
                     -2.263E+01,
```

LIMS:  $\vee$ Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 09:12:32.12

TBE14 P-10933A HpGe ******** Aquisition Date/Time: 10-AUG-2006 18:09:58.30 ______

LIMS No., Customer Name, Client ID: L29543-3 WG EX/DRES

Smple Date: 9-AUG-2006 11:45:00.0 Sample ID : 14L29543-3

Geometry : 143L082304 Sample Type : WG BKGFILE : 14BG072806MT : 3.20130E+00 L Quantity 

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.35*	184 32	1364 998	1.89 1.68	133.83 186.80	5.12E-01 1.28E+00	6.40E-03 1.11E-03		1.11E+00 7.46E-01
2 3	1	92.71* 139.89*	215	919	1.57	281.60	1.89E+00	7.46E-03	27.3	1.45E+00 2.36E+00
4 5	1 1	185.97* 198.63*	123 210	1284 895	1.95 1.31	374.15 399.57		7.28E-03	29.8	
6 7	0 1	238.14* 295.64*	21 124	1055 506	1.40 $1.45$	478.89 594.29	1.68E+00 1.46E+00	7.37E-043 4.30E-03		1.36E+00
8	1	339.38	51	499	2.31	682.03 708.39	1.31E+00 1.28E+00		88.9 21.3	2.72E+00 3.06E+00
9 10	1 1	352.52* 596.00	287 121	615 288	2.08 2.73	1196.22	8.48E-01	4.20E-03	32.3	2.58E+00
11 12	1 1	609.55* 1120.74*	295 87	215 105	2.28	1223.35 2244.43	8.33E-01 5.30E-01	1.03E-02 3.01E-03	13.3 30.0	1.40E+00 1.03E+00
13	1	1377.41	32	67	1.38	2755.58 2923.21	4.56E-01 4.36E-01	1.10E-03 1.58E-03	63.8	
14 15	1 1	1461.69* 1766.13*	45 50	93 84	3.19		3.79E-01			1.58E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

1 F				Uncorrected	Decay Corr	2-Sigma
Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
	45	10.67*	4.361E-01	2.862E+01	2.862E+01	142.41
	123	3.28*	1.876E+00	5.842E+01	5.842E+01	133.78
	21	44.60*	1.677E+00	8.318E-01	8.330E-01	675.78
		3.95	1.666E+00	Liı	ne Not Found	
		10.50*	1.907E+00	Liı	ne Not Found	
		4.70	1.923E+00	Li	ne Not Found	
	123	54.00	1.876E+00	3.549E+00	3.549E+00	133.78
205.31		4.70		Li	ne Not Found	
	Energy 1460.81 186.21 238.63 240.98 143.76 163.35 185.71	Energy Area 1460.81 45 186.21 123 238.63 21 240.98 143.76 163.35 185.71 123	Energy Area %Abn 1460.81 45 10.67* 186.21 123 3.28* 238.63 21 44.60* 240.98 3.95 143.76 10.50* 163.35 4.70 185.71 123 54.00	Energy Area %Abn %Eff 1460.81 45 10.67* 4.361E-01 186.21 123 3.28* 1.876E+00 238.63 21 44.60* 1.677E+00 240.98 3.95 1.666E+00 143.76 10.50* 1.907E+00 163.35 4.70 1.923E+00 185.71 123 54.00 1.876E+00	Energy Area %Abn %Eff pCi/L 1460.81 45 10.67* 4.361E-01 2.862E+01 186.21 123 3.28* 1.876E+00 5.842E+01 238.63 21 44.60* 1.677E+00 8.318E-01 240.98 3.95 1.666E+00 Lin 143.76 10.50* 1.907E+00 Lin 163.35 4.70 1.923E+00 Lin 185.71 123 54.00 1.876E+00 3.549E+00	Energy Area %Abn %Eff pCi/L pCi/L 1460.81 45 10.67* 4.361E-01 2.862E+01 2.862E+01 186.21 123 3.28* 1.876E+00 5.842E+01 5.842E+01 238.63 21 44.60* 1.677E+00 8.318E-01 8.330E-01 240.98 3.95 1.666E+00 Line Not Found 143.76 10.50* 1.907E+00 Line Not Found 163.35 4.70 1.923E+00 Line Not Found 185.71 123 54.00 1.876E+00 3.549E+00

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Acquisition date : 10-AUG-2006 18:09:58 Sample ID : 14L29543-3

> 15 12

Total number of lines in spectrum Number of unidentified lines

Number of lines tentatively identified by NID 3 20.00%

Nuclide Type : natural

			Uncorrected			2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	%Error	Flags
	1.28E+09Y	1.00	2.862E+01	2.862E+01	4.076E+01	142.41	
RA-226	1600.00Y	1.00	5.842E+01	5.842E+01	7.815E+01	133.78	
TH-228	1.91Y	1.00	8.318E-01	8.330E-01	56.29E-01	675.78	
U-235	7.04E+08Y	1.00	3.549E+00	3.549E+00	4.747E+00	133.78	K

Total Activity : 9.143E+01 9.143E+01

Grand Total Activity: 9.143E+01 9.143E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 14L29543-3

Page: 3 Acquisition date : 10-AUG-2006 18:09:58

1     66.35     184     1364     1.89     133.83     129     11     6.40E-03     81.2     5.12E-01       1     92.71     32     998     1.68     186.80     182     9     1.11E-03     ****     1.28E+00       1     139.89     215     919     1.57     281.60     277     9     7.46E-03     54.5     1.89E+00       1     198.63     210     895     1.31     399.57     394     11     7.28E-03     59.5     1.83E+00       1     295.64     124     506     1.45     594.29     590     9     4.30E-03     74.1     1.46E+00	w Cts/Sec %Err %Eff Flags	Pw	Left	Channel	FWHM	Bkgnd	Area	Energy	It
1     339.38     51     499     2.31     682.03     674     12     1.78E-03     ****     1.31E+00       1     352.52     287     615     2.08     708.39     701     16     9.97E-03     42.6     1.28E+00       1     596.00     121     288     2.73     1196.22     1190     15     4.20E-03     64.7     8.48E-01       1     609.55     295     215     2.28     1223.35     1217     14     1.03E-02     26.7     8.33E-01       1     1120.74     87     105     2.94     2244.43     2237     15     3.01E-03     60.0     5.30E-01       1     1377.41     32     67     1.38     2755.58     2747     17     1.10E-03     ****     4.56E-01       1     1766.13     50     84     3.19     3527.79     3519     21     1.74E-03     ****     3.79E-01	9 1.11E-03 **** 1.28E+00 9 7.46E-03 54.5 1.89E+00 1 7.28E-03 59.5 1.83E+00 9 4.30E-03 74.1 1.46E+00 1 1.78E-03 **** 1.31E+00 2 1.78E-03 42.6 1.28E+00 2 4.20E-03 64.7 8.48E-01 4 1.03E-02 26.7 8.33E-01 3 01E-03 60.0 5.30E-01 7 1.10E-03 **** 4.56E-01	9 11 9 12 16 15 14 15	182 277 394 590 674 701 1190 1217 2237 2747	186.80 281.60 399.57 594.29 682.03 708.39 1196.22 1223.35 2244.43 2755.58	1.68 1.57 1.31 1.45 2.31 2.08 2.73 2.28 2.94 1.38	998 919 895 506 499 615 288 215 105	32 215 210 124 51 287 121 295 87 32	92.71 139.89 198.63 295.64 339.38 352.52 596.00 609.55 1120.74 1377.41	1 1 1 1 1 1 1

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

15 Total number of lines in spectrum Number of unidentified lines 12 Number of lines tentatively identified by NID 3 20.00%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr		2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	2.862E+01	2.862E+01	4.076E+01	142.41	
RA-226	1600.00Y	1.00	5.842E+01	5.842E+01	7.815E+01	133.78	
TH-228	1.91Y	1.00	8.318E-01	8.330E-01	56.29E-01	675.78	
	Total Acti	vity :	8.788E+01	8.788E+01			

Grand Total Activity: 8.788E+01 8.788E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	2.862E+01	4.076E+01	2.419E+01	0.000E+00	1.183
RA-226	5.842E+01	7.815E+01	6.571E+01	0.000E+00	0.889
TH-228	8.330E-01	5.629E+00	5.303E+00	0.000E+00	0.157

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	-3.138E+00	1.415E+01	2.328E+01	0.000E+00	-0.135
NA-24	2.692E+00	8.963E+00	1.279E+01	0.000E+00	0.210
CR-51	-2.084E-01	1.446E+01	2.337E+01	0.000E+00	-0.009
MN-54	9.821E-01	1.643E+00	2.828E+00	0.000E+00	0.347
CO-57	1.566E-01	1.697E+00	2.855E+00	0.000E+00	0.055
CO-58	-1.451E-01	1.724E+00	2.874E+00	0.000E+00	-0.050 0.548
FE-59	3.009E+00	3.157E+00	5.487E+00	0.000E+00	
CO-60	-1.847E-02	1.645E+00	2.664E+00	0.000E+00	-0.007
ZN-65	-8.688E-01	3.982E+00	5.451E+00	0.000E+00	-0.159
SE-75	1.427E+00	2.250E+00	3.737E+00	0.000E+00	0.382
SR-85	4.995E+00	2.166E+00	3.809E+00	0.000E+00	1.311
Y-88	-1.171E+00	1.815E+00	2.797E+00	0.000E+00	-0.419
NB-94	-1.254E+00	1.716E+00	2.688E+00	0.000E+00	-0.466
NB-95	9.325E-01	1.736E+00	2.883E+00	0.000E+00	0.323 0.449
ZR-95	2.259E+00	2.994E+00	5.036E+00	0.000E+00	0.459
MO-99	1.408E+01	1.862E+01	3.132E+01	0.000E+00	-0.175
RU-103	-5.078E-01	1.769E+00	2.897E+00	0.000E+00	-0.175
RU-106	-7.891E+00	1.582E+01	2.527E+01	0.000E+00	
AG-110m	-1.245E+00	1.685E+00	2.648E+00	0.000E+00	-0.470 0.220
SN-113	8.097E-01	2.166E+00	3.675E+00	0.000E+00	0.220
SB-124	1.462E+00	2.847E+00	2.679E+00	0.000E+00	-0.751
SB-125	-5.740E+00	4.792E+00	7.647E+00	0.000E+00	0.346
TE-129M	1.139E+01	1.940E+01	3.296E+01	0.000E+00	-0.351
I-131	-1.108E+00	2.006E+00	3.158E+00	0.000E+00	0.042
BA-133	1.595E-01	2.723E+00	3.784E+00	0.000E+00	0.313
CS-134	8.266E-01	2.204E+00	2.643E+00	0.000E+00	-0.121
CS-136	-3.643E-01	1.820E+00	3.015E+00	0.000E+00	-0.036
CS-137	-1.095E-01	1.888E+00	3.069E+00	0.000E+00	-0.162
CE-139	-4.502E-01	1.683E+00	2.781E+00	0.000E+00 0.000E+00	-0.343
BA-140	-3.568E+00	6.453E+00	1.039E+01	0.000E+00	0.404
LA-140	1.421E+00	2.013E+00	3.512E+00	0.000E+00	0.999
CE-141	4.990E+00	3.151E+00	4.994E+00	0.000E+00	0.135
CE-144	2.948E+00	1.372E+01	2.182E+01	0.000E+00	-0.099
EU-152	-8.539E-01	7.230E+00	8.667E+00		0.034
EU-154	2.059E-01	3.570E+00	6.001E+00	0.000E+00 0.000E+00	0.026
AC-228	3.001E-01	7.531E+00	1.144E+01		0.026
TH-232	2.999E-01	7.527E+00	1.143E+01	0.000E+00	-0.255
U-235	-5.553E+00	1.568E+01	2.176E+01	0.000E+00 0.000E+00	-0.233
U-238	-1.411E+01	1.756E+02	2.888E+02	0.000E+00	-0.169
AM-241	-6.262E+00	2.293E+01	3.696E+01	0.0006+00	-0.109

```
3.201E+00,L29543-3 WG EX
                     ,08/11/2006 09:12,08/09/2006 11:45,
A,14L29543-3
                                             ,08/07/2006 09:39,143L082304
                     ,LIBD
B,14L29543-3
                                                                    1.183
           ,YES,
                                    4.076E+01,
                                                   2.419E+01,,
                    2.862E+01,
C, K-40
                                                                    0.889
                                                   6.571E+01,,
                                    7.815E+01,
           , YES,
                    5.842E+01,
C, RA-226
                                                                    0.157
                                    5.629E+00,
                                                   5.303E+00,,
                     8.330E-01,
C, TH-228
           , YES,
                                                                   -0.135
                                                   2.328E+01,
                   -3.138E+00,
                                    1.415E+01,
            , NO
C, BE-7
                                                   1.279E+01,,
                                                                    0.210
            , NO
                     2.692E+00,
                                    8.963E+00,
C, NA-24
                                                                   -0.009
                    -2.084E-01,
                                    1.446E+01,
                                                   2.337E+01,,
            , NO
C, CR-51
                                                                    0.347
                                                   2.828E+00,,
                                    1.643E+00,
                     9.821E-01,
C, MN-54
            , NO
                                                                    0.055
                                                   2.855E+00,,
                     1.566E-01,
                                    1.697E+00,
            , NO
C, CO-57
                                                                   -0.050
                                                   2.874E+00,,
                    -1.451E-01,
                                    1.724E+00,
C, CO-58
            , NO
                                                                    0.548
                                    3.157E+00,
                                                   5.487E+00,,
                     3.009E+00,
C, FE-59
            , NO
                                                                   -0.007
                                                   2.664E+00,,
                    -1.847E-02,
                                    1.645E+00,
            , NO
C, CO-60
                                    3.982E+00,
                                                   5.451E+00,,
                                                                   -0.159
C, ZN-65
                    -8.688E-01,
            , NO
                                                   3.737E+00,,
                                                                    0.382
                     1.427E+00,
            ,NO
                                    2.250E+00,
C, SE-75
                                                   3.809E+00,,
                                                                    1.311
            ,NO
                                    2.166E+00,
C, SR-85
                     4.995E+00,
                                                                   -0.419
                                                   2.797E+00,,
                    -1.171E+00,
                                    1.815E+00,
C, Y-88
            , NO
                                                   2.688E+00,,
                                                                   -0.466
            , NO
                    -1.254E+00,
                                    1.716E+00,
C, NB-94
                                                                    0.323
                                    1.736E+00,
                                                   2.883E+00,,
                     9.325E-01,
            , NO
C, NB-95
                                                   5.036E+00,,
                                                                    0.449
                                    2.994E+00,
                     2.259E+00,
C, ZR-95
            , NO
                                                                    0.450
                                                   3.132E+01,,
                                    1.862E+01,
C, MO-99
            , NO
                     1.408E+01,
                                                                   -0.175
                                                   2.897E+00,,
C, RU-103
            , NO
                    -5.078E-01,
                                    1.769E+00,
                                                                   -0.312
                    -7.891E+00,
                                    1.582E+01,
                                                   2.527E+01,,
C, RU-106
            , NO
                                                   2.648E+00,,
                                                                   -0.470
                    -1.245E+00,
                                    1.685E+00,
C, AG-110m , NO
                                                   3.675E+00,,
                                                                     0.220
                                    2.166E+00,
                     8.097E-01,
C, SN-113
            , NO
                                                                    0.545
                                                   2.679E+00,,
                     1.462E+00,
            , NO
                                    2.847E+00,
C,SB-124
                                                                   -0.751
                                                   7.647E+00,,
                                    4.792E+00,
            ,NO
                    -5.740E+00,
C,SB-125
                                                   3.296E+01,,
                                                                     0.346
                     1.139E+01,
                                    1.940E+01,
C, TE-129M
            , NO
            , NO
                                    2.006E+00,
                                                   3.158E+00,,
                                                                    -0.351
                    -1.108E+00,
C, I-131
                                                   3.784E+00,,
                                                                     0.042
                                    2.723E+00,
                     1.595E-01,
            , NO
C,BA-133
                                                                     0.313
                                                   2.643E+00,,
            ,NO
                                    2.204E+00,
C, CS-134
                     8.266E-01,
                                                                    -0.121
                                                   3.015E+00,,
                    -3.643E-01,
                                    1.820E+00,
C, CS-136
            , NO
                                                   3.069E+00,,
                                                                    -0.036
                    -1.095E-01,
                                    1.888E+00,
            ,NO
C, CS-137
                                    1.683E+00,
                                                   2.781E+00,,
                                                                    -0.162
                    -4.502E-01,
C, CE-139
            ,NO
                                                   1.039E+01,,
                                                                    -0.343
                    -3.568E+00,
                                    6.453E+00,
C,BA-140
            , NO
                                                   3.512E+00,,
                                                                     0.404
                                    2.013E+00,
            , NO
C, LA-140
                     1.421E+00,
                                                                     0.999
                                                   4.994E+00,,
                     4.990E+00,
                                    3.151E+00,
C, CE-141
            , NO
                                                                     0.135
                                    1.372E+01,
                                                   2.182E+01,,
            , NO
                     2.948E+00,
 C, CE-144
                                                    8.667E+00,,
                                                                    -0.099
                    -8.539E-01,
                                    7.230E+00,
 C, EU-152
            , NO
                                                    6.001E+00,,
                                                                     0.034
                                    3.570E+00,
                     2.059E-01,
 C, EU-154
            , NO
                                                                     0.026
                                    7.531E+00,
                                                    1.144E+01,,
                     3.001E-01,
            , NO
 C, AC-228
                                                                     0.026
                                                    1.143E+01,,
            , NO
                     2.999E-01,
                                     7.527E+00,
 C, TH-232
                                                                    -0.255
                                     1.568E+01,
                                                    2.176E+01,,
 C, U-235
            , NO
                     -5.553E+00,
                                                    2.888E+02,,
                                                                    -0.049
                    -1.411E+01,
                                     1.756E+02,
 C, U-238
            , NO
                                     2.293E+01,
                                                    3.696E+01,,
                                                                    -0.169
```

-6.262E+00,

C, AM-241

, NO

LIMS:  $\bigvee$ Analyst

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 12:06:27.21 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 11-AUG-2006 10:16:13.73 ______

LIMS No., Customer Name, Client ID: L29543-4 WG EX/DRES

Smple Date: 9-AUG-2006 13:35:00.0 : 04L29543-4 Sample ID

Geometry : 043L082004 : WG Sample Type BKGFILE : 04BG072806MT Quantity : 3.11820E+00 L 

Pk It	Energy	Area	Bkgnd	FWHM C	Channel	%Eff	Cts/Sec	%Err	Fit
1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1	92.49* 139.55* 198.32* 239.61 351.46* 582.59* 608.88*	20 45 49 139 26 151 43	146 136 154 184 107 15 45	1.65	185.98 280.19 397.84 480.47 704.30 1166.71 1219.30 2241.38	2.04E+00 1.87E+00 1.68E+00 1.28E+00 8.78E-01 8.49E-01	3.03E-031 6.82E-03 6.86E-03 7.37E-03 2.10E-02 3.89E-03 2.29E-02 6.59E-03	46.4 54.1 60.2 18.6 38.7 13.1	1.65E+00 1.37E+00 7.57E+00 2.76E+00 1.64E+00 1.37E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
TH-228	238.63	49			0.00		120.31
	240 98		3.95	1.669E+00	Li	ne Not Found	

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Acquisition date : 11-AUG-2006 10:16:13 Sample ID : 04L29543-4

Total number of lines in spectrum

8 6 Number of unidentified lines

Number of lines tentatively identified by NID 2 25.00%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay

_____

10.31E+00 120.31 8.554E+00 8.571E+00 1.91Y 1.00 TH-228

> Total Activity: 8.554E+00 8.571E+00

Grand Total Activity: 8.554E+00 8.571E+00

"M" = Manually accepted Flags: "K" = Keyline not found

_____

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 04L29543-4

Page: 3
Acquisition date: 11-AUG-2006 10:16:13

25.00%

0.000E+00

0.000E+00

0.000E+00

0.000E+00

-0.340

0.150

-0.437

0.339

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1	92.49 139.55 198.32 351.46 582.59 608.88 1120.12	20 45 45 139 26 151 43	146 136 154 107 15 45	1.38 1.39 1.31 1.49 3.01 1.65 2.65	704.30 1166.71 1219.30	699 1161 1213	7 10 14 10 14	3.03E-03 6.82E-03 6.86E-03 2.10E-02 3.89E-03 2.29E-02 6.59E-03	92.8 **** 37.1 77.4 26.2	1.53E+00 2.04E+00 1.87E+00 1.28E+00 8.78E-01 8.49E-01 5.27E-01	Т

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 8
Number of unidentified lines 6
Number of lines tentatively identified by NID 2

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr pCi/L pCi/L 2-Sigma Error %Error Flags Hlife Decay Nuclide 10.31E+00 120.31 8.554E+00 8.571E+00 TH-228 1.91Y 1.00 _____ _____

8.571E+00

Grand Total Activity: 8.554E+00 8.571E+00

Flags: "K" = Keyline not found "M" = Manually accepted

8.554E+00

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

BE-7

NA-24

K-40

CR-51

No interference correction performed

-1.201E+01

-3.386E+01

6.550E+00

1.477E+01

Total Activity:

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-228	8.571E+00	1.031E+01	7.677E+00	0.000E+00	1.116
Non-Iden	tified Nuclid	les			
Nuclide	Key-Line Activity K. (pCi/L) Id	L. Act error ded	MDA (pCi/L)	MDA error	Act/MDA

2.325E+01

2.511E+01

4.086E+01

2.508E+01

3.536E+01

4.357E+01

7.752E+01

4.355E+01

MN-54	4.101E-01	3.159E+00	5.285E+00	0.000E+00	0.078
CO-57	-3.918E-01	2.525E+00	4.071E+00	0.000E+00	-0.096
CO-58	-9.943E-01	2.788E+00	4.365E+00	0.000E+00	-0.228
FE-59	2.316E+00	5.076E+00	8.861E+00	0.000E+00	0.261
CO-60	-8.975E-01	3.523E+00	6.229E+00	0.000E+00	-0.144
ZN-65	6.882E+00	6.564E+00	1.140E+01	0.000E+00	0.604
SE-75	-1.610E+00	3.656E+00	5.950E+00	0.000E+00	-0.271
SR-85	-1.530E+01	4.263E+00	4.816E+00	0.000E+00	-3.177
Y-88	4.419E-01	3.515E+00	5.836E+00	0.000E+00	0.076
NB-94	3.548E-01	2.650E+00	4.492E+00	0.000E+00	0.079
NB-95	2.204E+00	3.217E+00	5.731E+00	0.000E+00	0.385
ZR-95	1.591E+00	4.871E+00	8.425E+00	0.000E+00	0.189
MO-99	8.361E+00	3.616E+01	6.172E+01	0.000E+00	0.135
RU-103	2.815E+00	3.121E+00	5.502E+00	0.000E+00	0.512
RU-106	-3.151E+01	2.679E+01	3.882E+01	0.000E+00	-0.812
AG-110m	1.217E+00	2.712E+00	4.780E+00	0.000E+00	0.255
SN-113	9.058E-01	3.760E+00	6.309E+00	0.000E+00	0.144
SB-124	-1.642E+00	3.192E+00	4.308E+00	0.000E+00	-0.381
SB-125	3.843E+00	6.873E+00	1.195E+01	0.000E+00	0.321
TE-129M	1.659E+01	3.268E+01	5.593E+01	0.000E+00	0.297
I-131	2.023E+00	3.192E+00	5.571E+00	0.000E+00	0.363
BA-133	-5.404E+00	4.607E+00	5.685E+00	0.000E+00	-0.950
CS-134	-2.111E+00	3.098E+00	4.045E+00	0.000E+00	-0.522
CS-136	-1.455E+00	2.867E+00	4.358E+00	0.000E+00	-0.334
CS-137	1.274E+00	3.006E+00	5.282E+00	0.000E+00	0.241
CE-139	-5.452E-01	2.717E+00	4.299E+00	0.000E+00	-0.127
BA-140	-3.706E-01	9.389E+00	1.500E+01	0.000E+00	-0.025
LA-140	5.685E-01	3.873E+00	6.519E+00	0.000E+00	0.087
CE-141	3.523E-01	4.583E+00	7.437E+00	0.000E+00	0.047
CE-144	-8.204E+00	2.074E+01	3.280E+01	0.000E+00	-0.250
EU-152	-2.209E+00	8.701E+00	1.409E+01	0.000E+00	-0.157
EU-154	-4.294E+00	5.458E+00	8.437E+00	0.000E+00	-0.509
RA-226	7.059E+00	7.156E+01	1.189E+02	0.000E+00	0.059
AC-228	2.560E+00	1.071E+01	1.953E+01	0.000E+00	0.131
TH-232	2.559E+00	1.070E+01	1.952E+01	0.000E+00	0.131
U-235	1.552E+01	2.285E+01	3.478E+01	0.000E+00	0.446
U-238	9.661E+00	3.423E+02	5.580E+02	0.000E+00	0.017
AM-241	5.121E+00	2.652E+01	4.499E+01	0.000E+00	0.114

```
,08/11/2006 12:06,08/09/2006 13:35,
                                                                 3.118E+00,L29543-4 WG EX
A,04L29543-4
                                             ,08/11/2006 09:46,043L082004
                     ,LIBD
B,04L29543-4
                                    1.031E+01,
                                                   7.677E+00,,
                                                                     1.116
C, TH-228
            ,YES,
                     8.571E+00,
                                                                    -0.340
            , NO
                                                   3.536E+01,,
                    -1.201E+01,
                                    2.325E+01,
C, BE-7
                                                   4.357E+01,,
                                                                     0.150
                                    2.511E+01,
                     6.550E+00,
C, NA-24
            , NO
                                                                    -0.437
            , NO
                                                   7.752E+01,,
                    -3.386E+01,
                                    4.086E+01,
C, K-40
                                                   4.355E+01,,
                                                                     0.339
                                    2.508E+01,
C, CR-51
            , NO
                     1.477E+01,
                                                                     0.078
C, MN-54
            , NO
                     4.101E-01,
                                    3.159E+00,
                                                   5.285E+00,,
                                                                    -0.096
            ,NO
                                    2.525E+00,
                                                   4.071E+00,,
                    -3.918E-01,
C, CO-57
                                                   4.365E+00,,
                                                                    -0.228
                                    2.788E+00,
C, CO-58
                    -9.943E-01,
            , NO
                                                   8.861E+00,,
                                                                     0.261
            , NO
                                    5.076E+00,
                     2.316E+00,
C, FE-59
                                                                    -0.144
                                    3.523E+00,
                                                   6.229E+00,,
C, CO-60
            , NO
                    -8.975E-01,
                                                   1.140E+01,,
                                                                     0.604
C, ZN-65
            , NO
                     6.882E+00,
                                    6.564E+00,
                    -1.610E+00,
                                    3.656E+00,
                                                   5.950E+00,,
                                                                    -0.271
C, SE-75
            , NO
C, SR-85
                                    4.263E+00,
                                                   4.816E+00,,
                                                                    -3.177
            , NO
                    -1.530E+01,
                                    3.515E+00,
                                                   5.836E+00,,
                                                                     0.076
                     4.419E-01,
C, Y-88
            , NO
                                                   4.492E+00,,
                                                                     0.079
                                    2.650E+00,
C, NB-94
            , NO
                     3.548E-01,
                                                   5.731E+00,,
                                                                     0.385
C, NB-95
            , NO
                     2.204E+00,
                                    3.217E+00,
            , NO
                     1.591E+00,
                                    4.871E+00,
                                                   8.425E+00,,
                                                                     0.189
C, ZR-95
                                    3.616E+01,
                                                   6.172E+01,,
                                                                     0.135
                     8.361E+00,
C,MO-99
            , NO
                                                                     0.512
                                                   5.502E+00,,
                     2.815E+00,
                                    3.121E+00,
C, RU-103
            , NO
                                                                    -0.812
                                    2.679E+01,
                                                   3.882E+01,,
C, RU-106
            , NO
                    -3.151E+01,
                                                   4.780E+00,,
                                                                     0.255
C, AG-110m , NO
                     1.217E+00,
                                    2.712E+00,
                                                   6.309E+00,,
                     9.058E-01,
                                    3.760E+00,
                                                                     0.144
C, SN-113
            , NO
                                    3.192E+00,
                                                   4.308E+00,,
                                                                    -0.381
                    -1.642E+00,
C,SB-124
            , NO
                                                                     0.321
                                                   1.195E+01,,
C,SB-125
            , NO
                                    6.873E+00,
                     3.843E+00,
                                                                     0.297
                     1.659E+01,
                                                    5.593E+01,,
                                    3.268E+01,
C, TE-129M
            , NO
                                                                     0.363
                                                    5.571E+00,,
                     2.023E+00,
                                    3.192E+00,
C, I-131
            , NO
                                    4.607E+00,
                                                    5.685E+00,,
                                                                    -0.950
                    -5.404E+00,
C, BA-133
            , NO
                                                                    -0.522
                    -2.111E+00,
                                    3.098E+00,
                                                    4.045E+00,,
C, CS-134
            , NO
                                                    4.358E+00,,
                                                                    -0.334
                                    2.867E+00,
                    -1.455E+00,
C,CS-136
            , NO
                                                    5.282E+00,,
                                                                     0.241
                     1.274E+00,
                                    3.006E+00,
C, CS-137
            , NO
                                                    4.299E+00,,
                                                                    -0.127
            , NO
                    -5.452E-01,
                                    2.717E+00,
C, CE-139
                                    9.389E+00,
                                                    1.500E+01,,
                                                                    -0.025
            ,NO
                    -3.706E-01,
C, BA-140
                                                                     0.087
            , NO
                                    3.873E+00,
                                                    6.519E+00,,
                     5.685E-01,
C, LA-140
                                                    7.437E+00,,
                                                                     0.047
                     3.523E-01,
                                    4.583E+00,
C, CE-141
            , NO
                                                                    -0.250
                                                    3.280E+01,,
                                    2.074E+01,
C, CE-144
            , NO
                    -8.204E+00,
                                                    1.409E+01,,
                                                                    -0.157
            , NO
                    -2.209E+00,
                                    8.701E+00,
C, EU-152
                                                    8.437E+00,,
                                                                    -0.509
                    -4.294E+00,
                                     5.458E+00,
C, EU-154
            , NO
                                                    1.189E+02,,
                                                                     0.059
            , NO
                      7.059E+00,
                                     7.156E+01,
C, RA-226
                                     1.071E+01,
                                                    1.953E+01,,
                                                                     0.131
C, AC-228
                      2.560E+00,
            , NO
                                                    1.952E+01,,
                                                                     0.131
C, TH-232
            , NO
                      2.559E+00,
                                     1.070E+01,
                      1.552E+01,
                                     2.285E+01,
                                                    3.478E+01,,
                                                                     0.446
C, U-235
            , NO
            , NO
                                                    5.580E+02,,
                                                                     0.017
C, U-238
                                     3.423E+02,
                      9.661E+00,
```

2.652E+01,

5.121E+00,

C, AM-241

, NO

4.499E+01,,

0.114

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 11:40:44.26 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 11-AUG-2006 10:16:14.61

LIMS No., Customer Name, Client ID: L29543-5 WG EX/DRES

Sample ID : 07L29543-5 Smple Date: 9-AUG-2006 13:50:00.0

 Sample Type
 : WG
 Geometry
 : 073L082504

 Quantity
 : 3.14630E+00 L
 BKGFILE
 : 07BG072806MT

 Start Channel
 : 40
 Energy Tol
 : 1.00000
 Real Time
 : 0 01:24:22.31

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time
 : 0 01:24:21.23

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.33*	36				8.06E-01			
2	1	294.83*	74				1.81E+00			
3	1	351.73*	154	63	1.68	705.42	1.61E+00	3.05E-02	13.7	1.94E+00
4	1	608.89*	106	45	1.50	1220.47	1.09E+00	2.10E-02	17.0	1.50E+00
5	1	1765.01*	32	3	2.81	3531.45	5.12E-01	6.30E-03	26.7	1.65E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Acquisition date : 11-AUG-2006 10:16:14 Sample ID : 07L29543-5

Total number of lines in spectrum Number of unidentified lines 5 5

Number of lines tentatively identified by NID 0

**** There are no nuclides meeting summary criteria **** 0.00%

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID: 07L29543-5

Acquisition date : 11-AUG-2006 10:16:14

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	66.33	36	131	1.26	133.38	131	7	7.03E-03	****	8.06E-01	
1	294.83	74	97	1.25	591.41	586	10	1.46E-02	56.0	1.81E+00	
1	351.73	154	63	1.68	705.42	700	12	3.05E-02	27.5	1.61E+00	
1	608.89	106	45	1.50	1220.47	1214	12	2.10E-02	33.9	1.09E+00	

3 2.81 3531.45 3522 16 6.30E-03 53.3 5.12E-01

Flags: "T" = Tentatively associated

32

Summary of Nuclide Activity

Total number of lines in spectrum 5
Number of unidentified lines 5
Number of lines tentatively identified by NID 0 0.00%
**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

1765.01

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.I (pCi/L) Ide		MDA (pCi/L)	MDA error	Act/MDA
BE-7	-1.224E+00	2.335E+01	3.760E+01	0.000E+00	-0.033
NA-24	-1.019E+00	2.615E+01	4.340E+01	0.000E+00	-0.023
K-40	-5.670E+00	4.107E+01	8.573E+01	0.000E+00	-0.066
CR-51	4.826E+00	2.425E+01	4.087E+01	0.000E+00	0.118
MN-54	-1.880E+00	2.507E+00	3.639E+00	0.000E+00	-0.517
CO-57	1.871E+00	2.745E+00	4.631E+00	0.000E+00	0.404
CO-58	2.220E+00	2.868E+00	5.218E+00	0.000E+00	0.426
FE-59	3.232E-01	5.168E+00	8.474E+00	0.000E+00	0.038
CO-60	-2.234E-01	2.979E+00	4.921E+00	0.000E+00	-0.045
ZN-65	-9.056E+00	6.943E+00	8.861E+00	0.000E+00	-1.022
SE-75	7.311E-01	3.451E+00	5.873E+00	0.000E+00	0.124
SR-85	-1.247E+01	4.076E+00	4.834E+00	0.000E+00	-2.579
Y-88	-2.080E+00	3.023E+00	4.057E+00	0.000E+00	-0.513
NB-94	-5.331E-01	2.600E+00	4.237E+00	0.000E+00	-0.126
NB-95	2.573E+00	3.056E+00	5.563E+00	0.000E+00	0.463
ZR-95	-1.626E+00	4.439E+00	6.988E+00	0.000E+00	-0.233
MO-99	-6.177E+00	3.263E+01	5.304E+01	0.000E+00	-0.116
RU-103	-2.437E+00	2.797E+00	4.022E+00	0.000E+00	-0.606
RU-106	2.182E+01	2.722E+01	4.968E+01	0.000E+00	0.439
AG-110m	-2.680E+00	2.431E+00	3.436E+00	0.000E+00	-0.780
SN-113	-1.642E-01	3.526E+00	5.753E+00	0.000E+00	-0.029
SB-124	-1.336E+00	3.270E+00	4.206E+00	0.000E+00	-0.318
SB-125	7.332E+00	7.717E+00	1.385E+01	0.000E+00	0.529

TE-129M	-3.197E+00	3.395E+01	5.458E+01	0.000E+00	-0.059
I-131	5.857E-01	3.360E+00	5.620E+00	0.000E+00	0.104
BA-133	-4.246E+00	4.317E+00	5.386E+00	0.000E+00	-0.788
CS-134	-9.676E-01	3.336E+00	4.403E+00	0.000E+00	-0.220
CS-136	1.215E+00	2.644E+00	4.684E+00	0.000E+00	0.259
CS-137	1.337E+00	2.828E+00	5.023E+00	0.000E+00	0.266
CE-139	-2.155E-02	2.964E+00	4.714E+00	0.000E+00	-0.005
BA-140	6.151E-01	1.103E+01	1.787E+01	0.000E+00	0.034
LA-140	-1.078E+00	3.245E+00	4.955E+00	0.000E+00	-0.217
CE-141	-2.499E+00	4.899E+00	7.557E+00	0.000E+00	-0.331
CE-144	1.659E+01	2.125E+01	3.594E+01	0.000E+00	0.462
EU-152	-2.697E+00	8.799E+00	1.413E+01	0.000E+00	-0.191
EU-154	1.129E+00	5.854E+00	9.559E+00	0.000E+00	0.118
RA-226	-5.781E+01	7.897E+01	1.269E+02	0.000E+00	-0.456
AC-228	8.295E+00	1.247E+01	2.389E+01	0.000E+00	0.347
TH-228	-3.627E+00	5.745E+00	9.829E+00	0.000E+00	-0.369
TH-232	8.290E+00	1.246E+01	2.387E+01	0.000E+00	0.347
U-235	-1.196E+01	2.22E+01	3.452E+01	0.000E+00	-0.346
U-238	1.923E+01	2.872E+02	4.787E+02	0.000E+00	0.040
AM-241	1.857E+01	2.559E+01	4.430E+01	0.000E+00	0.419

```
A,07L29543-5
                     ,08/11/2006 11:40,08/09/2006 13:50,
                                                                 3.146E+00,L29543-5 WG EX
B,07L29543-5
                     , LIBD
                                             ,08/11/2006 09:47,073L082504
           , NO
C, BE-7
                   -1.224E+00,
                                    2.335E+01,
                                                   3.760E+01,,
                                                                   -0.033
C, NA-24
                                                   4.340E+01,,
           , NO
                   -1.019E+00,
                                    2.615E+01,
                                                                   -0.023
C, K-40
           , NO
                   -5.670E+00,
                                    4.107E+01,
                                                   8.573E+01,,
                                                                   -0.066
C, CR-51
           , NO
                                                   4.087E+01,,
                    4.826E+00,
                                    2.425E+01,
                                                                    0.118
C, MN-54
           , NO
                   -1.880E+00,
                                    2.507E+00,
                                                   3.639E+00,,
                                                                   -0.517
C, CO-57
           , NO
                                                   4.631E+00,,
                     1.871E+00,
                                    2.745E+00,
                                                                    0.404
C, CO-58
           , NO
                     2.220E+00,
                                    2.868E+00,
                                                   5.218E+00,,
                                                                    0.426
C, FE-59
           , NO
                     3.232E-01,
                                    5.168E+00,
                                                   8.474E+00,,
                                                                    0.038
C, CO-60
           , NO
                   -2.234E-01,
                                    2.979E+00,
                                                   4.921E+00,,
                                                                   -0.045
C, ZN-65
           , NO
                   -9.056E+00,
                                    6.943E+00,
                                                   8.861E+00,,
                                                                   -1.022
C, SE-75
           , NO
                     7.311E-01,
                                    3.451E+00,
                                                   5.873E+00,,
                                                                     0.124
                   -1.247E+01,
C, SR-85
           , NO
                                    4.076E+00,
                                                   4.834E+00,,
                                                                   -2.579
C, Y-88
           , NO
                   -2.080E+00,
                                    3.023E+00,
                                                   4.057E+00,,
                                                                   -0.513
C, NB-94
                   -5.331E-01,
           , NO
                                    2.600E+00,
                                                   4.237E+00,,
                                                                   -0.126
C, NB-95
           , NO
                     2.573E+00,
                                    3.056E+00,
                                                   5.563E+00,,
                                                                     0.463
C, ZR-95
           , NO
                   -1.626E+00,
                                    4.439E+00,
                                                   6.988E+00,,
                                                                   -0.233
C, MO-99
           , NO
                   -6.177E+00,
                                                   5.304E+01,,
                                    3.263E+01,
                                                                   -0.116
C, RU-103
           , NO
                   -2.437E+00,
                                    2.797E+00,
                                                   4.022E+00,,
                                                                   -0.606
C,RU-106
           , NO
                                                   4.968E+01,,
                                                                    0.439
                     2.182E+01,
                                    2.722E+01,
C, AG-110m
           , NO
                    -2.680E+00,
                                    2.431E+00,
                                                                   -0.780
                                                   3.436E+00,,
                                                   5.753E+00,,
C,SN-113
           , NO
                    -1.642E-01,
                                    3.526E+00,
                                                                   -0.029
C,SB-124
           , NO
                    -1.336E+00,
                                    3.270E+00,
                                                   4.206E+00,,
                                                                   -0.318
C,SB-125
           , NO
                     7.332E+00,
                                    7.717E+00,
                                                   1.385E+01,,
                                                                     0.529
C, TE-129M
           , NO
                    -3.197E+00,
                                    3.395E+01,
                                                   5.458E+01,,
                                                                   -0.059
           ,NO
                     5.857E-01,
C, I-131
                                    3.360E+00,
                                                   5.620E+00,,
                                                                     0.104
C, BA-133
           , NO
                    -4.246E+00,
                                    4.317E+00,
                                                   5.386E+00,,
                                                                   -0.788
C, CS-134
           , NO
                    -9.676E-01,
                                    3.336E+00,
                                                   4.403E+00,,
                                                                   -0.220
C, CS-136
           , NO
                     1.215E+00,
                                    2.644E+00,
                                                   4.684E+00,,
                                                                     0.259
C, CS-137
           ,NO
                     1.337E+00,
                                    2.828E+00,
                                                   5.023E+00,,
                                                                     0.266
C, CE-139
                                                   4.714E+00,,
           , NO
                    -2.155E-02,
                                    2.964E+00,
                                                                   -0.005
C, BA-140
           , NO
                     6.151E-01,
                                    1.103E+01,
                                                   1.787E+01,,
                                                                     0.034
C, LA-140
           , NO
                                                   4.955E+00,,
                    -1.078E+00,
                                    3.245E+00,
                                                                   -0.217
C, CE-141
           , NO
                    -2.499E+00,
                                    4.899E+00,
                                                   7.557E+00,,
                                                                   -0.331
C, CE-144
           , NO
                     1.659E+01,
                                    2.125E+01,
                                                   3.594E+01,,
                                                                     0.462
C, EU-152
           , NO
                    -2.697E+00,
                                    8.799E+00,
                                                   1.413E+01,,
                                                                   -0.191
C, EU-154
           , NO
                     1.129E+00,
                                    5.854E+00,
                                                   9.559E+00,,
                                                                     0.118
C, RA-226
           , NO
                    -5.781E+01,
                                    7.897E+01
                                                   1.269E+02,,
                                                                   -0.456
C, AC-228
           , NO
                     8.295E+00,
                                    1.247E+01,
                                                   2.389E+01,,
                                                                     0.347
C, TH-228
            , NO
                    -3.627E+00,
                                    5.745E+00,
                                                   9.829E+00,,
                                                                   -0.369
C, TH-232
            , NO
                     8.290E+00,
                                    1.246E+01,
                                                   2.387E+01,,
                                                                     0.347
C, U-235
           , NO
                    -1.196E+01,
                                    2.22E+01,
                                                   3.452E+01,,
                                                                   -0.346
C, U-238
           , NO
                     1.923E+01,
                                    2.872E+02,
                                                   4.787E+02,,
                                                                     0.040
```

2.559E+01,

4.430E+01,,

0.419

C, AM-241

,NO ,

1.857E+01,



2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L29557
Exelon
August 16, 2006



Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

### Case Narrative - L29557 EX001-3ESPDRES-06

08/16/2006 10:29

### Sample Receipt

The following samples were received on August 11, 2006 in good condition, unless otherwise noted.

Cross Reference Table

Γ	Client ID	Laboratory ID	Station ID(if applicable)	
	WG-DN-MW-DN-112S-081006-GL-013	L29557-1		
	WG-DN-MW-DN-112I-081006-GL-014	L29557-2		
	WG-DN-MW-DN-117I-081006-GL-015	L29557-3		
	WG-DN-MW-DN-118S-081006-GL-016	L29557-4		

Analytical Method Cross Reference Table

	Analytical Method Cross Rejercited 1 ac		
Radiological Parameter	TBE Knoxville Method	Reference Method	
Gamma Spectrometry	TBE-2007	EPA 901.1	
H-3 (DIST)	TBE-2010		
TOTAL SR	TBE-2018	EPA 905.0	



### Case Narrative - L29557 EX001-3ESPDRES-06

08/16/2006 10:29

#### **Gamma Spectroscopy**

#### **Quality Control**

Quality control samples were analyzed as WG4311.

**Duplicate Sample** 

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

**Laboratory ID** 

QC Sample #

WG-DN-MW-DN-112S-081006-GL-013

L29557-1

WG4311-1

#### H-3 (DIST)

#### **Quality Control**

Ouality control samples were analyzed as WG4307.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### **Laboratory Control Sample**

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

Laboratory ID

QC Sample #

WG-DN-MW-DN-113S-080906-GL-008

L29543-1

WG4307-3



### Case Narrative - L29557 EX001-3ESPDRES-06

08/16/2006 10:29

WG4323-3

#### TOTAL SR

#### **Quality Control**

Quality control samples were analyzed as WG4323.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

QC Sample # Laboratory ID Client ID WG-DN-MW-DN-119S-081106-GL-017 L29576-1

#### Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter **Operations Manager** 

## Sample Receipt Summary

08/11/06 10:00 SR #: SR09882

#### Teledyne Brown Engineering Sample Receipt Verification/Variance Report

Client: Exelon Project #: EX001-3ESPDRES-06 LIMS #:L29557

Initiated By: PMARSHALL Init Date: 08/11/06 Receive Date: 08/11/06 Notification of Variance Person Notified: Contacted By: Notify Date: Notify Method: Notify Comment: Client Response Person Responding: Response Date: Response Method: Response Comment Criteria Yes No NA Comment 1 Shipping container custody seals present and intact. 2 Sample container custody seals present NA and intact. 3 Sample containers received in good condition Y 4 Chain of custody received with samples 5 All samples listed on chain of custody received 6 Sample container labels present and Y legible. 7 Information on container labels Υ correspond with chain of custody 8 Sample(s) properly preserved and in Ν appropriate container(s) Approx. 5mL of nitric acid was required to bring pH to 2 or below. 9 Other (Describe) Ν Only approx. 2 L of sample received WG-DN-MW-DN-117I-081006-GL-015 for Gamma/Sr-90 analysis. No signs of leakage during shipment.

CONESTOGA-ROVERS 9033 Meridian Way	OGA-ROVERS & ASSOCIATES 9033 Meridian Way West Chester, Ohio 45069	SHIPPED TO (Laboratory Name):	TELENYNE BROWN	N ENGINEELING	
	513-942-4750 phone 513-942-8585 fax	REFERENCE NUMBER:	PROJECT	VAME: / DIZES DON	N FRUIT
CHAIN	CHAIN-OF-CUSTODY RECORD	13136 43 001	THINAGAG	Sa	
SAMPLER'S SIGNATURE:	PRINTED NAME:	CREENRY TIEWS	ANNERS TANAMA	1275	REMARKS
SEQ. DATE T	TIME SAMPLE IDENTIFICATION NO.	SAMPLE NO. MATRIX	οM	Tip.	
2. 15. 15	- 22   - M - Car - M - J   24	-081002 -GL-013 HO			
	+-	- (-0,14)	2 * * * * * * * * * * * * * * * * * * *		
	-Itil	532	外		
->	1. V - V - V - V - 11.85 -	7 201 7	7 **		
		and the desired			
	TOTAL NUMBER OF CONTAINERS	NERS	90		i.i.
		DATE: Q-10-06	RECEIVED BY:		DAIE:
KELINGUISHED	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	TIME: (Low)	(2)		NATE:
RELINQUISHED BY:	3%:		RECEIVED BY:		TIME:
2		TIME:	(S)		DATE:
RELINQUISHED BY:	3Y:	DATE: TIME:	RECEIVED BY:		TIME:
METHOD OF SHIPMENT:	SHIPMENT: DH		AIR BILL No.	45329187945	
	Joby	SAMPLE TEAM:	RECEIV	RECEIVED FOR LABORATORY BY:	
a ≥	-runy Executed Copy -Receiving Laboratory Copy			Olilet TIME: 1820	004759
Pink Goldenrod	-Sampler Copy	R, MacHETT	DATE		
١.					

1001-00(SOURCE)GN-CO004

8/11/06

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

## ACKNOWLEDGEMENT This is not an invoice

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville, CT 06062 August 11, 2006

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on August 11, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by August 16, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID:

EX001-3ESPDRES-06

P.O. #:

00411203

Release #:

Contract#:

00411203

Kathy Shaw, FAX#:860-747-1900, larry.walton@exeloncorp.com

Client ID/	Laboratory ID	Vol/Units	Start Collect End Collect
Station	Analysis	Price	Date/Time Bate/Time
WG-DN-MW-DN-1125-0810	006-GL-0 L29557-1		08/10/06:1105
WG	GELI	135.00	
WG	H-3 (DIST)	135.00	
WG	SR-90 (FAST)	175.00	
WG-DN-MW-DN-112I-081	006-GL-0 L29557-2		08/10/06:1210
WG	GELI	135.00	
WG	H-3 (DIST)	135.00	
WG	SR-90 (FAST)	175.00	
WG-DN-MW-DN-117I-081	006-GL-0 L29557-3		08/10/06:1420
WG	GELI	135.00	
WG	H-3 (DIST)	135.00	
WG	SR-90 (FAST)	175.00	
WG-DN-MW-DN-118S-081	.006-GL-0 L29557-4		08/10/06:1600
WG	GELI	135.00	
WG	H-3 (DIST)	135.00	
WG	SR-90 (FAST)	175.00	

## Internal Chain of Custody

L29557 10 of 49

08/16/06 10:17

Teledyne Brown Engineering Internal Chain of Custody

		cernar charm or descen-		
**************************************	************* Co	**************************************	******	****
Prod GELI	Analys DW	t		
H-3 (DIST)	DW			
SR-90 (FAST)	LCB			
Relinquish Date Reli	inquish By		Received By	Sample Custodian
08/11/2006 00:00			099999	
08/11/2006 11:23	099999	Sample Custodian	030854	Donna Webb
08/14/2006 08:11	030854	Donna Webb	029728	Lauren Larsen
08/14/2006 08:12	029728	Lauren Larsen	030854	Donna Webb
08/14/2006 08:12	030854	Donna Webb	099999	Sample Custodian
**************************************	********************	**************************************	*****	****
Prod	Analys	st		
GELI	DW			
H-3 (DIST)	DW			
SR-90 (FAST)	LCB		Received By	
Relinquish Date Rel	inquish By		099999	Sample Custodian
08/11/2006 00:00	000000	Sample Custodian	030854	Donna Webb
08/11/2006 11:22	099999	Donna Webb	029728	Lauren Larsen
08/14/2006 08:11	030854	Lauren Larsen	030854	Donna Webb
08/14/2006 08:13	029728	Donna Webb	099999	Sample Custodian
08/14/2006 08:14	030854	**********		_
**************************************	(	Containernum I	,	
Prod GELI	Analy DW	St		
H-3 (DIST)	D₩			
SR-90 (FAST)	LCB			
Relinquish Date Re	linquish By		Received By 099999	Sample Custodian
08/11/2006 00:00		- 1 O	030854	Donna Webb
08/11/2006 11:23	099999	Sample Custodian	029728	Lauren Larsen
08/14/2006 08:11	030854	Donna Webb	030854	Donna Webb
08/14/2006 08:12	029728	Lauren Larsen		Sample Custodian
08/14/2006 08:12	030854	Donna Webb	099999	_
**************************************		**************************************	************	***
Prod GELI	Anal _y DW	yst		
H-3 (DIST)	D <b>W</b>			
SR-90 (FAST)	LCB			
Relinquish Date Re	elinquish By		Received By 099999	Sample Custodian
08/11/2006 00:00		<u> </u>		Donna Webb
08/11/2006 11:22	099999	Sample Custodian	030854	Lauren Larsen
08/14/2006 08:11	030854	Donna Webb	029728	nauten natsen

Teledyne Brown Engineering

Internal Chain of Custody ******************** Containernum 2 Sample # L29557-2 Received By Relinquish Date Donna Webb Lauren Larsen 030854 08/14/2006 08:13 029728 Sample Custodian Donna Webb 099999 030854 08/14/2006 08:14 ******************* Containernum 1 Sample # L29557-3 Analyst Prod DWGELI DW H-3 (DIST) LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 08/11/2006 00:00 Donna Webb 030854 Sample Custodian 08/11/2006 11:23 099999 Lauren Larsen 029728 Donna Webb 08/14/2006 08:11 030854 Donna Webb 030854 Lauren Larsen 029728 08/14/2006 08:12 Sample Custodian Donna Webb 099999 030854 08/14/2006 08:12 *********************** Containernum 2 Sample # L29557-3 Analyst Prod **GELI** DW DW H-3 (DIST) LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/11/2006 00:00 030854 Donna Webb Sample Custodian 099999 08/11/2006 11:22 029728 Lauren Larsen Donna Webb 08/14/2006 08:11 030854 Donna Webb 030854 Lauren Larsen 08/14/2006 08:13 029728 099999 Sample Custodian Donna Webb 030854 08/14/2006 08:14 ********************** Containernum 1 Sample # L29557-4 Analyst Prod DW GELI DW H-3 (DIST) SR-90 (FAST) LCB Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/11/2006 00:00 030854 Donna Webb Sample Custodian 08/11/2006 11:23 099999 Lauren Larsen 029728 Donna Webb 08/14/2006 08:11 030854 030854 Donna Webb Lauren Larsen 029728 08/14/2006 08:12 Sample Custodian 099999 Donna Webb 08/14/2006 08:12 030854 *********************** Containernum 2 Sample # L29557-4 Analyst Prod DW GELI

DW

LCB

H-3 (DIST)

SR-90 (FAST)

L29557 12 of 49

08/16/06 10:17

Teledyne Brown Engineering Internal Chain of Custody

*******************

**************************************	Containernum 2		
Relinquish Date Relinquish 08/11/2006 00:00	Ву	Received By 099999	Sample Custodian
08/11/2006 00:00	Sample Custodian	030854	Donna Webb
08/14/2006 08:11 030854	Donna Webb	029728	Lauren Larsen
08/14/2006 08:13 029728	Lauren Larsen	030854	Donna Webb
08/14/2006 08:14 030854	Donna Webb	099999	Sample Custodian

08/16/06

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L29557

****	****	******	*****	******
L29557-1	WG	WG-DN-MW-DN-112S-081	.006-GL-013	
Process step	Prod		<u>Analyst</u>	Date
Login			RCHARLES	08/11/06
Aliquot	GELI		DM	08/11/06
Aliquot	H-3 (D	DIST)	DW	08/11/06
Aliquot	SR-90	(FAST)	LCB	08/14/06
Count Room	GELI		ILL	08/11/06
Count Room	н-3 (г	DIST)	KOJ	08/12/06
Count Room	SR-90		KOJ	08/15/06
*****	*****			*********
L29557-2	WG	WG-DN-MW-DN-112I-081	L006-GL-014	
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			RCHARLES	08/11/06
Aliquot	GELI		DW	08/11/06
Aliquot	н-3 (Г	DIST)	DW	08/11/06
Aliquot	SR-90	(FAST)	LCB	08/14/06
Count Room	GELI		ILL	08/11/06
Count Room	H-3 (I	DIST)	KOJ	08/12/06
Count Room		(FAST)	KOJ	08/15/06
*****	*****			*********
L29557-3	WG	WG-DN-MW-DN-117I-08	1006-GL-015	
Process step	Prod		Analyst	Date
Login			RCHARLES	08/11/06
Aliquot	GELI		DW	08/11/06
Aliquot	H-3 (1	DIST)	DW	08/11/06
Aliquot	SR-90	(FAST)	LCB	08/14/06
Count Room	GELI		ILL	08/11/06
Count Room	H-3 (1	DIST)	KOJ	08/12/06
Count Room		(FAST)	KOJ	08/15/06
*****	*****			******
L29557-4	WG	WG-DN-MW-DN-118S-08		
Process step	Prod		Analyst	Date Co. (11)
Login			RCHARLES	08/11/06
Aliquot	GELI		DW	08/11/06
Aliquot	н-3 (	DIST)	DW	08/11/06
Aliquot	SR-90	(FAST)	LCB	08/14/06
Count Room	GELI		ILL	08/11/06
Count Room	н-3 (	DIST)	KOJ	08/12/06
Count Room	SR-90	(FAST)	KOJ	08/15/06

# Analytical Results Summary

# Report of Analysis

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29557

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID: W	Sample ID: WG-DN-MW-DN-112S-081006-GL-013	V-112S-08100	16-GL-013		Collec	t Start: 0	Collect Start: 08/10/2006 11:05	:05		Matrix: Ground Water	ound Wa	ter		(MG)
Station:					Collec	Collect Stop:				Volume:				
Description:					Receive	e Date: 0	Receive Date: 08/11/2006		W %	% Moisture:				
LIMS Number: L29557-1	29557-1												-	
Radionuclide	SOP#	Activity Conc	Activity Uncertainty Cone 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	es
11 2 (PICT)	2010	6 67E±01	_ _	1 81E+02	pCi/L		10	m		08/12/06	09	M	Ω	
TOTAL SD	2010	5 34E-01		1.25E+00	pCi/L		450	m	08/10/06 11:05	08/15/06	80	Σ	n	<b>,</b>
MN 54	2002	-1 52E+00		5.36E+00	pCi/L		3245.69	E	08/10/06 13:05	08/11/06	7843	Sec	D	No
-C-VIIVI	2007	-1 39E-01		5.63E+00	pCi/L		3245.69	E	08/10/06 13:05	08/11/06	7843	Sec	n	No No
EE 50	2007	2 14E+00		1.17E+01	pCi/L		3245.69	ם	08/10/06 13:05	08/11/06	7843	Sec	n	No
r.c-32	2007	-4 99F-07	_	5.88E+00	pCi/L		3245.69	lm.	08/10/06 13:05	08/11/06	7843	Sec	- - - -	No
7N 66	2007	-1 38E+00	_	1.16E+01	nCi/L		3245.69	lm	08/10/06 13:05	08/11/06	7843	Sec	ח	No
CO-NIZ	2007	6 19E+00	_	6.88E+00	pCi/L		3245.69	lm	08/10/06 13:05	08/11/06	7843	Sec	n	No No
7D 05	2007	9.24E-01	_	9.70E+00	pCi/L		3245.69	lm	08/10/06 13:05	08/11/06	7843	Sec	_ n	% %
CC-13/	2007	-2 34E+00		5.64E+00	pCi/L		3245.69	E	08/10/06 13:05	08/11/06	7843	Sec	D	No No
CS-134	2007	1.73E+00		5.80E+00	pCi/L		3245.69	m	08/10/06 13:05	08/11/06	7843	Sec	n	%
BA-140	2007	4.50E+00	1.25E+01	2.14E+01	pCi/L		3245.69	m	08/10/06 13:05		7843	Sec	D :	은 일 ;
1 4-140	2007	1.01E+00	4.53E+00	7.63E+00	pCi/L		3245.69	m m	08/10/06 13:05	08/11/06	7843	Sec	n	0 2

LA-140

**** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum Yes = Peak identified in gamma spectrum

MDC - Minimum Detectable Concentration

ot Page 1

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)
Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Flag Values

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

Bolded text indicates reportable value. High recovery

Low recovery

High Spec

# Report of Analysis 08/16/06 10:00

TELEDYNE
BROWN ENGINEERING, INC.
A Teledyne Technologies Company

(MG)

Conestoga-Rovers & Associates

L29557

EX001-3ESPDRES-06

Kathy Shaw

Matrix: Ground Water Collect Start: 08/10/2006 12:10

	T			na de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la const	T	T	T	wertpatie Rich			<b>a</b> nanan		NOO-KOND	T	aparen		7
		Flag Values			No	No	No	ON ON	0.1	No	%	No	No	No	Z	oZ oZ	
		FIS	+	n	11	1	5 =	0 =	-   -  :	_ _	n	n	n		) =	2	- )
	Count	Units	Σ	Σ	Sec	Ser	200	330	250	Sec	Sec	Sec	Sec	Sec	200	2 2	330
	Count		41.24	80	3661	3661	1996	2001	3001	3661	3661	3661	3661	3661	3661	2661	2001
Volume: % Moisture:	Count	Date	08/12/06	08/15/06	08/11/06	00/11/00	08/11/00	08/11/00	08/11/00	08/11/06	08/11/06	08/11/06	08/11/06	08/11/06	00/11/00	08/11/00	00/11/00
V % Mc	Doforonco	Date		08/10/06 12:10 08/15/06	00/10/00 01:21 00/01/00	08/10/00 12:10	08/11/06 12:10 08/11/06	08/10/06 12:10 08/11/06	08/10/06 12:10 08/11/06	08/10/06 12:10 08/11/06	08/10/06 12:10 08/11/06	08/11/06 12:10 08/11/06	08/10/06 12:10 08/11/06	08/10/06/12:10	08/10/00 12:10	08/11/06 12:10 08/11/06	08/10/06 12:10 06/11/00
2	A Bound	Anquor Units	Įμ	-	IIII	E .	E	m]	ם	Tm	m l	1111			표	E .	핕
Collect Statt. vol 10/2000 12:10 Collect Stop: Receive Date: 08/11/2006	7 11 7	Anquot	10	07	430	3062.45	3062.45	3062.45	3062.45	3062.45	2062 45	3002.43	3002.43	3002.43	3062.45	3062.45	3062.45
Stop: Date: 0		# #															
Collect Start. Collect Stop: Receive Date:		Units	11:0-	PC//L	pCI/L	pCi/L	pCi/L	pCi/L	DCi/L	1/1,04	חיים ל	PCI/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L
		MDC	0 100.00	7.16E+02	1.72E+00	6.00E+00	6.45E+00	1.26E+01	8 44F+00	1 100-01	1.19E+01	5.57E+00	9.39E+00	6.59E+00	7.12E+00	2.37E+01	7.59E+00
GL-014		Uncertainty 2 Sigma		2.14E+02	9.57E-01	3.87E+00	3.91E+00	7.55E+00	A 36F+00	4.302.40	8./3E+00	3.64E+00		4.24E+00	4.25E+00	1.40E+01	5.89E+00
-1121-081006-		Activity 1 Conc		1.52E+03	1.49E+00	-1.20E+00	2.70E-02	1.12E+00	6 30E 01	0.37E-01	-5.43E+00	-1.48E+00	-5.21E+00	1.27E+00	-7.55E-03	4.39E+00	-4.83E+00
DN-MW-DN	57-2	SOP#		2010	2018	2007	2007	2007	2007	7007	2007	2007	2007	2007	2007	2007	2007
Sample ID: WG-DN-MW-DN-112I-081006-GL-014 Station: Description:	LIMS Number: L29557-2	Radionuclide		H-3 (DIST)	TOTAL SR	MN-54	CO-58	EE 50	FD-37	09-02	ZN-65	NB-95	ZR-95	CS-134	CG_137	BA-140	LA-140

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

oę 7 Page

Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Flag Values

II 11 11 11

High Spec

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

Low recovery

Bolded text indicates reportable value.

# Report of Analysis 08/16/06 10:00

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L29557

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Sample ID:	Sample ID: WG-DN-MW-DN-117I-081006-GL-015	(-117I-081006-	-GL-015		Collec	t Start: 0	Collect Start: 08/10/2006 14:20	20		Matrix: Ground Water	ound Wate	3		(MG)
Station:					Collec	Collect Stop:				Volume:				
Description:					Receiv	e Date: 0	Receive Date: 08/11/2006		W %	% Moisture:				
LIMS Number:	L29557-3										- 1			
		Activity	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	;	
Radionuclide	SOP#		2 Sigma	MDC	Units	##	Volume	Units	Date	Date	Time	Units	Flag Values	alues
H-3 (DIST)	2010	1.03E+03	1.70E+02	1.89E+02	pCi/L		10	m ¹		08/17/06	54.73	M	+	
TOTAL SR	2018	-9.74E-02	7.66E-01	1.65E+00	pCi/L		450	m	08/10/06 14:20	08/12/06	80	Σ	n	
MN-54	2007	-9.92E-02	1.42E+00	2.47E+00	pCi/L		1002.5	m	08/10/06 14:20	08/11/06	87634	Sec	n	No
CO-58	2007	-6.70E-01	1.34E+00	2.30E+00	pCi/L		1002.5	m	08/10/06 14:20	08/11/06	87634	Sec	Ω	No
FE-59	2007	-3.22E-01	2.73E+00	4.69E+00	pCi/L		1002.5	ml	08/10/06 14:20 08/11/06	08/11/06	87634	Sec	n	No
09-02	2007	4.50E-01	1.50E+00	2.62E+00	pCi/L		1002.5	m	08/10/06 14:20 08/11/06	08/11/06	87634	Sec	Ω	No
ZN-65	2007	9.62E-01	3.27E+00	4.99E+00	pCi/L		1002.5	m	08/10/06 14:20		87634	Sec	n	No
NB-95	2007	8.75E-01	1.45E+00	2.44E+00	pCi/L		1002.5	ml	08/10/06 14:20	- 1	87634	Sec	n	No
ZR-95	2007	-9.08E-01	2.55E+00	4.14E+00	pCi/L		1002.5	m	08/10/06 14:20	08/11/06	87634	Sec	D	No No
CS-134	2007	-3.84E-03	1.76E+00	2.55E+00	pCi/L		1002.5	ш	08/10/06 14:20	08/11/06	87634	Sec	n	No
CS-137	2007	-1.21E+00	1.63E+00	2.63E+00	pCi/L		1002.5	m	08/10/06 14:20	08/11/06	87634	Sec	n	No
BA-140	2007	1.24E+00	5.63E+00	9.44E+00	pCi/L		1002.5	m	08/10/06 14:20	08/11/06	87634	Sec	n	No
LA-140	2007	-1.73E+00	1.76E+00	2.83E+00	pCi/L		1002.5	m	08/10/06 14:20	08/11/06	87634	Sec	n	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

MDC - Minimum Detectable Concentration

of

Page 3

Bolded text indicates reportable value. High recovery

Low recovery

High Spec

# Report of Analysis 08/16/06 10:00

TELEDYNE
BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29557

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

(MG) Matrix: Ground Water Volume: Collect Start: 08/10/2006 16:00 Callert Sto Sample ID: WG-DN-MW-DN-118S-081006-GL-016 Kathy Shaw

	T		арк хорч	ī		www.p	*********	1	~7~	1	1000000	7		1	season.	i gozanean			outline 4	ì
		Flag Values			- 14	NO NO	%	No	14	NO	No	No	211	NO	No	No	21.	NO	%	
		Flag	+		) )	 	n	11	);		n	E	) 		Ω	11	);	_ _	n	
	Count	Units	Σ	Σ	TAT	Sec	Sec	SPC	3	Sec	Sec	Con	355	Sec	Sec	Sec	3	Sec	Sec	
	Count		39.59	000	7007	3901	3901	3001	10/0	3901	3901	2001	3501	3901	3901	3001	3701	3901	3901	
% Moisture:	Count	Date	08/12/06	20/21/00	00/13/00	08/11/06	08/11/06	00/11/00	00/11/00	08/11/06	08/11/06	00/11/00	08/11/00	08/11/06	08/11/06	20/11/00	00/11/00	08/11/06	08/11/06	
. W Wo	Doforonco	Date		00 71 70/01/00	08/10/06 16:00 08/13/00	08/10/06 16:00 08/11/06	08/10/06 16:00 08/11/06	00/10/00 10:00	08/10/06 16:00 08/11/00	08/10/06 16:00 08/11/06	00/11/06 16:00 08/11/06	08/10/00 10:00	08/10/06 16:00 08/11/00	08/10/06 16:00 08/11/06	08/11/06 16:00 08/11/06	00/10/00/10:00	08/10/06 16:00 08/11/00	08/10/06 16:00 08/11/06	08/10/06 16:00 08/11/06	22.2.2007.00
	4115-11104	Allquot Units	-	IIII	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	m	-		Ē	Į.		Ē	ш	lm		IIII	Ī	ļm	14	Ш
Collect Stop: Receive Date: 08/11/2006		Aliquot	10	NI I	450	3015.87	2010.00	3013.87	3015.87	3015.87	2010.00	3015.87	3015.87	3015.87	10.000	3015.87	3015.87	3015.87	2015.07	3012.07
Collect Stop: teceive Date: 0	-	Run #																		_
Collec Receiv		Units		pCi/L	DCi/L	1/1/2	pent	pCi/L	pCi/L	1/:0=	pc//r	pCi/L	nCi/L	11:0=	pCi/L	pCi/L	pCi/L	1/:/-	חיים מיים	pC//L
		MDC		2.25E+02	1 75E+00	00.20.0	0.30E+00	5.20E+00	1.02E+01	00.110	6.58E+00	1.13E+01	6 08F+00	00.1000	9.54E+00	5.20E+00	6 57F+00	2012101	7.74E+01	8.28E+00
		Activity Uncertainty Conc 2 Sigma	)	2.27E+02	9 24F_01	10 GT-2.7	3.66E+00	3.03E+00	6 46F+00	00.0010	3.50E+00	6.66E+00	3 76E±00	3.700.00	6.06E+00	3.58E+00	3 82F+00	2.040.0		4.40E+00
		Activity Conc		1.65E+03	0.43E 02	7.431-02	1.34E+00	6.50E-01	9 JOE 01	-0.202-01	2.32E+00	4.66E+00	6 715 100	J./115-00	-2.27E+00	7.60E-01	7 07E 01	1.7/12-01	8.80E+00	3.21E+00
	7-4	SOP#		2010	0100	2010	2007	2007	2000	7007	2007	2007	1000	7007	2007	2007	2007	7007	2007	2007
Station: Description:	LIMS Number: L29557-4	Radionuclide		H 3 (DIST)	(1616)	TOTAL SK	MN-54	CO-58		FE-59	09-03	7N 65	20-117	NB-95	ZR-95	CS-134	101.00	CS-137	BA-140	1.A-140

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

oę

Page 4

Compound/Analyte not detected or less than 3 sigma
Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only)
Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma
Activity concentration exceeds customer reporting value
MDC exceeds customer technical specification **Low recovery** Flag Values U = Spec U* High

Bolded text indicates reportable value. High recovery

# QC Results Summary

Page:

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected

Spiking level < 5 times activity

+D* * * a LZ

Fail Not evaluated

Pass

QC Summary Report

10:17:12AM

8/16/2006

H-3 (DIST)

L29557

for

BROWN ENGINEERING
A Teledyne Technologies Company

	Qualifier P/F U P		<u>Noery</u> <u>Range Qualifier P/F</u> 70-130 + P			Range Qualifier P/F <30 * NE	
	otal		Spike Recovery otal 91.5			RPD	
	Units pCi/Total		Units pCi/Total			Units pCi/L	
ary	Blank Result < 1.780E+00	ıry	LCS Result 4.620E+02		Ą	DUP Result 4.960E+02	
Method Blank Summary		LCS Sample Summary	<b>Spike Value</b> 5.05E+002		Duplicate Summary	Original Result 4.510E+02	
	Count Date/Time 08/11/2006 15:18		Count Date/Time 08/11/2006 16:22			Count Date/Time 08/11/2006 16:42	
	<u>Matrix</u> WO		<u>Matrix</u> WO			<u>Matrix</u> WG	
	D Radionuclide H-3 (DIST)		D Radionuclide H-3 (DIST)	-041706-1 35E+002 0E+000		D Radionuclide H-3 (DIST)	
	TBE Sample ID WG4307-1		TBE Sample ID WG4307-2	Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000		TBE Sample ID WG4307-3 L29543-1	

# QC Summary Report

8/16/2006

10:17:12AM

for

L29557

BROWN ENGINEERING A Teledyne Technologies Company

		Qualifier P/F U P		<b>Range Qualifier P/F</b> 70-130 + P			Range Qualifier P/F <30 ** NE	
				Spike Recovery 108.8			RPD	
		Units pCi/Total		Units pCi/Total			Units pCi/L	
	ary	Blank Result < 7.680E-01	ıry	LCS Result 6.350E+01		y	<b>DUP Result</b> < 1.700E+00	
TOTAL SR	Method Blank Summary		LCS Sample Summary	Spike Value 5.84E+001		Duplicate Summary	Original Result < 1.440E+00	
		Count Date/Time 08/15/2006 18:45		Count Date/Time 08/15/2006 18:45			Count Date/Time 08/15/2006 18:45	
		<u>Matrix</u> WO		<u>Matrix</u> WO			Matrix WG	
		<u>Radionuclide</u> TOTAL SR		Radionuclide TOTAL SR	-011905 3+002 3-001		Radionuclide TOTAL SR	
		TBE Sample ID WG4323-1		TBE Sample ID WG4323-2	Spike ID: 90SR-011905 Spike conc: 2.34E+002 Snike Vol: 2.50E-001	J	TBE Sample ID WG4323-3 L29576-1	

Page:

7

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Positive Result

Spiking level < 5 times activity Nuclide not detected

Pass Fail Not evaluated

+D* * * * GHZ

# Raw Data

Raw Data Sheet (rawdata) Aug 16 2006, 10:16 am

Work Order: <u>L29557</u>	Customer: Exelon		-				Page:	н			
Nuclide: H-3 (DIST)	Project : EX001-3ESPDRES-06	3ESPDRES-06								í	
										Decay &	
Sample ID Run Analysis Reference	ence Volume/	Scavenge Milking	Mount	Count	Counter Total	Total	Sample	Bkg	Bkg	Eff. Ingrowth Analyst	Analyst
Client ID # Date/time	time Aliquot	Date/time Date/time	e Weight Recovery Date/time	/ Date/time	ID	counts	dt (min) (	dt (min) counts dt (min)	: (min)	Factor	
L29557-1 H-3 DIST			0	12-aug-06	LS7	136	09	1.95	09	.209	DW
	10 ml			10:60							
WG-DN-MW-DN-112S-081006-GL-013											
Activity: 6.67E+01 Error: 1.14E+02	2 MDC: 1.81E+02 *	*									1
L29557-2 H-3 DIST			0	12-aug-06	LS7	375	41.24	1.95	9	.212	DW
	10 ml			10:05							
WG-DN-MW-DN-1121-081006-GL-014											
Activity: 1.52E+03 * Error: 2.14E+02	02 MDC: 2.16E+02										***************************************
L29557-3 H-3 DIST			0	12-aug-06	LS7	369	54.73	1.95	9	.209	DW
	10 ml			10:50							
WG-DN-MW-DN-117I-081006-GL-015											
Activity: 1.03E+03 * Error: 1.7E+02	2 MDC: 1.89E+02								:		
L29557-4 H-3 DIST			0	12-aug-06	LS7	377	39.59	1.95	9	.207	DW
	10 ml			11:49							
WG-DN-MW-DN-118S-081006-GL-016											
Activity: 1.65E+03 * Error: 2.27E+02	02 MDC: 2.25E+02		***************************************								

Raw Data Sheet (rawdata) Aug 16 2006, 10:16 am

	lyst LCB		LCB	Ę	P.C.P.	8	g C	
Десау &	Eff. Ingrowth Analyst Factor .343 1 LCB		<b>H</b>	T	- <b>-</b> I		-1 	
	Eff. Ing. Fact		.335		. 343 L	1	358	
		3,1111	400		400		400	
0	Bkg counts d		363		321		284	
Page: 2	Sample Bkg Bkg dt (min) counts dt (min) 80 307 400		80		80		200	
	Total counts 77		107		62		145	
	Counter Total ID counts X2D 77		хза		хзв		X4A	
	Count Court Recovery Date/time 15-aug-06	18:45	15-aug-06 18:45		15-aug-06 18:45		15-aug-06 20:45	
	Recovery	106.59	85.99		82.42		44.51	
	Mount Weight 0		0		0		0	
90-	avenge Milking te/time Date/time 15-aug-06	13:45	15-aug-06 13:45		15-aug-06 13:45		15-aug-06 13:45	1000
SPDRES	Scavenge Date/time 15-aug-0	ਜ	15-a		15-a		15-a	
Customer: Exelon Project : EXOOI-3ESPDRES-06	Volume/ Aliguot	450 ml	MDC: 1.25E+00 *	* 1 725+00 *	450 ml	* 00 * 1 K5 1 + 00 *	450 ml	MDC: 1.75E+00 *
Cus	lysis Reference Date/time	i P	g-0		90-61		- 6i	
557 (FAST)	Analysis	2S-081006-GL	TOTAL S.	2I-081006-GL	TOTAL S	71-081006-GL	TOTAL S	18S-081006-GI
Work Order: <u>L29557</u> Nuclide: SR-90 (FAST)	Sample ID Run Analysis Client ID #	1. WG-DN-MW-DN-112S-081006-GL-013	Activity: 5.34E-01 Error: 6.46E-01 L29557-2 TOTAL SR 10-au 12:10	WG-DN-MW-DN-1121-081006-GL-014	Activity: 1.49E+00 Error: 9.5/E-01 L29557-3 TOTAL SR 10-av	WG-DN-MW-DN-1171-081006-GL-015	Activity: -9.74E-UZ BIIOI: 7.80E-UL L29557-4 TOTAL SR 10-au 16:00	WG-DN-MW-DN-118S-081006-GL-016 Activity: 9.43E-02 Error: 9.24E-01

LIMS: C Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-AUG-2006 12:22:52.87

TBE07 P-10768B HpGe ******** Aquisition Date/Time: 14-AUG-2006 10:46:42.39 ______

LIMS No., Customer Name, Client ID: WG4311-1 WG EX/DRES

Smple Date: 10-AUG-2006 13:05:00. Sample ID : 07WG4311-1

Geometry : 073L082504 : WG Sample Type BKGFILE : 07BG072806MT Quantity : 3.24570E+00 L 

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
4	1 4 1 1 1	140.51* 241.84* 295.06* 351.98* 609.23* 1121.80	72 61 88 170 120 81 19	254 83 117 74 50 41	0.82	282.17 485.09 591.64 705.61 1220.61 2246.28 2757.59	2.04E+00 1.81E+00 1.61E+00 1.09E+00 7.02E-01	1.25E-02 1.06E-02 1.53E-02 2.96E-02 2.09E-02 1.41E-02 3.36E-03	31.2 28.1 12.5 15.6 21.4	2.28E+00 1.74E+00 4.21E+00 1.55E+00 8.05E+01
•	1	1462.12	9	32		2926.97		1.60E-03		

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flaq: "*" = Keyline

Page: 2 Summary of Nuclide Activity
Sample ID: 07WG4311-1 Acquisition date : 14-AUG-2006 10:46:42

Total number of lines in spectrum Number of unidentified lines 7
Number of lines tentatively identified by NID 1
**** There are no nuclides meeting summary criteria **** 12.50%

"M" = Manually accepted Flags: "K" = Keyline not found
"E" = Manually edited

"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 07WG4311-1 Page: 3
Acquisition date: 14-AUG-2006 10:46:42

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 4 1 1 1	140.51 241.84 295.06 351.98 609.23 1121.80 1377.42	72 61 88 170 120 81 19	254 83 117 74 50 41 5	2.88 1.38 1.68 1.28 1.48 0.82 1.99	2246.28 2757.59	475 585 701 1216 2236 2752	14 13 9 12 18 10	1.25E-02 1.06E-02 1.53E-02 2.96E-02 2.09E-02 1.41E-02 3.36E-03 1.60E-03	62.4 56.3 24.9 31.2 42.7 67.1	2.36E+00 2.04E+00 1.81E+00 1.61E+00 1.09E+00 7.02E-01 6.07E-01 5.82E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 8
Number of unidentified lines 7
Number of lines tentatively identified by NID 1 12.50%
**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found

"M" = Manually accepted

"E" = Manually edited

"A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	1.874E-02	2.057E+01	3.463E+01	0.000E+00	0.001
NA-24	-8.443E+01	1.989E+02	2.886E+02	0.000E+00	-0.293
K-40	-3.948E+00	4.223E+01	8.408E+01	0.000E+00	-0.047
CR-51	-1.861E+01	2.440E+01	3.732E+01	0.000E+00	-0.499
MN-54	-1.587E+00	2.957E+00	4.478E+00	0.000E+00	-0.354
CO-57	-1.592E-02	2.713E+00	4.317E+00	0.000E+00	-0.004
CO-58	1.274E+00	2.758E+00	4.744E+00	0.000E+00	0.269
FE-59	-1.775E-01	5.488E+00	9.090E+00	0.000E+00	-0.020
CO-60	-2.681E-01	2.435E+00	3.906E+00	0.000E+00	-0.069
ZN-65	3.584E+00	6.371E+00	1.014E+01	0.000E+00	0.354
SE-75	-1.283E+00	3.291E+00	5.264E+00	0.000E+00	-0.244
SR-85	-5.385E+00	3.654E+00	5.530E+00	0.000E+00	-0.974
Y-88	-2.555E-01	2.671E+00	4.341E+00	0.000E+00	-0.059
NB-94	-1.915E+00	2.824E+00	4.295E+00	0.000E+00	-0.446
NB-95	-1.195E+00	2.742E+00	4.229E+00	0.000E+00	-0.283
ZR-95	1.996E+00	4.497E+00	7.770E+00	0.000E+00	0.257
MO-99	-6.089E-02	5.146E+01	8.419E+01	0.000E+00	-0.001
RU-103	2.189E+00	2.771E+00	4.979E+00	0.000E+00	0.440
RU-106	-1.873E+00	2.251E+01	3.690E+01	0.000E+00	-0.051
AG-110m	1.981E+00	2.294E+00	4.186E+00	0.000E+00	0.473

SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-136 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 RA-226 AC-228 TH-232	9.567E-03 3.736E-01 -5.878E+00 -1.380E+01 9.755E-01 8.008E-01 -2.019E+00 2.487E+00 -3.610E+00 -2.006E+00 4.325E+00 -7.236E-01 2.382E+00 4.205E+00 -6.851E+00 -3.145E+00 1.107E+01 -1.127E+00 8.359E-01 -1.126E+00	3.522E+00 2.874E+00 7.666E+00 3.545E+01 3.584E+00 4.233E+00 2.921E+00 3.350E+00 2.749E+00 2.461E+00 1.110E+01 3.538E+00 5.253E+00 2.122E+01 8.160E+00 5.562E+00 6.582E+01 1.111E+01 5.294E+00 1.109E+01	5.680E+00 4.569E+00 1.129E+01 5.439E+01 5.951E+00 6.138E+00 3.745E+00 5.932E+00 3.757E+00 3.956E+00 1.928E+01 5.467E+00 8.137E+00 3.406E+01 1.227E+01 8.521E+00 1.172E+02 1.957E+01 9.329E+00 1.955E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.002 0.082 -0.520 -0.254 0.164 0.130 -0.539 0.419 -0.961 -0.507 0.224 -0.132 0.293 0.123 -0.558 -0.369 0.094 -0.058 0.090 -0.058
	8.359E-01	• • • • • • • • • • • • • • • • • • •	J.		
	-1.126E+00 9.904E+00	1.109E+01 2.466E+01	1.955E+01 3.608E+01	0.000E+00	0.274
U-235 U-238 AM-241	7.973E+00 4.937E+00	3.004E+02 2.287E+01	5.201E+02 3.797E+01	0.000E+00 0.000E+00	0.153 0.130

```
3.246E+00, WG4311-1 WG EX
                     ,08/14/2006 12:22,08/10/2006 13:05,
A,07WG4311-1
                                             ,08/14/2006 09:44,073L082504
                     ,LIBD
B,07WG4311-1
                                                   3.463E+01,,
                                                                    0.001
           , NO
                     1.874E-02,
                                    2.057E+01,
C, BE-7
                                                                   -0.293
                                                   2.886E+02,,
                                    1.989E+02,
                    -8.443E+01,
C, NA-24
           , NO
                                                                   -0.047
                                                   8.408E+01,,
           ,NO
                                    4.223E+01,
C, K-40
                    -3.948E+00,
                                                   3.732E+01,,
                                                                   -0.499
                    -1.861E+01,
                                    2.440E+01,
C, CR-51
           , NO
                                                   4.478E+00,,
                                                                   -0.354
                                    2.957E+00,
C, MN-54
                    -1.587E+00,
           , NO
                                                                   -0.004
                                                   4.317E+00,,
                    -1.592E-02,
                                    2.713E+00,
           , NO
C, CO-57
                                                                    0.269
                                    2.758E+00,
                                                   4.744E+00,,
                     1.274E+00,
C, CO-58
           , NO
                                                   9.090E+00,,
                                                                   -0.020
                                    5.488E+00,
                    -1.775E-01,
C, FE-59
            , NO
                                                                   -0.069
                                                   3.906E+00,,
                    -2.681E-01,
                                    2.435E+00,
C, CO-60
            ,NO
                                    6.371E+00,
                                                                    0.354
                     3.584E+00,
                                                   1.014E+01,,
C, ZN-65
            , NO
                                                                   -0.244
                                                   5.264E+00,,
                    -1.283E+00,
                                    3.291E+00,
C, SE-75
            , NO
                                                                   -0.974
                                    3.654E+00,
                                                   5.530E+00,,
                    -5.385E+00,
C, SR-85
            , NO
                                                                   -0.059
                                                   4.341E+00,,
                                    2.671E+00,
                    -2.555E-01,
C, Y-88
            , NO
                                                                   -0.446
                                                   4.295E+00,,
                                    2.824E+00,
            , NO
                    -1.915E+00,
C, NB-94
                                                   4.229E+00,,
                                                                   -0.283
                    -1.195E+00,
C, NB-95
            , NO
                                    2.742E+00,
                                    4.497E+00,
                                                   7.770E+00,,
                                                                     0.257
                     1.996E+00,
C, ZR-95
            , NO
                                                   8.419E+01,,
                                                                   -0.001
                    -6.089E-02,
                                    5.146E+01,
            , NO
C, MO-99
                                    2.771E+00,
                                                   4.979E+00,,
                                                                     0.440
                     2.189E+00,
C, RU-103
            , NO
                                                   3.690E+01,,
                                                                   -0.051
                                    2.251E+01,
                    -1.873E+00,
C,RU-106
            , NO
                                                   4.186E+00,,
                                                                     0.473
                                    2.294E+00,
C, AG-110m
            , NO
                     1.981E+00,
                                                                     0.002
                                    3.522E+00,
                                                   5.680E+00,,
            , NO
                     9.567E-03,
C, SN-113
                                    2.874E+00,
                                                   4.569E+00,,
                                                                     0.082
                     3.736E-01,
C,SB-124
            , NO
                                                   1.129E+01,,
                                                                   -0.520
                                    7.666E+00,
            , NO
                    -5.878E+00,
C,SB-125
                                                   5.439E+01,,
                                                                   -0.254
                                    3.545E+01,
                    -1.380E+01,
C, TE-129M , NO
                                                   5.951E+00,,
                                                                     0.164
                                    3.584E+00,
C, I-131
            , NO
                     9.755E-01,
                                                   6.138E+00,,
                                                                     0.130
                     8.008E-01,
                                    4.233E+00,
C, BA-133
            , NO
            , NO
                                    2.921E+00,
                                                   3.745E+00,,
                                                                    -0.539
                    -2.019E+00,
C, CS-134
                                                   5.932E+00,,
                                                                     0.419
                                    3.350E+00,
C, CS-136
                     2.487E+00,
            , NO
                                                   3.757E+00,,
                                                                    -0.961
            , NO
                                    2.749E+00,
                    -3.610E+00,
C, CS-137
                                                                    -0.507
                                                   3.956E+00,,
                                    2.461E+00,
            , NO
                    -2.006E+00,
C, CE-139
                                                                     0.224
                                                   1.928E+01,,
            , NO
                     4.325E+00,
                                    1.110E+01,
C, BA-140
                                    3.538E+00,
                                                                    -0.132
                    -7.236E-01,
                                                    5.467E+00,,
C, LA-140
            , NO
                                                    8.137E+00,,
                                                                     0.293
                                    5.253E+00,
                     2.382E+00,
C, CE-141
            , NO
                                                    3.406E+01,,
                                                                     0.123
                                    2.122E+01,
C, CE-144
                     4.205E+00,
            , NO
                                                                    -0.558
                                                    1.227E+01,,
C, EU-152
            ,NO
                    -6.851E+00,
                                    8.160E+00,
                                                                    -0.369
                                                    8.521E+00,,
            , NO
                                    5.562E+00,
C, EU-154
                    -3.145E+00,
                                                    1.172E+02,,
                                                                     0.094
                     1.107E+01,
                                    6.582E+01,
C, RA-226
            , NO
                                                    1.957E+01,,
                                                                    -0.058
            , NO
                                    1.111E+01,
                    -1.127E+00,
C, AC-228
                                                                     0.090
                                                    9.329E+00,,
                                    5.294E+00,
                     8.359E-01,
 C, TH-228
            , NO
                                                                    -0.058
                                                    1.955E+01,,
                                    1.109E+01,
                    -1.126E+00,
 C, TH-232
            , NO
                                     2.466E+01,
                                                    3.608E+01,,
                                                                     0.274
                      9.904E+00,
 C, U-235
            , NO
                                                    5.201E+02,,
                                                                     0.153
                     7.973E+01,
                                     3.004E+02,
 C, U-238
            , NO
```

2.287E+01,

3.797E+01,,

0.130

4.937E+00,

C, AM-241

,NO ,

Sec. Review: Analyst: LIMS: \(\(\lambda\)

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 17:05:20.63 TBE11 P-20610B HpGe ******* Aquisition Date/Time: 11-AUG-2006 14:54:32.29

There is a second figure and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

LIMS No., Customer Name, Client ID: L29557-1 WG EX/DRES

Sample ID : 11L29557-1 Smple Date: 10-AUG-2006 13:05:00.

Sample Type : WG Geometry : 113L082304
Quantity : 3.24570E+00 L BKGFILE : 11BG072806MT
Start Channel : 40 Energy Tol : 1.00000 Real Time : 0 02:10:46.61
End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 02:10:42.88

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	66.24	109	578	1.49	131.88	6.84E-01	1.40E-02	39.1	
2	0	74.68*	54	635	0.93	148.83	9.69E-01	6.88E-03	81.4	
3	0	77.12	170	577	0.98	153.72	1.05E+00	2.17E-02	24.7	
4	Ō	86.82	79	349	1.10	173.18	1.33E+00	1.01E-02	39.2	
5	0	241.13		428	1.36	482.72	1.57E+00	3.88E-02	15.9	
6	0	295.09*	510	229	1.51	590.91	1.37E+00	6.50E-02	7.6	
7	0	351.76*	901	161	1.36	704.54	1.20E+00	1.15E-01	4.4	
8	0	609.04*	838	75	1.62	1220.01	7.90E-01	1.07E-01	4.1	
9	0	665.38	25	46	1.12	1332.80	7.37E-01	3.12E-03	51.3	
10	0		54	44	1.42	1539.19	6.58E-01	6.93E-03	25.1	
11	0	935.78	37	77	1.03	1873.90	5.62E-01	4.76E-03	59.8	
12	0	1120.27*	155	36	1.69	2242.77	4.86E-01	1.98E-02	11.5	
13		1238.76*	65	54	1.74	2479.54	4.48E-01	8.35E-03	30.5	
14		1378.81*	37	47	1.99	2759.25	4.10E-01	4.68E-03	49.9	
15		1407.98	26	27	0.89	2817.48	4.04E-01	3.31E-03	43.1	
16		1460.61*	11	21	2.08	2922.55	3.92E-01	1.44E-03	112.2	
17		1509.84	30	15	1.15	3020.80	3.82E-01	3.79E-03	34.7	
18		1728.30	24	16	1.56	3456.60	3.44E-01	3.03E-03	42.4	
19		1762.61*	130	15	1.47	3525.01	3.39E-01	1.65E-02	11.3	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

2-Sigma Uncorrected Decay Corr %Error pCi/L %Abn %Eff pCi/L Nuclide Energy Area 224.35 2.866E+01 2.866E+01 1460.81 11 10.67* 3.919E-01 K-40

Flag: "*" = Keyline

Summary of Nuclide Activity

Page: 2

Sample ID : 11L29557-1 Acquisition date : 11-AUG-2006 14:54:32

Total number of lines in spectrum 19
Number of unidentified lines 16

Number of lines tentatively identified by NID 3 15.79%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags

_____

K-40 1.28E+09Y 1.00 2.866E+01 2.866E+01 6.430E+01 224.35

Total Activity : 2.866E+01 2.866E+01

Grand Total Activity: 2.866E+01 2.866E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page :

%Eff

Acquisition date : 11-AUG-2006 14:54:32

Cts/Sec %Err

3

Flags

6.84E-01 8 1.40E-02 78.3 131.88 129 1.49 578 66.24 109 0 7 6.88E-03 **** 9.69E-01 145 148.83 0.93 54 635 74.68 0 7 2.17E-02 49.3 1.05E+00 153.72 152 577 0.98 77.12 170 0 1.33E+00 6 1.01E-02 78.3

FWHM

Bkgnd

Channel Left Pw

171 173.18 1.10 79 349 0 86.82 Τ 1.57E+00 475 15 3.88E-02 31.8 482.72 1.36 428 304 0 241.13 1.37E+00 585 13 6.50E-02 15.2 590.91 1.51 229 295.09 510 0 1.20E+00 698 12 1.15E-01 8.8 704.54 1.36 901 161 351.76 0 7.90E-01 1220.01 1212 14 1.07E-01 8.3 75 1.62 838 0 609.04 8 3.12E-03 **** 7.37E-01 1332.80 1329 46 1.12 25 665.38 0 6.58E-01 8 6.93E-03 50.2 1539.19 1535 44 1.42 54 0 768.48 1873.90 1864 19 4.76E-03 **** 5.62E-01 77 1.03 37 935.78 0 4.86E-01 2242.77 2236 13 1.98E-02 23.0 36 1.69 155 1120.27 0 2479.54 2470 20 8.35E-03 61.1 4.48E-01 54 1.74 65 1238.76 0 2759.25 2748 21 4.68E-03 99.8 4.10E-01 47 1.99 37 0 1378.81 2817.48 2810 12 3.31E-03 86.2 4.04E-01 T 27 0.89 26 0 1407.98 3.82E-01 3020.80 3013 14 3.79E-03 69.4 1.15 15 1509.84 30 0 3.44E-01 3456.60 3449 14 3.03E-03 84.8 1.56 24 16 1728.30 0 3525.01 3518 15 1.65E-02 22.7 3.39E-01 1.47 15 130 1762.61 0

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Unidentified Energy Lines

Area

Sample ID : 11L29557-1

Energy

It

19 Total number of lines in spectrum Number of unidentified lines 16

Number of lines tentatively identified by NID 15.79%

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Decay Corr Uncorrected Decay Corr %Error Flags 2-Sigma Error pCi/L Hlife Decay pCi/L Nuclide 224.35 6.430E+01 2.866E+01 1.28E+09Y 1.00 2.866E+01 K-40

2.866E+01 2.866E+01 Total Activity:

2.866E+01 2.866E+01 Grand Total Activity :

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Act/MDA MDA error MDA Act error Activity (pCi/L) (pCi/L) Nuclide

# ---- Non-Identified Nuclides ----

	Key-Line				
		.L. Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L) I	ded	(pCi/L)		
		0.0167.01	E 0077 01	0 0000.00	0.297
BE-7	1.551E+01	3.016E+01	5.227E+01	0.000E+00 0.000E+00	-0.182
NA-24	-3.691E+00	1.444E+01	2.030E+01	0.000E+00	0.181
CR-51	9.105E+00	3.059E+01	5.033E+01	0.000E+00	-0.284
MN-54	-1.522E+00	3.456E+00	5.356E+00	0.000E+00	-0.222
CO-57	-1.296E+00	3.517E+00	5.823E+00	0.000E+00	-0.025
CO-58	-1.390E-01	3.470E+00	5.629E+00	0.000E+00	0.184
FE-59	2.141E+00	6.742E+00	1.166E+01		-0.008
CO-60	-4.992E-02	3.567E+00	5.884E+00	0.000E+00	-0.119
ZN-65	-1.380E+00	8.289E+00	1.161E+01	0.000E+00	0.577
SE-75	4.744E+00	4.798E+00	8.218E+00	0.000E+00	-1.129
SR-85	-6.834E+00	4.024E+00	6.051E+00	0.000E+00	
Y-88	-2.779E-01	3.322E+00	5.271E+00	0.000E+00	-0.053
NB-94	-2.088E-01	3.390E+00	5.539E+00	0.000E+00	-0.038
NB-95	6.191E+00	4.100E+00	6.881E+00	0.000E+00	0.900
ZR-95	9.236E-01	5.835E+00	9.697E+00	0.000E+00	0.095
MO-99	-8.300E-01	3.401E+01	5.557E+01	0.000E+00	-0.015
RU-103	-2.354E+00	3.328E+00	5.271E+00	0.000E+00	-0.447
RU-106	6.092E+00	3.158E+01	5.309E+01	0.000E+00	0.115
AG-110m	1.351E+00	3.246E+00	5.554E+00	0.000E+00	0.243
SN-113	-1.082E+00	4.650E+00	7.321E+00	0.000E+00	-0.148
SB-124	4.250E+00	3.775E+00	6.106E+00	0.000E+00	0.696
SB-125	-2.539E+00	1.043E+01	1.731E+01	0.000E+00	-0.147
TE-129M	2.472E+01	4.113E+01	7.170E+01	0.000E+00	0.345
I-131	-2.345E-01	3.924E+00	6.279E+00	0.000E+00	-0.037
BA-133	-2.161E+00	5.311E+00	7.154E+00	0.000E+00	-0.302
CS-134	-2.336E+00	4.180E+00	5.641E+00	0.000E+00	-0.414
CS-136	1.082E+00	3.479E+00	5.850E+00	0.000E+00	0.185
CS-137	1.728E+00	3.815E+00	5.798E+00	0.000E+00	0.298
CE-139	-1.320E+00	3.696E+00	6.057E+00	0.000E+00	-0.218
BA-140	4.496E+00	1.247E+01	2.137E+01	0.000E+00	0.210
LA-140	1.008E+00	4.530E+00	7.632E+00	0.000E+00	0.132
CE-141	3.422E+00	6.411E+00	1.089E+01	0.000E+00	0.314
CE-144	-5.312E+00	2.784E+01	4.627E+01	0.000E+00	-0.115
EU-152	-2.807E+00	1.257E+01	1.926E+01	0.000E+00	-0.146
EU-154	1.897E+00	7.440E+00	1.259E+01	0.000E+00	0.151
RA-226	-1.345E+02	9.357E+01	1.479E+02	0.000E+00	-0.909
AC-228	2.480E-02	1.368E+01	2.378E+01	0.000E+00	0.001
TH-228	4.212E+00	7.831E+00	1.214E+01	0.000E+00	0.347
TH-232	2.479E-02	1.367E+01	2.377E+01	0.000E+00	0.001
U-235	-5.107E+00	2.965E+01	4.920E+01	0.000E+00	-0.104
U-238	1.923E+01	4.461E+02	7.204E+02	0.000E+00	0.027
AM-241	-2.608E+01	4.056E+01	6.309E+01	0.000E+00	-0.413

```
3.246E+00,L29557-1 WG EX
                     ,08/11/2006 17:05,08/10/2006 13:05,
A,11L29557-1
                                             ,08/11/2006 09:47,113L082304
                     ,LIBD
B,11L29557-1
                                                   5.796E+01,,
                                                                    0.494
                     2.866E+01,
                                    6.430E+01,
C, K-40
           ,YES,
                                                                    0.297
                                    3.016E+01,
                                                   5.227E+01,,
                     1.551E+01,
C, BE-7
            , NO
                                                   2.030E+01,,
                                                                   -0.182
                                    1.444E+01,
C, NA-24
                    -3.691E+00,
            , NO
                                                   5.033E+01,,
                                                                    0.181
                     9.105E+00,
                                    3.059E+01,
C, CR-51
           , NO
                                                   5.356E+00,,
                                                                   -0.284
           , NO
                                    3.456E+00,
C, MN-54
                    -1.522E+00,
                                                   5.823E+00,,
                                                                   -0.222
                    -1.296E+00,
                                    3.517E+00,
C, CO-57
            , NO
                                                   5.629E+00,,
                                                                   -0.025
                                    3.470E+00,
                    -1.390E-01,
C,CO-58
            , NO
                                                   1.166E+01,,
                                                                     0.184
                                    6.742E+00,
                     2.141E+00,
C, FE-59
            , NO
                                                                   -0.008
                                                   5.884E+00,,
                    -4.992E-02,
                                    3.567E+00,
C, CO-60
            , NO
                                                   1.161E+01,,
                                                                   -0.119
                                    8.289E+00,
C, ZN-65
            , NO
                    -1.380E+00,
                                                                     0.577
                                                   8.218E+00,,
C, SE-75
                     4.744E+00,
                                    4.798E+00,
            , NO
                                                   6.051E+00,,
                                                                    -1.129
            , NO
                                    4.024E+00,
                    -6.834E+00,
C, SR-85
                                                   5.271E+00,,
                                                                    -0.053
                                    3.322E+00,
                    -2.779E-01,
C, Y-88
            , NO
                                                   5.539E+00,,
                                                                    -0.038
                                    3.390E+00,
            , NO
                    -2.088E-01,
C, NB-94
                                                                     0.900
                                    4.100E+00,
                                                   6.881E+00,,
                     6.191E+00,
C, NB-95
            , NO
                                                   9.697E+00,,
                                                                     0.095
                                    5.835E+00,
C, ZR-95
            , NO
                     9.236E-01,
                                    3.401E+01,
                                                                    -0.015
                    -8.300E-01,
                                                   5.557E+01,,
C,MO-99
            , NO
                                                   5.271E+00,,
                                                                    -0.447
                                    3.328E+00,
                    -2.354E+00,
C, RU-103
            , NO
                                                   5.309E+01,,
                                                                     0.115
                                    3.158E+01,
                     6.092E+00,
C, RU-106
            , NO
                                                                     0.243
                                                   5.554E+00,,
                     1.351E+00,
                                    3.246E+00,
C, AG-110m , NO
                                                   7.321E+00,,
                                                                    -0.148
                                    4.650E+00,
                    -1.082E+00,
C,SN-113
            , NO
                                                                     0.696
                                                   6.106E+00,,
                     4.250E+00,
                                    3.775E+00,
            , NO
C,SB-124
                                                   1.731E+01,,
                                    1.043E+01,
                                                                    -0.147
                    -2.539E+00,
C,SB-125
            , NO
                                                                     0.345
                                                    7.170E+01,,
                                    4.113E+01,
                     2.472E+01,
C, TE-129M
            , NO
                                                                    -0.037
                                                    6.279E+00,,
            , NO
                                    3.924E+00,
C, I-131
                    -2.345E-01,
                                                                    -0.302
                                    5.311E+00,
                                                    7.154E+00,,
            , NO
                    -2.161E+00,
C,BA-133
                                                    5.641E+00,,
                                                                    -0.414
                                    4.180E+00,
                    -2.336E+00,
C, CS-134
            , NO
                                                                     0.185
                                    3.479E+00,
                                                    5.850E+00,,
                     1.082E+00,
            , NO
C,CS-136
                                                    5.798E+00,,
                                                                     0.298
                                     3.815E+00,
                     1.728E+00,
C, CS-137
            , NO
                                                    6.057E+00,,
                                                                    -0.218
                                     3.696E+00,
C, CE-139
            , NO
                    -1.320E+00,
                                                    2.137E+01,,
                                                                     0.210
            , NO
                     4.496E+00,
                                     1.247E+01,
C,BA-140
                                                    7.632E+00,,
                                                                     0.132
                                     4.530E+00,
                     1.008E+00,
C, LA-140
            , NO
                                                    1.089E+01,,
                                                                     0.314
                                     6.411E+00,
                     3.422E+00,
C, CE-141
            , NO
                                                                    -0.115
                                                    4.627E+01,,
                                     2.784E+01,
                    -5.312E+00,
C, CE-144
            , NO
                                                    1.926E+01,,
                                                                    -0.146
                                     1.257E+01,
C, EU-152
            , NO
                    -2.807E+00,
                                                    1.259E+01,,
                                                                     0.151
            , NO
                     1.897E+00,
                                     7.440E+00,
C, EU-154
                    -1.345E+02,
                                     9.357E+01,
                                                    1.479E+02,,
                                                                    -0.909
            , NO
C, RA-226
                                                    2.378E+01,,
                                                                     0.001
                                     1.368E+01,
            , NO
                     2.480E-02,
C, AC-228
                                                    1.214E+01,,
                                                                     0.347
                                     7.831E+00,
            , NO
                     4.212E+00,
C, TH-228
                                                                     0.001
                                                    2.377E+01,,
            , NO
C, TH-232
                     2.479E-02,
                                     1.367E+01,
                                     2.965E+01,
                                                    4.920E+01,,
                                                                    -0.104
            , NO
                    -5.107E+00,
C, U-235
                      1.923E+01,
                                     4.461E+02,
                                                    7.204E+02,,
                                                                     0.027
C, U-238
            , NO
                                                    6.309E+01,,
                                                                    -0.413
                                     4.056E+01,
```

, NO

C, AM-241

-2.608E+01,

Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 15:55:46.92 TBE04 P-40312B HpGe ******** Aquisition Date/Time: 11-AUG-2006 14:54:33.72 

LIMS No., Customer Name, Client ID: L29557-2 WG EX/DRES

Smple Date: 10-AUG-2006 12:10:00. Sample ID : 04L29557-2

Geometry : 043L082004 Sample Type : WG BKGFILE : 04BG072806MT : 3.06250E+00 L Quantity Start Channel: 90 Energy Tol: 1.00000 Real Time: 0 01:01:01.88 End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 01:01:01.22 MDA Constant: 0.00 Library Used: LIBD

Pk :	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
4	1 1 1	198.60* 294.80* 351.46* 583.09* 608.99*	44 19 54 9 38	52 74 36	3.95	590.93 704.31 1167.71	1.86E+00 1.46E+00 1.28E+00 8.77E-01 8.49E-01	5.31E-03 1.47E-02 2.40E-03	72.9 36.3 147.6	9.75E-01 3.31E+00 3.17E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity
Sample ID: 04L29557-2

Acquisition date : 11-AUG-2006 14:54:33

Total number of lines in spectrum 5 Number of unidentified lines 4
Number of lines tentatively identified by NID 1
**** There are no nuclides meeting summary criteria **** 4

20.00%

"M" = Manually accepted Flags: "K" = Keyline not found
"E" = Manually edited

"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 04L29557-2

Page: 3 Acquisition date : 11-AUG-2006 14:54:33

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	198.60	44	77	1.33	398.40	393	11	1.21E-02	84.4	1.86E+00	
1	294.80	19	52	1.20	590.93	587	9	5.31E-03	***	1.46E+00	
1	351.46	54	74	2.37	704.31	700	15	1.47E-02	72.6	1.28E+00	
1	583.09	9	36	3.95	1167.71	1160	14	2.40E-03	***	8.77E-01	T
1	608.99	38	27	1.97	1219.52	1215	15	1.04E-02	70.7	8.49E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

5 Total number of lines in spectrum Number of unidentified lines 4 Number of lines tentatively identified by NID 1 20.00% **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

## ---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.I (pCi/L) Ide		MDA (pCi/L)	MDA error	Act/MDA
BE-7	-1.952E+01	2.729E+01	3.815E+01	0.000E+00	-0.512
NA-24	-3.348E+00	1.280E+01	1.957E+01	0.000E+00	-0.171
K-40	3.765E+01	6.106E+01	1.312E+02	0.000E+00	0.287
CR-51	8.515E+00	3.118E+01	5.340E+01	0.000E+00	0.159
MN-54	-1.201E+00	3.872E+00	5.995E+00	0.000E+00	-0.200
CO-57	-8.827E-01	3.171E+00	5.028E+00	0.000E+00	-0.176
CO-58	2.700E-02	3.906E+00	6.454E+00	0.000E+00	0.004
FE-59	1.123E+00	7.551E+00	1.258E+01	0.000E+00	0.089
CO-60	6.386E-01	4.357E+00	8.436E+00	0.000E+00	0.076
ZN-65	-5.426E+00	8.728E+00	1.193E+01	0.000E+00	-0.455
SE-75	-7.244E-01	4.758E+00	7.874E+00	0.000E+00	-0.092
SR-85	-1.162E+01	5.329E+00	6.367E+00	0.000E+00	-1.826
Y-88	2.607E+00	2.632E+00	6.119E+00	0.000E+00	0.426
NB-94	-1.326E+00	3.294E+00	5.075E+00	0.000E+00	-0.261
NB-95	-1.475E+00	3.643E+00	5.572E+00	0.000E+00	-0.265
ZR-95	-5.214E+00	6.666E+00	9.393E+00	0.000E+00	-0.555
MO-99	1.437E+01	3.785E+01	6.690E+01	0.000E+00	0.215
RU-103	-9.562E-01	3.473E+00	5.339E+00	0.000E+00	-0.179
RU-106	4.187E+01	4.058E+01	7.701E+01	0.000E+00	0.544
AG-110m	5.763E-01	3.911E+00	6.696E+00	0.000E+00	0.086
SN-113	3.505E+00	4.876E+00	8.722E+00	0.000E+00	0.402
SB-124	-1.505E+00	4.229E+00	6.353E+00	0.000E+00	-0.237
SB-125	-1.074E-01	1.154E+01	1.881E+01	0.000E+00	-0.006

TE-129M	-1.116E+01	4.759E+01	7.484E+01	0.000E+00	-0.149
I-131	-3.319E+00	4.622E+00	6.982E+00	0.000E+00	-0.475
BA-133	2.579E+00	5.689E+00	8.879E+00	0.000E+00	0.290
CS-134	1.265E+00	4.238E+00	6.594E+00	0.000E+00	0.192
CS-136	3.761E+00	3.538E+00	7.027E+00	0.000E+00	0.535
CS-137	-7.550E-03	4.251E+00	7.116E+00	0.000E+00	-0.001
CE-139	5.883E-01	3.635E+00	5.916E+00	0.000E+00	0.099
BA-140	4.394E+00	1.401E+01	2.369E+01	0.000E+00	0.186
LA-140	-4.834E+00	5.886E+00	7.588E+00	0.000E+00	-0.637
CE-141	-3.952E+00	6.146E+00	9.351E+00	0.000E+00	-0.423
CE-144	-1.532E+00	2.648E+01	4.272E+01	0.000E+00	-0.036
EU-152	-4.877E+00	1.085E+01	1.691E+01	0.000E+00	-0.288
EU-154	-4.006E+00	6.941E+00	1.070E+01	0.000E+00	-0.375
RA-226	-5.626E+01	1.032E+02	1.639E+02	0.000E+00	-0.343
AC-228	4.050E+00	1.575E+01	2.929E+01	0.000E+00	0.138
TH-228	-5.004E+00	7.601E+00	1.308E+01	0.000E+00	-0.382
TH-232	4.049E+00	1.574E+01	2.928E+01	0.000E+00	0.138
U-235	1.336E+00	2.732E+01	4.434E+01	0.000E+00	0.030
U-238	-1.997E+02	3.994E+02	5.656E+02	0.000E+00	-0.353
AM-241	1.991E+01	3.323E+01	5.858E+01	0.000E+00	0.340

```
,08/11/2006 15:55,08/10/2006 12:10,
                                                                 3.063E+00,L29557-2 WG EX
A,04L29557-2
                     ,LIBD
                                             ,08/11/2006 09:46,043L082004
B,04L29557-2
                    -1.952E+01,
                                    2.729E+01,
                                                   3.815E+01,,
                                                                   -0.512
C, BE-7
           , NO
                                                                   -0.171
                                    1.280E+01,
                                                   1.957E+01,,
C, NA-24
           , NO
                    -3.348E+00,
                                                                    0.287
C, K-40
           , NO
                     3.765E+01,
                                    6.106E+01,
                                                   1.312E+02,,
                                                                    0.159
                                                   5.340E+01,,
C, CR-51
           , NO
                     8.515E+00,
                                    3.118E+01,
                                                   5.995E+00,,
                    -1.201E+00,
                                    3.872E+00,
                                                                   -0.200
C, MN-54
           , NO
           , NO
                                                   5.028E+00,,
                                                                   -0.176
                                    3.171E+00,
C, CO-57
                    -8.827E-01,
                                                   6.454E+00,,
                                                                    0.004
            , NO
                     2.700E-02,
                                    3.906E+00,
C, CO-58
                                                   1.258E+01,,
                                                                    0.089
C, FE-59
            , NO
                     1.123E+00,
                                    7.551E+00,
                                                   8.436E+00,,
                     6.386E-01,
                                    4.357E+00,
                                                                    0.076
C, CO-60
            , NO
                                                   1.193E+01,,
                                                                   -0.455
C, ZN-65
                    -5.426E+00,
                                    8.728E+00,
            , NO
                                    4.758E+00,
                                                   7.874E+00,,
                                                                   -0.092
C, SE-75
                    -7.244E-01,
            , NO
C, SR-85
                                                   6.367E+00,,
                                                                   -1.826
            , NO
                    -1.162E+01,
                                    5.329E+00,
                                                   6.119E+00,,
                                                                    0.426
            , NO
                     2.607E+00,
                                    2.632E+00,
C, Y-88
                                                   5.075E+00,,
                                                                   -0.261
C, NB-94
            , NO
                    -1.326E+00,
                                    3.294E+00,
                                                   5.572E+00,,
                                                                   -0.265
C, NB-95
                    -1.475E+00,
                                    3.643E+00,
            , NO
                    -5.214E+00,
                                    6.666E+00,
                                                   9.393E+00,,
                                                                   -0.555
C, ZR-95
            , NO
                                                   6.690E+01,,
                                                                     0.215
                                    3.785E+01,
                     1.437E+01,
C,MO-99
            , NO
                                    3.473E+00,
                                                   5.339E+00,,
                                                                   -0.179
C, RU-103
                    -9.562E-01,
            , NO
                                                                     0.544
            , NO
                                                   7.701E+01,,
C, RU-106
                     4.187E+01,
                                    4.058E+01,
                                                   6.696E+00,,
C, AG-110m
           , NO
                     5.763E-01,
                                    3.911E+00,
                                                                     0.086
                                    4.876E+00,
                                                   8.722E+00,,
                                                                     0.402
C, SN-113
            , NO
                     3.505E+00,
                                                   6.353E+00,,
                                                                   -0.237
                    -1.505E+00,
                                    4.229E+00,
C,SB-124
            , NO
                                                   1.881E+01,,
                                                                    -0.006
C,SB-125
            , NO
                    -1.074E-01,
                                    1.154E+01,
                                    4.759E+01,
                                                   7.484E+01,,
                                                                    -0.149
C, TE-129M
            , NO
                    -1.116E+01,
C, I-131
            , NO
                    -3.319E+00,
                                    4.622E+00,
                                                   6.982E+00,,
                                                                    -0.475
                                    5.689E+00,
                                                   8.879E+00,,
                                                                     0.290
                     2.579E+00,
C,BA-133
            , NO
                                                   6.594E+00,,
                     1.265E+00,
                                    4.238E+00,
                                                                     0.192
C, CS-134
            , NO
                     3.761E+00,
                                                   7.027E+00,,
                                                                     0.535
            , NO
                                    3.538E+00,
C, CS-136
                                    4.251E+00,
                                                   7.116E+00,,
                                                                    -0.001
C, CS-137
            , NO
                    -7.550E-03,
C, CE-139
            , NO
                     5.883E-01,
                                    3.635E+00,
                                                   5.916E+00,,
                                                                     0.099
                     4.394E+00,
                                    1.401E+01,
                                                   2.369E+01,,
                                                                     0.186
            , NO
C,BA-140
                                                   7.588E+00,,
                                                                    -0.637
C, LA-140
                    -4.834E+00,
                                    5.886E+00,
            , NO
                                                   9.351E+00,,
                                                                    -0.423
                    -3.952E+00,
                                    6.146E+00,
C, CE-141
            , NO
            , NO
                                                   4.272E+01,,
C, CE-144
                    -1.532E+00,
                                    2.648E+01,
                                                                    -0.036
            ,NO
                                    1.085E+01,
                                                   1.691E+01,,
                                                                    -0.288
C, EU-152
                    -4.877E+00,
            , NO
                                                   1.070E+01,,
C, EU-154
                    -4.006E+00,
                                    6.941E+00,
                                                                    -0.375
                                                   1.639E+02,,
                                                                    -0.343
                                    1.032E+02,
                    -5.626E+01,
C, RA-226
            , NO
                                    1.575E+01,
                                                   2.929E+01,,
                                                                     0.138
C, AC-228
            , NO
                     4.050E+00,
                                                   1.308E+01,,
                                                                    -0.382
C, TH-228
            , NO
                    -5.004E+00,
                                    7.601E+00,
                                    1.574E+01,
                                                    2.928E+01,,
                                                                     0.138
C, TH-232
                     4.049E+00,
            , NO
C, U-235
                     1.336E+00,
                                    2.732E+01,
                                                    4.434E+01,,
                                                                     0.030
            , NO
                                                    5.656E+02,,
                                    3.994E+02,
                                                                    -0.353
                    -1.997E+02,
C, U-238
            , NO
                     1.991E+01,
                                    3.323E+01,
                                                    5.858E+01,,
                                                                     0.340
C, AM-241
            ,NO ,
```

LIMS: Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-AUG-2006 13:12:51.33 TBE23 03017322 HpGe ******* Aquisition Date/Time: 11-AUG-2006 14:51:59.00 

LIMS No., Customer Name, Client ID: L29557-3 WG EX/DRES

Smple Date: 10-AUG-2006 14:20:00. : 23L29557-3 Sample ID

Geometry : 231L082404 : WG Sample Type BKGFILE: 23BG072806MT : 1.00250E+00 L 

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	9 9 1 0 0 0 0 0 0 0	Energy  35.37* 40.54 63.29* 66.19 77.00* 139.80* 198.03 238.38* 241.57 295.12* 351.77* 569.98* 583.01* 595.88 609.08* 726.98*	190 330 84 309 88 281 398 75 190 290 133 63 63 158 114 30	900 1701 1880 1849 1646 2665 2068 1730 1306 1474 1065 700 533 571 581 263	2.52 1.97 1.22 1.37 1.14 1.80 1.19 1.13 1.01 1.26 1.21 1.85 0.98 1.25 0.86	71.23 81.55 127.00 132.78 154.39 279.84 396.19 476.81 483.18 590.20 703.43 1139.67 1165.72 1191.45 1217.84		2.17E-03 3.76E-03 9.56E-04 3.52E-03 9.99E-04 3.20E-03 4.54E-03 8.57E-04 2.17E-03 3.31E-03 1.52E-03 7.24E-04 7.15E-04 1.80E-03 1.30E-03	58.2 21.4 113.5 23.9 85.4 37.3 21.2 121.9 32.4 30.0 57.0 102.0 90.5 29.4 55.5	1.54E+01
16 17 18 19	0 0	910.97* 969.34* 1120.36*	35 66 93	300 246 286	1.45 1.68 1.33	1821.72 1938.52	9.93E-01 9.48E-01 8.54E-01	7.52E-04	66.1	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide	Type. Hacard	<i>x</i> ±			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn 1.75	%Eff 1.059E+00	pCi/L	pCi/L ne Not Found	%Error 
AC-228	835.50 911.07	35	27.70*	9.926E-01	3.971E+00	3.973E+00	243.90 243.81
TH-228	238.63 240.98	75 190	44.60* 3.95	2.891E+00 2.865E+00	1.791E+00 5.167E+01	1.794E+00 5.175E+01	64.74
TH-232	583.14 911.07 969.11	63 35 66	30.25 27.70* 16.60	1.403E+00 9.926E-01 9.482E-01	4.541E+00 3.971E+00 1.287E+01	4.541E+00 3.971E+00 1.287E+01	180.94 243.90 132.20
	707.11	0.0					

Flaq: "*" = Keyline

Page: 2 Summary of Nuclide Activity

Acquisition date : 11-AUG-2006 14:51:59 Sample ID : 23L29557-3

19 Total number of lines in spectrum Number of unidentified lines 14

Number of lines tentatively identified by NID 5 26.32%

Nuclide Type : natural

Nuclide	Hlife	Decay	Uncorrected pCi/L	pĊi/L	Decay Corr 2-Sigma Error	%Error F	lags
AC-228 TH-228 TH-232 1.	5.75Y 1.91Y 41E+10Y	1.00	3.971E+00 1.791E+00 3.971E+00	3.973E+00 1.794E+00 3.971E+00	4.374E+00	243.90 243.81 243.90	

Total Activity : 9.734E+00 9.739E+00

Grand Total Activity: 9.734E+00 9.739E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3

Unidentified Energy Lines Sample ID : 23L29557-3

Acquisition date : 11-AUG-2006 14:51:59

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff F	'lags
9	35.37	190	900	2.52	71.23	64	23	2.17E-03	***	1.93E-01	
9	40.54	330	1701	1.97	81.55	64	23	3.76E-03	42.9	3.80E-01	
1	63.29	84	1880	1.22	127.00	122	15	9.56E-04	***	1.68E+00	
1	66.19	309	1849	1.22	132.78	122	15	3.52E-03	47.8	1.85E+00	
0	77.00	88	1646	1.37	154.39	152	6	9.99E-04	***	2.43E+00	
0	139.80	281	2665	1.14	279.84	276	9	3.20E-03	74.6	3.59E+00	
0	198.03	398	2068	1.80	396.19	392	9	4.54E-03	42.4	3.23E+00	
0	295.12	290	1474	1.01	590.20	585	11	3.31E-03	60.0	2.47E+00	
0	351.77	133	1065	1.26	703.43	699	9	1.52E-03	***	2.14E+00	
0	569.98	63	700	1.21	1139.67	1133	13	7.24E-04	****	1.43E+00	
0	595.88	158	571	0.98	1191.45	1187	10	1.80E-03	58.7	1.38E+00	
0	609.08	114	581	1.25	1217.84	1213	10	1.30E-03	****	1.35E+00	
0	726.98	30	263	0.86	1453.64	1451	8	3.41E-04	****	1.18E+00	
0	1120.36	93	286	1.33	2240.78	2233	16	1.06E-03	****	8.54E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 19 Number of unidentified lines Number of lines tentatively identified by NID 5 26.32%

Nuclide Type : natural

Nucriae	Type: Hac	шат	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide TH-228 TH-232	Hlife 1.91Y 1.41E+10Y			pCi/L 2.631E+00 5.326E+00	2-Sigma Error 4.338E+00 5.880E+00	%Error F 164.84 110.41	Flags
	Total Act	ivity :	7.953E+00	7.957E+00			

Grand Total Activity: 7.953E+00 7.957E+00

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

Interfe	ring	Interfered				
Nuclide	Line	Nuclide	Line			
TH-232	911.07	AC-228	911.07			

Combined Activity-MDA Report

# ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-228	2.631E+00	4.338E+00	4.259E+00	0.000E+00	0.618

TH-232 5.326E+00 5.880E+00 8.676E+00 0.000E+00 0.614

l	Non-I	dent	ified	Nucli	.des	
---	-------	------	-------	-------	------	--

Nuclide	Key-Line Activity K.L. (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
	_				0 006
BE-7	4.918E+00	1.235E+01	2.088E+01	0.000E+00	0.236
NA-24	-3.268E+00	7.029E+00	1.179E+01	0.000E+00	-0.277
K-40	-3.756E+01	3.558E+01	5.953E+01	0.000E+00	-0.631
CR-51	1.384E+01	1.216E+01	2.100E+01	0.000E+00	0.659
MN-54	-9.918E-02	1.423E+00	2.467E+00	0.000E+00	-0.040
CO-57	9.517E-01	1.378E+00	2.231E+00	0.000E+00	0.427
CO-58	-6.698E-01	1.344E+00	2.299E+00	0.000E+00	-0.291
FE-59	-3.221E-01	2.734E+00	4.691E+00	0.000E+00	-0.069
CO-60	4.499E-01	1.501E+00	2.619E+00	0.000E+00	0.172
ZN-65	9.623E-01	3.266E+00	4.994E+00	0.000E+00	0.193
SE-75	1.071E+00	1.927E+00	3.293E+00	0.000E+00	0.325
SR-85	-1.658E+01	2.082E+00	2.839E+00	0.000E+00	-5.841
Y-88	-5.208E-01	1.465E+00	2.442E+00	0.000E+00	-0.213
NB-94	-2.617E-01	1.471E+00	2.411E+00	0.000E+00	-0.109
NB-95	8.749E-01	1.446E+00	2.444E+00	0.000E+00	0.358
ZR-95	-9.082E-01	2.546E+00	4.139E+00	0.000E+00	-0.219
MO-99	-1.436E-02	1.624E+01	2.680E+01	0.000E+00	-0.001
RU-103	-3.046E-02	1.544E+00	2.572E+00	0.000E+00	-0.012
RU-106	-1.546E+00	1.389E+01	2.295E+01	0.000E+00	-0.067
AG-110m	-6.780E-02	1.472E+00	2.433E+00	0.000E+00	-0.028
SN-113	-1.968E-01	1.928E+00	3.226E+00	0.000E+00	-0.061 -0.355
SB-124	-9.083E-01	1.632E+00	2.557E+00	0.000E+00	-0.355
SB-125	-2.526E+00	4.161E+00	6.852E+00	0.000E+00	-0.356
TE-129M	-1.003E+01	1.714E+01	2.817E+01	0.000E+00	0.326
I-131	9.320E-01	1.678E+00	2.858E+00	0.000E+00	0.546
BA-133	1.874E+00	2.266E+00	3.433E+00	0.000E+00 0.000E+00	-0.002
CS-134	-3.836E-03	1.763E+00	2.549E+00		-0.002
CS-136	-2.323E-01	1.480E+00	2.562E+00	0.000E+00	-0.461
CS-137	-1.213E+00	1.634E+00	2.630E+00	0.000E+00 0.000E+00	-0.310
CE-139	-7.152E-01	1.361E+00	2.308E+00	0.000E+00	0.131
BA-140	1.240E+00	5.626E+00	9.438E+00 2.830E+00	0.000E+00	-0.610
LA-140	-1.726E+00	1.762E+00		0.000E+00	0.137
CE-141	5.455E-01	2.393E+00	3.982E+00		-0.109
CE-144	-1.872E+00	1.006E+01	1.723E+01	0.000E+00 0.000E+00	-0.166
EU-152	-1.233E+00	4.450E+00	7.441E+00	0.000E+00	-0.193
EU-154	-9.004E-01	2.938E+00	4.675E+00	0.000E+00	-0.415
RA-226	-2.863E+01	5.364E+01	6.906E+01	0.000E+00	0.372
AC-228	3.973E+00	9.691E+00	1.067E+01	0.000E+00	-0.072
U-235	-1.312E+00	1.470E+01	1.812E+01	0.000E+00	0.039
U-238	1.205E+01	2.240E+02	3.116E+02		0.624
AM-241	7.290E+00	7.886E+00	1.168E+01	0.000E+00	0.6∠4

0.624

1.168E+01,,

```
1.003E+00,L29557-3 WG EX
                     ,08/14/2006 13:12,08/10/2006 14:20,
A,23L29557-3
                                             ,08/11/2006 09:57,231L082404
                     , LIBD
B,23L29557-3
                                                   4.259E+00,,
                                                                    0.618
           ,YES,
                     2.631E+00,
                                    4.338E+00,
C, TH-228
                                                   8.676E+00,,
                                                                    0.614
            , YES,
                     5.326E+00,
                                    5.880E+00,
C, TH-232
                                                                    0.236
                                    1.235E+01,
                                                   2.088E+01,,
C, BE-7
            , NO
                     4.918E+00,
                                                   1.179E+01,,
                                                                   -0.277
                                    7.029E+00,
                    -3.268E+00,
C, NA-24
            , NO
                                                                   -0.631
                                                   5.953E+01,,
C, K-40
                    -3.756E+01,
                                    3.558E+01,
            , NO
                                                                    0.659
                                                   2.100E+01,,
            , NO
                                    1.216E+01,
C, CR-51
                     1.384E+01,
                                                                   -0.040
                                    1.423E+00,
                                                   2.467E+00,,
C, MN-54
            , NO
                    -9.918E-02,
                                                                    0.427
                                                   2.231E+00,,
            , NO
                                    1.378E+00,
C, CO-57
                     9.517E-01,
                                    1.344E+00,
                                                   2.299E+00,,
                                                                   -0.291
                    -6.698E-01,
C, CO-58
            , NO
                                                   4.691E+00,,
                                                                   -0.069
                                    2.734E+00,
C, FE-59
            , NO
                    -3.221E-01,
                                    1.501E+00,
                                                                     0.172
                                                   2.619E+00,,
                     4.499E-01,
C, CO-60
            ,NO
                                                   4.994E+00,,
                                                                     0.193
                                    3.266E+00,
C, ZN-65
            ,NO
                     9.623E-01,
                                                   3.293E+00,,
                                                                     0.325
                     1.071E+00,
                                    1.927E+00,
C, SE-75
            , NO
                                                   2.839E+00,,
                                                                   -5.841
C, SR-85
                    -1.658E+01,
                                    2.082E+00,
            ,NO
                                                   2.442E+00,,
                                                                   -0.213
                                    1.465E+00,
                    -5.208E-01,
C, Y-88
            , NO
                                                                   -0.109
                                                   2.411E+00,,
C, NB-94
            ,NO
                    -2.617E-01,
                                    1.471E+00,
                                                   2.444E+00,,
                                                                     0.358
                                    1.446E+00,
C, NB-95
            , NO
                     8.749E-01,
                                                   4.139E+00,,
                                                                   -0.219
            , NO
                    -9.082E-01,
                                    2.546E+00,
C, ZR-95
                                                                    -0.001
                                    1.624E+01,
                                                   2.680E+01,,
                    -1.436E-02,
C, MO-99
            , NO
                                                   2.572E+00,,
                                                                    -0.012
                                    1.544E+00,
C, RU-103
                    -3.046E-02,
            , NO
                                                                    -0.067
            , NO
                                                   2.295E+01,,
C, RU-106
                                    1.389E+01,
                    -1.546E+00,
                                                                    -0.028
                                    1.472E+00,
                                                   2.433E+00,,
C, AG-110m
            , NO
                    -6.780E-02,
                                                   3.226E+00,,
                                                                    -0.061
                    -1.968E-01,
                                    1.928E+00,
C, SN-113
            , NO
                    -9.083E-01,
                                    1.632E+00,
                                                   2.557E+00,,
                                                                    -0.355
C,SB-124
            , NO
                                                   6.852E+00,,
                                                                    -0.369
                                    4.161E+00,
                    -2.526E+00,
C,SB-125
            , NO
                                                   2.817E+01,,
                                                                    -0.356
                                    1.714E+01,
                    -1.003E+01,
C, TE-129M
            , NO
                                                   2.858E+00,,
                                                                     0.326
C, I-131
            , NO
                     9.320E-01,
                                    1.678E+00,
                                                                     0.546
                     1.874E+00,
                                    2.266E+00,
                                                   3.433E+00,,
C, BA-133
            , NO
                                                                    -0.002
                    -3.836E-03,
                                    1.763E+00,
                                                   2.549E+00,,
C, CS-134
            , NO
                                                   2.562E+00,,
                                                                    -0.091
            , NO
                                    1.480E+00,
C, CS-136
                    -2.323E-01,
                                    1.634E+00,
                                                                    -0.461
                                                   2.630E+00,,
                    -1.213E+00,
C, CS-137
            , NO
                                                   2.308E+00,,
                                                                    -0.310
C, CE-139
            , NO
                    -7.152E-01,
                                    1.361E+00,
                     1.240E+00,
                                    5.626E+00,
                                                    9.438E+00,,
                                                                     0.131
            , NO
C, BA-140
                                    1.762E+00,
                                                    2.830E+00,,
                                                                    -0.610
                    -1.726E+00,
C, LA-140
            , NO
                                                    3.982E+00,,
                                                                     0.137
                                    2.393E+00,
                     5.455E-01,
C, CE-141
            , NO
                                                                    -0.109
                                                    1.723E+01,,
                    -1.872E+00,
                                    1.006E+01,
C, CE-144
            , NO
                                                    7.441E+00,,
                                                                    -0.166
                                    4.450E+00,
            ,NO
                    -1.233E+00,
C, EU-152
                                                                    -0.193
C, EU-154
            , NO
                    -9.004E-01,
                                    2.938E+00,
                                                    4.675E+00,,
                                    5.364E+01,
                                                    6.906E+01,,
                                                                    -0.415
            , NO
                    -2.863E+01,
C, RA-226
                                                    1.067E+01,,
                                                                     0.372
                                    9.691E+00,
                      3.973E+00,
C, AC-228
            , NO
                                                    1.812E+01,,
                                                                    -0.072
                                    1.470E+01,
C, U-235
            , NO
                    -1.312E+00,
                                                                     0.039
                                                    3.116E+02,,
 C, U-238
                      1.205E+01,
                                     2.240E+02,
            , NO
```

7.886E+00,

, NO

7.290E+00,

C,AM-241

Sec. Review; Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-AUG-2006 15:59:43.54 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 11-AUG-2006 14:54:35.53

IBEO/ P-10/68B HPGe ^^^^^ AQUISICION DACE/IIME: II-A0G-2006 14.34.33.33

LIMS No., Customer Name, Client ID: L29557-4 WG EX/DRES

Sample ID : 07L29557-4 Smple Date: 10-AUG-2006 16:00:00.

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	294.98*	96	78	1.17	591.70	1.81E+00	2.47E-02	19.7	2.54E+00
2	1	351.63*	186	53	1.32	705.21	1.61E+00	4.78E-02	10.5	3.29E+00
3	1	608.99*	154	35	1.59	1220.67	1.09E+00	3.94E-02	12.0	9.67E-01
4	1	768.11	33	7	1.86	1539.19	9.20E-01	8.35E-03	25.7	1.16E+00
5	1	1120.31*	48	3	2.70	2243.68	7.03E-01	1.22E-02	16.9	7.00E-01
6	1	1238.12*	22	2	3.02	2479.17	6.55E-01	5.56E-03	26.0	1.70E+00
7	1	1765.14*	35	0	3.29	3531.72	5.12E-01	9.01E-03	18.2	2.43E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID : 07L29557-4

Acquisition date : 11-AUG-2006 14:54:35

Total number of lines in spectrum 7
Number of unidentified lines 7
Number of lines tentatively identified by NID 0
**** There are no nuclides meeting summary criteria ****

0.00%

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID : 07L29557-4

Acquisition date : 11-AUG-2006 14:54:35

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	294.98	96	78	1.17	591.70	587	9	2.47E-02	39.4	1.81E+00	
1	351.63	186	53	1.32	705.21	700	10	4.78E-02	20.9	1.61E+00	
1	608.99	154	35	1.59	1220.67	1215	14	3.94E-02	24.0	1.09E+00	
1	768.11	33	7	1.86	1539.19	1533	13	8.35E-03	51.4	9.20E-01	
1	1120.31	48	3	2.70	2243.68	2238	12	1.22E-02	33.8	7.03E-01	
1	1238.12	22	2	3.02	2479.17	2474	9	5.56E-03	52.0	6.55E-01	
1	1765.14	35	0	3.29	3531.72	3526	12	9.01E-03	36.3	5.12E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum Number of unidentified lines Number of lines tentatively identified by NID 0.00% **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted

"A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103	9.495E+00 2.916E+00 -4.351E+01 1.148E+01 1.341E+00 6.500E-01 -8.201E-01 2.322E+00 4.658E+00 1.596E+00 -1.623E+01 2.125E+00 7.547E-01 5.705E+00 -2.273E+00 5.048E+00 -2.283E+00		3.080E+01 1.015E+01 4.369E+01 2.891E+01 3.662E+00 3.475E+00 3.028E+00 6.463E+00 3.503E+00 6.662E+00 4.353E+00 4.353E+00 4.505E+00 3.657E+00 3.762E+00 6.063E+00 3.494E+01 3.783E+00	5.171E+01 1.793E+01 8.760E+01 4.967E+01 6.363E+00 5.681E+00 1.023E+01 6.581E+00 1.132E+01 7.509E+00 5.119E+00 8.061E+00 6.266E+00 6.975E+00 9.541E+00 5.935E+01 5.662E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.184 0.163 -0.497 0.231 0.211 0.114 0.125 -0.080 0.353 0.411 0.213 -3.170 0.264 0.120 0.818 -0.238 0.085 -0.403
RU-106 AG-110m SN-113	-1.116E+00 -2.384E+00 -1.738E+00		2.803E+01 3.456E+00 4.437E+00	4.697E+01 5.277E+00 6.957E+00	0.000E+00 0.000E+00 0.000E+00	-0.024 -0.452 -0.250

SB-124 SB-125 TE-129M	-1.019E+00 -4.718E+00 9.172E-01	3.891E+00 9.590E+00 3.867E+01	5.123E+00 1.469E+01 6.300E+01	0.000E+00 0.000E+00 0.000E+00	-0.199 -0.321 0.015
I-131	-7.029E-01	3.186E+00	5.101E+00	0.000E+00	-0.138
BA-133	3.103E+00	4.970E+00	7.846E+00	0.000E+00	0.396
CS-134	7.604E-01	3.578E+00	5.200E+00	0.000E+00	0.146
CS-136	5.512E-01	3.244E+00	5.521E+00	0.000E+00	0.100
CS-137	7.968E-01	3.816E+00	6.573E+00	0.000E+00	0.121
CE-139	2.152E+00	3.523E+00	5.868E+00	0.000E+00	0.367
BA-140	8.803E+00	1.272E+01	2.235E+01	0.000E+00	0.394
LA-140	3.210E+00	4.396E+00	8.282E+00	0.000E+00	0.388
CE-141	-2.021E+00	5.829E+00	9.074E+00	0.000E+00	-0.223
CE-144	-6.087E+00	2.794E+01	4.417E+01	0.000E+00	-0.138
EU-152	2.424E+00	1.093E+01	1.843E+01	0.000E+00	0.131
EU-154	-1.355E+00	7.285E+00	1.158E+01	0.000E+00	-0.117
RA-226	2.449E+01	1.001E+02	1.702E+02	0.000E+00	0.144
AC-228	-4.396E+00	1.192E+01	2.142E+01	0.000E+00	-0.205
TH-228	-1.070E+01	7.438E+00	1.200E+01	0.000E+00	-0.892
TH-232	-4.394E+00	1.191E+01	2.141E+01	0.000E+00	-0.205
U-235	8.683E+00	2.721E+01	4.501E+01	0.000E+00	0.193
U-238	1.021E+02	4.461E+02	7.601E+02	0.000E+00	0.134
AM-241	-1.901E+01	3.063E+01	4.823E+01	0.000E+00	-0.394

```
A,07L29557-4
                     ,08/11/2006 15:59,08/10/2006 16:00,
                                                                 3.016E+00,L29557-4 WG EX
B,07L29557-4
                     ,LIBD
                                             ,08/11/2006 09:47,073L082504
           , NO
C, BE-7
                                    3.080E+01,
                                                   5.171E+01,,
                     9.495E+00,
                                                                    0.184
C, NA-24
           , NO
                     2.916E+00,
                                    1.015E+01,
                                                   1.793E+01,,
                                                                    0.163
           , NO
C, K-40
                                                   8.760E+01,,
                   -4.351E+01,
                                    4.369E+01,
                                                                   -0.497
C, CR-51
           , NO
                    1.148E+01,
                                    2.891E+01,
                                                   4.967E+01,,
                                                                    0.231
C, MN-54
           , NO
                    1.341E+00,
                                                   6.363E+00,,
                                    3.662E+00,
                                                                    0.211
C, CO-57
           , NO
                    6.500E-01,
                                    3.475E+00,
                                                   5.681E+00,,
                                                                    0.114
                     6.500E-01,
C, CO-58
           , NO
                                    3.028E+00,
                                                   5.196E+00,,
                                                                    0.125
C, FE-59
                                                   1.023E+01,,
           , NO
                   -8.201E-01,
                                    6.463E+00,
                                                                   -0.080
           , NO
C, CO-60
                     2.322E+00,
                                    3.503E+00,
                                                   6.581E+00,,
                                                                    0.353
C, ZN-65
                     4.658E+00,
                                                   1.132E+01,,
           , NO
                                    6.662E+00,
                                                                    0.411
C, SE-75
           , NO
                     1.596E+00,
                                    4.353E+00,
                                                   7.509E+00,,
                                                                    0.213
C, SR-85
                                                   5.119E+00,,
           , NO
                   -1.623E+01,
                                    4.837E+00,
                                                                   -3.170
C, Y-88
           , NO
                     2.125E+00,
                                                   8.061E+00,,
                                    4.505E+00,
                                                                    0.264
C, NB-94
           , NO
                     7.547E-01,
                                    3.657E+00,
                                                   6.266E+00,,
                                                                    0.120
C, NB-95
           , NO
                     5.705E+00,
                                    3.762E+00,
                                                   6.975E+00,,
                                                                    0.818
C, ZR-95
           , NO
                                                   9.541E+00,,
                   -2.273E+00,
                                    6.063E+00,
                                                                   -0.238
C, MO-99
           , NO
                     5.048E+00,
                                    3.494E+01,
                                                   5.935E+01,,
                                                                    0.085
           , NO
                                    3.783E+00,
C, RU-103
                   -2.283E+00,
                                                   5.662E+00,,
                                                                   -0.403
C, RU-106
           , NO
                   -1.116E+00,
                                    2.803E+01,
                                                   4.697E+01,,
                                                                   -0.024
C, AG-110m
           ,NO
                   -2.384E+00,
                                    3.456E+00,
                                                   5.277E+00,,
                                                                   -0.452
C, SN-113
           , NO
                   -1.738E+00,
                                                   6.957E+00,,
                                    4.437E+00,
                                                                   -0.250
C,SB-124
           , NO
                   -1.019E+00,
                                    3.891E+00,
                                                   5.123E+00,,
                                                                   -0.199
           , NO
C,SB-125
                                                   1.469E+01,,
                    -4.718E+00,
                                    9.590E+00,
                                                                   -0.321
           ,NO
C, TE-129M
                     9.172E-01,
                                    3.867E+01,
                                                   6.300E+01,,
                                                                    0.015
C, I-131
           , NO
                    -7.029E-01,
                                    3.186E+00,
                                                   5.101E+00,,
                                                                   -0.138
C, BA-133
           , NO
                     3.103E+00,
                                    4.970E+00,
                                                   7.846E+00,,
                                                                    0.396
           , NO
                     7.604E-01,
C, CS-134
                                    3.578E+00,
                                                   5.200E+00,,
                                                                    0.146
C, CS-136
           , NO
                     5.512E-01,
                                    3.244E+00,
                                                   5.521E+00,,
                                                                    0.100
C, CS-137
           , NO
                     7.968E-01,
                                    3.816E+00,
                                                   6.573E+00,,
                                                                    0.121
C, CE-139
                                                   5.868E+00,,
            , NO
                     2.152E+00,
                                    3.523E+00,
                                                                    0.367
           , NO
C, BA-140
                     8.803E+00,
                                    1.272E+01,
                                                   2.235E+01,,
                                                                    0.394
C, LA-140
           , NO
                                                   8.282E+00,,
                     3.210E+00,
                                    4.396E+00,
                                                                    0.388
C, CE-141
           , NO
                    -2.021E+00,
                                    5.829E+00,
                                                   9.074E+00,,
                                                                   -0.223
C, CE-144
           , NO
                   -6.087E+00,
                                    2.794E+01,
                                                   4.417E+01,,
                                                                   -0.138
C, EU-152
           , NO
                     2.424E+00,
                                    1.093E+01,
                                                   1.843E+01,,
                                                                    0.131
C, EU-154
           , NO
                    -1.355E+00,
                                    7.285E+00,
                                                   1.158E+01,,
                                                                   -0.117
C, RA-226
            , NO
                     2.449E+01,
                                    1.001E+02,
                                                   1.702E+02,,
                                                                    0.144
           , NO
C, AC-228
                    -4.396E+00,
                                    1.192E+01,
                                                   2.142E+01,,
                                                                   -0.205
C, TH-228
           , NO
                    -1.070E+01,
                                                   1.200E+01,,
                                    7.438E+00,
                                                                   -0.892
C, TH-232
            , NO
                    -4.394E+00,
                                    1.191E+01,
                                                   2.141E+01,,
                                                                   -0.205
C,U-235
                     8.683E+00,
                                                   4.501E+01,,
            , NO
                                    2.721E+01,
                                                                    0.193
C, U-238
            , NO
                     1.021E+02,
                                    4.461E+02,
                                                   7.601E+02,,
                                                                    0.134
C, AM-241
```

3.063E+01,

4.823E+01,,

-0.394

, NO

-1.901E+01,



2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L29576
Exelon
August 16, 2006



Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

# Case Narrative - L29576 EX001-3ESPDRES-06

08/16/2006 15:10

# Sample Receipt

The following samples were received on August 12, 2006 in good condition, unless otherwise noted.

Cross Reference Table

	Cross Itajor crico I de	
Client ID	Laboratory ID	Station ID(if applicable)
WG-DN-MW-DN-119S-081106-GL-017	L29576-1	
WG-DN-MW-DN-119I-081106-GL-018	L29576-2	
WG-DN-MW-DN-115I-081106-GL-019	L29576-3	
WG-DN-MW-DN-114S-081106-GL-020	L29576-4	
WG-DN-MW-DN-114S-081106-GL-021	L29576-5	
	WG-DN-MW-DN-119S-081106-GL-017 WG-DN-MW-DN-119I-081106-GL-018 WG-DN-MW-DN-115I-081106-GL-019 WG-DN-MW-DN-114S-081106-GL-020	Client ID       Laboratory ID         WG-DN-MW-DN-119S-081106-GL-017       L29576-1         WG-DN-MW-DN-119I-081106-GL-018       L29576-2         WG-DN-MW-DN-115I-081106-GL-019       L29576-3         WG-DN-MW-DN-114S-081106-GL-020       L29576-4

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3 (DIST)	TBE-2010	
TOTAL SR	TBE-2018	EPA 905.0



2508 Quality Lane
Knoxville, TN 37931-3133

# Case Narrative - L29576 EX001-3ESPDRES-06

08/16/2006 15:10

## **Gamma Spectroscopy**

#### **Quality Control**

Quality control samples were analyzed as WG4314.

**Duplicate Sample** 

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

Laboratory ID

QC Sample #

WG-DN-MW-DN-119S-081106-GL-017

L29576-1

WG4314-1

#### H-3 (DIST)

#### **Quality Control**

Quality control samples were analyzed as WG4320.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

Laboratory ID

QC Sample #

WG-DN-MW-DN-119S-081106-GL-017

L29576-1

WG4320-3



2508 Quality Lane Knoxville, TN 37931-3133

# Case Narrative - L29576 EX001-3ESPDRES-06

08/16/2006 15:10

#### TOTAL SR

#### **Quality Control**

Quality control samples were analyzed as WG4323.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### **Laboratory Control Sample**

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

 Client ID
 Laboratory ID
 QC Sample #

 WG-DN-MW-DN-119S-081106-GL-017
 L29576-1
 WG4323-3

## Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

# Sample Receipt Summary

08/14/06 08:40

Teledyne Brown Engineering
Sample Receipt Verification/Variance Report

SR09902 SR #:

Client: Exelon

Project #: EX001-3ESPDRES-06

LIMS #:L29576

Initiated By: PMARSHALL									
Init Date: 08/14/06 Receive Date: 08/12/06									
Notification of Variance									
Person Notified: Contacted By:									
Notify Date:									
Notify Method:									
Notify Comment:									
Client Resp	onse								
Person Responding:									
Response Date:									
Response Method:									
Response Comment									
Criteria	Yes No NA	Comment							
	t NA								
1 Shipping container custody seals presen and intact.									
2 Sample container custody seals present and intact.	NA								
3 Sample containers received in good condition	Y								
4 Chain of custody received with samples	Y								
5 All samples listed on chain of custody received	Y								
6 Sample container labels present and legible.	Y								
7 Information on container labels correspond with chain of custody	Y								
8 Sample(s) properly preserved and in appropriate container(s)	N	Gamma portion of samples required 5mL of nitric to bring pH to 2.							
	NA	OWN OI HICITO CO STATE F							
9 Other (Describe)	INT								

CONES	3TOGA-R 9033 Mei	CONESTOGA-ROVERS & ASSOCIATES	SHIPPED TO (Laboratory Name):			412021
	West Chester,	West Chester, Ohio 45069		TELEDYNE	E BROWN ENGINCERING	İ
	513-942-	513-942-8585 fax	REFERENCE NUMBER:	BER:		
	CHAIN-OF	CHAIN-OF-CUSTODY RECORD	45130-23-0015	3015	EXCELON / DRESDEN	EACT LT TY
SAMPLER	SAMPLER'S RECLUES.	B. Parith PRINTED RICHEL	tehel Nashett	30	PARAMETERS が終しま	
SEQ. DA	DATE TIME	SAMPLE IDENTIFICATION	ATION No.	SAMPLE No. TO MATRIX CONTAIN	Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria	REMARKS
<b>6</b> 0	8-11-06 09cc	119 - 12 - 541 - 119 - WA - 119 - 5W		H,6 2	X X X	
	0160	- I 6/1 - 1 - 1 - 1		H,0 2	XXX	
	1136	, 191 - , , ,	610		× × ×	
	1815	- 2011 1145 -	970-   -	H, 0 2	× × ×	
	1340	- Shil - 4 - 4 - 4 - 4	4 - 4-021×		× × ×	
				Para Para Para Para Para Para Para Para		
			And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t			
		A Time And A Designation of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the				
				· · ·		
		TOTAL NUMBER OF CONTAINERS	- 1	0		
RELINQUIS	SHED BY:	-	DATE:	- CC RECEIVED BY:	) BY:	DATE:
<u>.</u>	O reals hi	//eoutha	TIME: 1400			TIME:
RELINQUIS	SHED BY:		DATE:	RECEIVED BY:	) BY:	DATE:
(Z)		+ categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism and the categorism	TIME:	<u>ල</u>		TIME:
RELINQUISHED BY:	SHED BY:		DATE:	RECEIVED BY:	) BY:	DATE:
<u>ල</u>		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	TIME:	4		TIME:
METHOL	METHOD OF SHIPMENT:	MENT: DHL		AIR	AIR BILL No.	
White	-Fully E		SAMPLE TEAM:	Andrews (1977) and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	RECEIVED FOR LABORATORY BY:	
Yellow Pink	-Recel -Shipp	-Kecelving Laboratory Copy -Shipper Copy	B	**************************************	⇃	004760
Goldenrod			IK. NASHETT	MANAGEMENT PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPE	DATE: 8/18/66 TIME: 11,50	

1001-00(SOURCE)GN-CO004

AUG 1 4 2006

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

### ACKNOWLEDGEMENT This is not an invoice

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville, CT 06062

August 14, 2006

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on August 12, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by August 17, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID: EX001-3ESPDRES-06

P.O. #: 00411203

Release #:

Contract#: 00411203

Kathy Shaw, FAX#:860-747-1900, larry.walton@exeloncorp.com

Client ID/ Station	Laboratory ID Analysis	Vol/Units Price	Start Collect End Collect Date/Time Date/Time
WG-DN-MW-DN-1195-0811	06-GL-0 L29576-1		08/11/06:0900
WG WG	GELI H-3 (DIST)	135.00 135.00	
WG	SR-90 (FAST)	175.00	
WG-DN-MW-DN-119I-0811	)6-GL-0 L29576-2		08/11/06:0910
WG	GELI	135.00	
WG WG	H-3 (DIST) SR-90 (FAST)	135.00 175.00	
WG-DN-MW-DN-115I-0811	06-GL-0 L29576-3		08/11/06:1130
WG	GELI	135.00	
WG	H-3 (DIST)	135.00	
WG	SR-90 (FAST)	175.00	
WG-DN-MW-DN-1145-0811	06-GL-0 L29576-4		08/11/06:1315
WG	GELI	135.00	
WG	H-3 (DIST)	135.00	
WG	SR-90 (FAST)	175.00	
WG-DN-MW-DN-1145-0811	06-GL-0 L29576-5		08/11/06:1340

Client ID/ Station	Laboratory ID Analysis	Vol/Units Price	Collect e/Time
WG	GELI	135.00	
WG	H-3 (DIST)	135.00	
WG	SR-90 (FAST)	175.00	

End of document

### Internal Chain of Custody

Relinquish Date Relinquish By

08/12/2006 00:00

Teledyne Brown Engineering

Internal Chain of Custody *********************** Containernum Sample # L29576-1 Analyst Prod DWH-3 (DIST) DW GELI LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 08/12/2006 00:00 Donna Webb 030854 Sample Custodian 099999 08/14/2006 11:16 Lauren Larsen Donna Webb 029728 08/15/2006 09:04 030854 Donna Webb 030854 Lauren Larsen 08/15/2006 10:08 029728 Donna Webb Sample Custodian 030854 08/15/2006 10:09 099999 Sample Custodian 099999 Donna Webb 030854 08/15/2006 10:09 099999 Sample Custodian Donna Webb 08/15/2006 10:10 030854 ************************ Containernum 2 Sample # L29576-1 Analyst Prod DMH-3 (DIST) DW GELI LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/12/2006 00:00 030854 Donna Webb Sample Custodian 08/14/2006 11:16 099999 Lauren Larsen Donna Webb 029728 030854 08/15/2006 09:04 *********************** Containernum 1 Sample # L29576-2 Analyst Prod DW H-3 (DIST) DW GELI LCB SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 08/12/2006 00:00 030854 Donna Webb Sample Custodian 099999 08/14/2006 11:16 Lauren Larsen 029728 Donna Webb 08/15/2006 09:04 030854 Donna Webb 030854 Lauren Larsen 08/15/2006 10:08 029728 Donna Webb 030854 Sample Custodian 08/15/2006 10:09 099999 Sample Custodian 099999 Donna Webb 030854 08/15/2006 10:09 Sample Custodian Donna Webb 099999 030854 08/15/2006 10:10 ********************** Containernum 2 Sample # L29576-2 Analyst Prod H-3 (DIST) DW DW **GELI** LCB SR-90 (FAST)

Received By

Sample Custodian

099999

Teledyne Brown Engineering
Internal Chain of Custody

**************************************		**************************************	******	****
Relinquish Date			Received By	
08/14/2006 11:16	099999	Sample Custodian	030854	Donna Webb
08/15/2006 09:04	030854	Donna Webb	029728	Lauren Larsen
**************************************		**************************************	******	****
Prod	Analys	st		
H-3 (DIST)	DW			
GELI	DW			
SR-90 (FAST)	LCB		Domained Dr.	
Relinquish Date Reli 08/12/2006 00:00	ndnisu BA		Received By 099999	Sample Custodian
08/14/2006 11:16	099999	Sample Custodian	030854	Donna Webb
08/15/2006 09:04	030854	Donna Webb	029728	Lauren Larsen
08/15/2006 09:04	029728	Lauren Larsen	030854	Donna Webb
08/15/2006 10:09	099999	Sample Custodian	030854	Donna Webb
• •	030854	Donna Webb	099999	Sample Custodian
08/15/2006 10:09		Donna Webb	099999	Sample Custodian
08/15/2006 10:10	030854 ******	*****************		_
Sample # L29576-3		Containernum 2		
Prod	Analys	st		
H-3 (DIST)	D₩			
GELI	D₩			
SR-90 (FAST)	LCB			
Relinquish Date Reli	nquish By		Received By 099999	Sample Custodian
08/12/2006 00:00	00000	Sample Custodian	030854	Donna Webb
08/14/2006 11:16	099999	Sample Custodian  Donna Webb	029728	Lauren Larsen
08/15/2006 09:04	030854	Donna webb		
Sample # L29576-4		containernum 1	******	****
Prod	Analy	st		
H-3 (DIST)	DW			
GELI	DW			
SR-90 (FAST)	LCB			
Relinquish Date Reli	.nquish By		Received By	a 1 a 1 1
08/12/2006 00:00			099999	Sample Custodian
08/14/2006 11:16	099999	Sample Custodian	030854	Donna Webb
08/15/2006 09:04	030854	Donna Webb	029728	Lauren Larsen
08/15/2006 10:08	029728	Lauren Larsen	030854	Donna Webb
08/15/2006 10:09	099999	Sample Custodian	030854	Donna Webb
08/15/2006 10:09	030854	Donna Webb	099999	Sample Custodian
08/15/2006 10:10	030854	Donna Webb	099999	Sample Custodian
**************************************		************* Containernum 2	*****	****
Prod H-3 (DIST)	Analy: DW	st		

Teledyne Brown Engineering

Internal Chain of Custody ****************** Containernum 2 Sample # L29576-4 DW GELI LCB SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/12/2006 00:00 030854 Donna Webb Sample Custodian 08/14/2006 11:16 099999 Lauren Larsen 029728 Donna Webb 08/15/2006 09:04 030854 ***************** Containernum 1 Sample # L29576-5 Analyst Prod LCB SR-90 (FAST) H-3 (DIST) DW GELI DW Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/12/2006 00:00 030854 Donna Webb Sample Custodian 08/14/2006 11:16 099999 Lauren Larsen Donna Webb 029728 08/15/2006 09:04 030854 030854 Donna Webb Lauren Larsen 08/15/2006 10:08 029728 Donna Webb 030854 Sample Custodian 08/15/2006 10:09 099999 099999 Sample Custodian Donna Webb 08/15/2006 10:09 030854 Sample Custodian 099999 Donna Webb 030854 08/15/2006 10:10 ******************

Sample # L29576-5

Containernum 2

Analyst Prod LCB SR-90 (FAST) H-3 (DIST) DW DW GELI

Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/12/2006 00:00 030854 Donna Webb Sample Custodian 08/14/2006 11:16 099999 Donna Webb 029728 Lauren Larsen 08/15/2006 09:04 030854

### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

### L29576

	L29576		
*****	*******		******
L29576-1	WG WG-DN-MW-DN-119S-08	1106-GL-017	
Process step	Prod	<u>Analyst</u>	Date
Login		RCHARLES	08/12/06
Aliquot	GELI	DW	08/14/06
Aliquot	SR-90 (FAST)	LCB	08/14/06
Aliquot	H-3 (DIST)	DW	08/15/06
Count Room	GELI	ILL	08/14/06
Count Room	H-3 (DIST)	KOJ	08/15/06
Count Room	SR-90 (FAST)	KOJ	08/15/06
*****	******	******	*******
L29576-2	WG WG-DN-MW-DN-119I-08	1106-GL-018	
Process step	Prod	<u>Analyst</u>	<u>Date</u>
Login		RCHARLES	08/12/06
Aliquot	GELI	DW	08/14/06
Aliquot	SR-90 (FAST)	LCB	08/14/06
Aliquot	H-3 (DIST)	DW	08/15/06
Count Room	GELI	ILL	08/14/06
Count Room	H-3 (DIST)	KOJ	08/15/06
Count Room	SR-90 (FAST)	KOJ	08/15/06
*****	******	*****	******
L29576-3	WG WG-DN-MW-DN-115I-08	1106-GL-019	
Process step	Prod	Analyst	Date
Login		RCHARLES	08/12/06
Aliquot	GELI	DW	08/14/06
Aliquot	SR-90 (FAST)	LCB	08/14/06
Aliquot	H-3 (DIST)	DM ,	08/15/06
Count Room	GELI	ILL	08/14/06
Count Room	H-3 (DIST)	KOJ	08/15/06
Count Room	SR-90 (FAST)	KOJ	08/15/06
****	******	*****	*******
L29576-4	WG WG-DN-MW-DN-114S-08	31106-GL-020	
Process step	Prod	<u>Analyst</u>	Date
Login		RCHARLES	08/12/06
Aliquot	GELI	DW	08/14/06
Aliquot	SR-90 (FAST)	LCB	08/14/06
Aliquot	H-3 (DIST)	DW	08/15/06
Count Room	GELI	ILL	08/14/06
Count Room	H-3 (DIST)	KOJ	08/15/06
Count Room	SR-90 (FAST)	KOJ	08/16/06
	*****	*****	******
L29576-5	WG WG-DN-MW-DN-114S-08	31106-GL-021	
Process step	Prod	Analyst	Date
Login		RCHARLES	08/12/06
Aliquot	GELI	DW	08/14/06
Aliquot	SR-90 (FAST)	LCB	08/14/06
Aliquot	H-3 (DIST)	DW	08/15/06
Count Room	GELI	ILL	08/14/06

Page 2 of 2

08/15/06

08/16/06

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L29576

L29576-5 WG WG-DN-MW-DN-114S-081106-GL-021

Count Room H-3 (DIST) KOJ

Count Room SR-90 (FAST) KOJ 08/16/06

### Analytical Results Summary

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29576

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

(MG) Matrix: Ground Water Volume: % Moisture: Collect Start: 08/11/2006 09:00 Receive Date: 08/12/2006 Collect Stop: Sample ID: WG-DN-MW-DN-119S-081106-GL-017 1 29576-1 I IM C Mumber Station: Description: Kathy Shaw

Activity         Uncertainty         MDC         Units         Run         Aliquot         Aniquot         Aniquot         Aniquot         Aniquot         Aniquot         Date         Date         Time         Units           ST)         Conc         2 Sigma         MDC         Units         #         Volume         Units         Date         Date         Time         Units           ST)         2010         -2.60E+01         1.09E+02         1.83E+02         pCi/L         450         ml         08/11/06<09:00         08/14/06         4501         Sec         U           SR         2018         2.50E-01         3.52E+00         5.60E+00         pCi/L         2869.35         ml         08/11/06<09:00         08/14/06         4501         Sec         U           SR         2007         -4.42E-01         3.5E+00         pCi/L         2869.35         ml         08/11/06         09:00         08/14/06         4501         Sec         U           SRE-01         3.5E+00         1.12E+01         pCi/L         2869.35         ml         08/11/06         09:00         08/14/06         4501         Sec         U           2007         -1.8E+00         4.3E+00         pCi/L	LIMS Number: E2270-1	1-0/0						ŀ			Count	Count	Count		
2010         -2.60E+01         1.09E+02         1.83E+02         PCi/L         450         ml         08/11/06 09:00         08/15/06         60         M           2018         2.50E-01         7.05E-01         1.44E+00         PCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         M           2007         -4.42E-01         3.52E+00         5.60E+00         PCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -4.42E-01         3.52E+00         6.02E+00         PCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -3.85E-01         3.52E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -3.85E-01         3.25E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.89E+00         8.25E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.89E+00         4.2E+00         pCi/L	Radionuclide	SOP#	Activity Cone	Uncertainty 2 Sigma	MDC	Units	Run #		Aliquot Units	Keierence Date	Date	Time	Units	Flag Values	
2010         -2.60E+01         1.09E+02         1.83E+02         pCi/L         10         IIII         08/11/06 09:00         08/15/06         80         M           2018         2.50E+01         7.05E-01         1.44E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/15/06         80         M           2007         -4.42E-01         3.52E+00         5.60E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -6.5E-01         3.61E+00         6.02E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -3.85E-01         3.25E+00         5.20E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.89E+00         6.52E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.3E+00         6.7E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.9E+00         6.7E+00	30					21:5		10	-		08/15/06	09	Σ	n	
2018         2.50E-01         7.05E-01         1.44E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         NA           2007         -4.42E-01         3.52E+00         5.60E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -4.42E-01         3.61E+00         6.02E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -7.50E-01         6.63E+00         1.12E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -7.50E-01         3.25E+00         1.12E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.89E+00         6.62E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.95E+00         4.3EE+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.95E+00         6.17E	H-3 (DIST)	2010	-2.60E+01		1.83E+02	pCi/L		IO	III	00 00 00	_  _	00	M		
2007         -4.42E-01         3.52E+00         5.60E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4.901         Sec           2007         -6.5E-01         3.61E+00         6.02E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         7.50E-01         6.63E+00         1.12E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -3.85E-01         3.25E+00         1.12E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.89E+00         8.25E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.95E+00         6.62E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           4         2007         -1.95E+00         6.62E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           5         2007         -1.95E+00	TOTAL SR	2018	2.50E-01		1.44E+00	pCi/L		450	E E	08/11/06 09:00	_	00	M	27	-
2007         6.65E-01         3.61E+00         6.02L+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         7.50E-01         3.61E+00         L.12L+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         7.50E-01         6.63E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.89E+00         8.25E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.89E+00         6.17E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.95E+00         6.17E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           4         2007         -4.02E-01         3.65E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           7         2007         -8.09E+00         1.9E+01         pCi/L <t< td=""><td>AMI EA</td><td>2002</td><td>-4 42E-01</td><td></td><td>5.60E+00</td><td>pCi/L</td><td></td><td>2869.35</td><td>田</td><td>08/11/06 09:00</td><td>08/14/06</td><td>4501</td><td>Sec</td><td></td><td></td></t<>	AMI EA	2002	-4 42E-01		5.60E+00	pCi/L		2869.35	田	08/11/06 09:00	08/14/06	4501	Sec		
2007         0.03E-01         3.01E-00         0.03E-01         5.01E-00         0.03E-01         5.01E-00         0.03E-01         5.01E-00         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01         0.03E-01 <th< td=""><td>IVIIN-34</td><td>7007</td><td>7.757</td><td></td><td>6 07 F±00</td><td>nCi/L</td><td></td><td>2869.35</td><td>Im</td><td>08/11/06 09:00</td><td>08/14/06</td><td>4501</td><td>Sec</td><td>No</td><td></td></th<>	IVIIN-34	7007	7.757		6 07 F±00	nCi/L		2869.35	Im	08/11/06 09:00	08/14/06	4501	Sec	No	
2007         7.50E-01         6.63E+00         1.12E+01         PCI/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -3.85E-01         3.25E+00         5.20E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.89E+00         8.25E+00         1.12E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.95E+00         6.17E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           4         2007         -4.02E-01         3.65E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           7         2007         -4.02E-01         3.65E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           7         2007         -8.09E+00         6.75E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           9         2007         -8.09E+	CO-58	7007	0.03E-01		0.040.00	7:04		3860 35	m	08/11/06 09:00	08/14/06	4501	Sec	O No	_
2007         -3.85E-01         3.25E+00         pCi/L         2869.35         ml         08/11/00 09:00         09/14/06         4501         Sec           2007         -1.89E+00         8.25E+00         1.12E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.89E+00         4.38E+00         bCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.95E+00         6.7E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           4         2007         -4.02E-01         3.65E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           7         2007         -4.02E-01         3.69E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           7         2007         -8.09E+00         6.75E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           9         2007         -8.09E+00         1.19E+01         pCi/L<	FE-59	2007	7.50E-01		1.12E+01	pciir		2007	-	00.00 70/11/00	00/11/06	1501	Sec	No	_
2007         -1.89E+00         8.25E+00         1.12E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.73E+00         4.38E+00         6.62E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -1.95E+00         6.17E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           1         2007         -4.02E-01         3.65E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           7         2007         -3.05E+00         6.75E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           0         2007         -8.09E+00         1.19E+01         1.80E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           0         2007         -8.09E+00         1.19E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           0         2007	09-00	2007	-3.85E-01		5.20E+00	pCi/L		2869.35	E	08/11/00 09:00	00/14/00	1001	3	11	
2007         1.73E+00         4.38E+00         6.5E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         1.73E+00         4.38E+00         bCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           4         2007         -1.95E+00         5.16E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           7         2007         -4.02E-01         3.69E+00         6.75E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           7         2007         -8.09E+00         1.19E+01         1.80E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           9         2007         -8.09E+00         1.19E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           9         2007         -1.39E+00         6.60E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec	20-00	2002	1 80F±00		1.12E+01	nCi/L		2869.35	Ē	08/11/06 09:00	08/14/06	4501	Sec	ONI	-
2007         1.73E+00         4.38E+00         6.02E+00         PC/L         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200	C0-N7	7007	7.07.00		00.000	1/:0=		2860 35	Į-m	08/11/06 09:00	08/14/06	4501	Sec	2 	_
2007         -1.95E+00         6.17E+00         9.62E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -4.02E-01         3.52E+00         5.16E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         3.32E+00         3.69E+00         6.75E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -8.09E+00         1.19E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec           2007         -8.09E+00         1.19E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501         Sec	NB-95	2007	1.73E+00		0.021.+00	pc#r		2007	-	00,11,00	70/1/1/00	1501	Sec	No	
2007         -4.02E-01         3.65E+00         5.16E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501           2007         3.32E+00         3.69E+00         6.75E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501           2007         -8.09E+00         1.19E+01         1.80E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501           2007         -8.09E+00         1.19E+01         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06         4501	70.05	2007	-1.95E+00		9.62E+00	pCi/L		2869.35	H	08/11/00 03:00	00/14/00	1001	3	-  -	-  -
2007         3.32E+00         3.69E+00         6.75E+00         PCi/L         2869.35         ml         08/11/06 09:00         08/14/06          4501           2007         3.32E+00         3.69E+00         6.75E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06          4501           2007         -8.09E+00         1.19E+01         1.80E+00         pCi/L         2869.35         ml         08/11/06 09:00         08/14/06          4501	27.72	2007	A 02E-01		5.16E+00	pCi/L		2869.35	ш	08/11/06 09:00		4501	Sec	ONI	
2007 3.52E+00 3.09E+00 0.75E+00 pCi/L 2869.35 ml 08/11/06 09:00 08/14/06 4501	CS-134	7007	10-0701		0074529	I/i.Ju		2869.35	lm.	08/11/06 09:00		4501	Sec	ON I	0
2007 -8.09E+00 1.19E+01 1.80E+01 pC/L 2869.35 ml 08/11/06 09:00 08/14/06 4501	CS-137	7007	3.32E+00		_ L	יייטל אייטל		26038	lm	08/11/06 09:00		4501	Sec	N No	0
2869.35 ml U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U8/11/06 U	BA-140	2007	-8.09E+00			pc//r		2007.70	1111	00.00 00.00		4501	Cen	No	c
	I A 140	2007	-1 39F+00	4.42E+00	6.60E+00	pCi/L		2869.35	ᄪ	00:40 00/11/80		1004	3		

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

Ś Jo

Page 1

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery 11 11 11 U* High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

BROWN ENGINEERING, INC.
A Teledyne Technologies Company

L29576

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

(WG) Matrix: Ground Water Collect Start: 08/11/2006 09:10 Kathy Shaw

	paga kandaran			e anno es	i e	April 100	naugare.	esempo			1	Laugarenso	T			nauto-i-i-i-	worderen	-
		Flag Values			No	No	014	INO	No No	No	No	No.	214	ONI	No	No	No	
		Flag	+	n	n		0 1		_	n		) 	<b>o</b> :	0	<u> </u>	Ŋ	Ω	)
	Count	Units	Σ	×	Sec	Can	3	Sec	Sec	Sec	Con	300	200	Sec	Sec	Sec	Sec	
	Count		42.81	200	5761	5761	10/0	5761	5761	5761	5761	10/01	10/0	5761	5761	5761	5761	
Volume: % Moisture:	Count	Date	08/15/06	08/15/06	08/14/06	20/11/00	08/14/00	08/14/06	08/14/06	08/14/06	00/14/00	00/14/00	08/14/00	08/14/06	08/14/06	08/14/06	08/14/06	00/17/00
V MG	Reference	Date		08/11/06 09:10 08/15/06	08/11/06 00:10 08/14/06	00/11/00 02:10	08/11/06 09:10 08/14/06	08/11/06 09:10   08/14/06	08/11/06 09:10 08/14/06	08/11/06 00:10 08/14/06	00/11/00 02:10	08/11/06 09:10 08/14/00	08/11/06 09:10	08/11/06 09:10 08/14/06	08/11/06 09:10	08/11/06 09:10	06/11/06 00:10	00/11/00 07:10
	Alignot	Units	ТШ	Tæ	1111		E	m	Įm.			Im!	m	m	lm	E	-	E
Collect Start: 00/11/2000 02.10 Collect Stop: Receive Date: 08/12/2006	Alianot	Volume	10	051	7136.00	3130.90	3136.96	3136.96	3136 96	2130.70	3130.90	3136.96	3136.96	3136.96	3136 96	3136 96	200000	3136.90
Collect Start: 0 Collect Stop: Receive Date: 0		# #		_  -														
Collec Receive		Units	1/:/	7 2 2	PCI/L	pCi/L	pCi/L	nCi/L	F:/:	pci/L	pCi/L	pCi/L	pCi/L	DCi/L	1/!.)4	pc//2	pCi/L	pCi/L
		MDC	2 175102	2.105.02	1.29E+00	5.02E+00	4.63E+00	1 00E+01	TO TOOL	S.yok+uu	1.03E+01	6.06E+00	9.41E+00	5.27E+00	E 0115.00	3.015.00	2.01E-T01	6.27E+00
-GL-018		Activity Uncertainty Conc 2 Sigma	011110	7.11E±02	7.15E-01	2.65E+00	2.56E+00			1	7.01E+00	3.20E+00	5.23E+00	3 49F+00	00 1277.0			3.42E+00
-1191-081106		Activity Conc	50	1.47E+03	5.34E-01	6.89E-01	-3.67E-01	1 775±00	-1.//E:00	1.44E+00	-2.01E+00	1.54E+00	-3 73E-01	7.63E-01	10-000-	-2.55E-UI	-2.29E+00	-1.10E+00
Sample ID: WG-DN-MW-DN-119I-081106-GL-018 Station: Description:	7-01667	SOP#		2010	2018	2007	2007	1000	7007	2007	2007	2007	2007	2002	7007	7007	2007	2007
Sample ID: V Station: Description:	LIMS Number: L293/0-2	Radionuclide	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	H-3 (DIST)	TOTAL SR	MN-54	200	CO-00	FE-59	09-02	ZN-65	NR-95	7D 05	20-131	CS-134	CS-137	BA-140	I A-140

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

of

Page 2

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification High recovery Low recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29576

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

Kathy Shaw	•	100 100 100 100 100 100 100 100 100 100				., 00	211700011			Matrix. Gr	Ground Water		(MG)	
Sample ID: WG-DN-MW-DN-115I-081106-GL-019	'-DN-MW-DI	V-1151-08110	6-GL-019		Collect	t Start: 08/1	Collect Start: 08/11/2006 11:30	Q.						
Station: Description:					Receive Date:	Confect Stop. Receive Date: 08/12/2006	12/2006		W %	% Moisture:				
LIMS Number: L29576-3	3576-3						-			1		Count		Taxon or
1	#dUS	Activity	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Keterence Date	Date	Time	Units	Flag Values	
Каспописние	500	COMP	in Sing		And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t					08/15/06	09	Σ	n	,mesospano
H.3 (DIST)	2010	1.17E+02	1.17E+02	1.81E+02	pCi/L		ol (ii)		08/11/06/11:30 08/12/06	08/15/06	200	Σ	n	Ī
TOTALSR	2018	-6.49E-01	8.60E-01	1.71E+00	pCi/L		450		08/11/00 11:30 08/14/06	08/17/06	4021	Sec	U No	-
MN-54	2007	-1.41E+00	3.31E+00	5.13E+00	pCi/L		3081.1		08/11/00 11:30	08/14/06	4021	Sec	U No	South Park
CO-58	2007	-2.14E+00	4.15E+00	5.97E+00	pCi/L		3081.1		08/11/06 11:30 08/14/06	08/14/06	4021	Sec	U No	parpicosto+
FE-59	2007	2.19E+00	8.32E+00	1.44E+01	pCi/L		3081.1		08/11/06 11:30	08/14/06	4021	Sec	U No	
09-02	2007	-2.91E-01	4.63E+00	8.34E+00	pCi/L		3081.1	II   I	08/11/06 11:30 08/14/06	08/14/06	4021	Sec	U No	-
ZN-65	2007	-3.47E+00	1.03E+01	1.33E+01	pCi/L		3081.1	IIII a	08/11/06/11/30	08/14/06	4021	Sec	U No	-
NB-95	2007	3.01E+00	3.71E+00	6.33E+00	pCi/L		2001.1	IIII	08/11/06 11:30 08/14/06	08/14/06	4021	Sec	U No	
ZR-95	2007	-6.61E+00	6.48E+00	8.07E+00	pCi/L		3001.1	m   m	08/11/06 11:30	08/14/06	4021	Sec	U No	Agranda of
CS-134	2007	-1.62E+00		4.80E+00	pCi/L		3081.1	mil m	08/11/06 11:30 08/14/06	08/14/06	4021	Sec	U No	one i gladenia
CS-137	2007	4.73E-01	4.64E+00	7.62E+00	pCi/L		3001.1	1111	08/11/06 11:30 08/14/06	08/14/06	4021	Sec	U No	
BA-140	2007	-2.73E+00		2.62E+01	pCi/L		3081.1	=   T	08/11/06 11:30 08/14/06	08/14/06	4021	Sec	U No	Paratari II
L.A-140	2007	-7.74E-02	5.91E+00	9.88E+00	pCi/L	-	3001.1	IIII	2011/00			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		
	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon													

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

Ś oę

Page 3

Compound/Analyte not detected or less than 3 sigma
Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)
Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification High recovery 11 11 11 11 11 High Spec

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29576

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

(MG)

Kathy Shaw

						30 7	111/2006 13	.15		Matrix: Ground Water	und Water	_	(MG)	
Sample ID: Station: Description:	Sample ID: WG-DN-MW-DN-114S-081106-GL-020 Station: Oescription:	ON-114S-08110	)6-GL-020		Collect Start: Collect Stop: Receive Date:	t Stop: t Stop: Date: 08	Collect Start: 08/11/2000 15:15 Collect Stop: Receive Date: 08/12/2006	<u>-</u>	, W %	Volume: % Moisture:				
LIMS Number: L29576-4	L29576-4								F	Count Count	Count	Count		1
Radionnelide	#dOS		Activity Uncertainty Conc 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Aliquot Volume Units	Kererence Date	Date	Time	Units	Flag Values	and the second
Maulomacina			D				10	-		08/15/06 26.04		Σ	+ High	
I-3 (DIST)	2010	2.77E+03	2010 <b>2.77E+03</b> 3.36E+02 2.79E+02	2.79E+02	pCi/L		01		00/11/06 13:15 08/16/06	08/16/06	80	Σ	n	
OTAL SR	2018	3.79E-01	2018 3.79E-01 8.18E-01 <b>1.65E+00</b>	1.65E+00	pCi/L		450		00/11/00 13:15 00/11/06 10892	00/17/00	10807	Sec	11 No	

nber: L295/6-4	/0-4										ļ	ţţ		perio
ļe	SOP#	Activity	Activity Uncertainty Cone 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count	Count	Units	Flag Values	
				00.1700	1/:0-		10	Ш		08/12/06	26.04	M	+   High	
	2010	2.77E+03	3.36E+02	7.19E+02	pci/L		21	-	00/11/06 12:15	90/91/80	W)	Σ	1	
Control of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the las	2018	3.79E-01	8.18E-01	1.65E+00	pCi/L		450	III	08/11/00 13:13	00/11/00	10000	Coo	No	
	2000	-8 43F-01	2 16E+00	3.36E+00	pCi/L		2867.63	m	08/11/06 13:15	08/14/00	10092	250	No.	
	2007	2 55E 01	1	. I	nCi/L		2867.63	ш	08/11/06 13:15	08/14/06	76801	Sec	0 1	
- Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Cont	7007	-3.33E-01		0017007	Liju uU:/I		2867.63	m	08/11/06 13:15	08/14/06	10892	Sec	No O	
	2007	//IE-01		0.72ET00	2 2 2		296763	Tæ	08/11/06 13:15	08/14/06	10892	Sec	No C	
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	2007	4.23E-01	2.34E+00	3.91E+00	pCI/L		50.7007	TITT	21.00 11.00	00/1/06	10807	Sec	11 No	
	2002	-8 38F+00	4.99E+00	6.86E+00	pCi/L		2867.63	ᄪ	08/11/00 15:15	1	7/001	200		
	1004	200000		3 65F±00	nCi/I.		2867.63	回	08/11/06 13:15	08/14/06	10892	Sec		
	7007	-5./9E-01		00.0300	1,:04		2867.63	Ē	08/11/06 13:15	08/14/06	10892	Sec	No C	
	2007	-8.70E-02		3.//E+00	pci/r		00:1007	-	09/11/06 13:15	08/14/06	10892	Sec	N n	
	2007	1.18E-01	2.39E+00	3.46E+00	pCi/L		780/002		51.00 11.00		10807	Sec	No No	
	2007	-2.15E+00	2.25E+00	3.38E+00	pCi/L		2867.63	립	08/11/06 13:15	00/14/00	10000	330	oN II	
	2007	7 02E+00		1.50E+01	pCi/L		2867.63	III	08/11/06 13:15		10007	330	ON ON ON	-
	2007	_  _			pCi/L		2867.63	ш	08/11/06 13:15	08/14/06	76801	Sec	ONT	-

CS-137 **BA-140** LA-140

CS-134

MN-54

CO-58

FE-59

09-00

NB-95

ZR-95

2N-65

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

2 of

4 Page

High recovery

Low recovery

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Flag Values

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

U* High Spec

TELEDYNE
BROWN ENGINEERING, INC. A Teledyne Technologies Company

L29576

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw					EX	001-3ESF	EX001-3ESPDRES-06							Corre
Somple ID: WC.DN-MW.DN-114S-081106-GL-021	NG-WW-DA	1-114S-08110	6-GL-021		Collec	t Start: 08	Collect Start: 08/11/2006 13:40	10		Matrix: Ground Water	ound Water	_		 (5 _M .)
Station:					Collec	Collect Stop:				Volume:				
Description:					Receive	Receive Date: 08/12/2006	1/12/2006		% MIC	% Moisture:				
LIMS Number: L29576-5	2-9													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count	Count	Flag Values	ies
	0.00		00.1366	20012102	1/:/-		10	ī		08/12/06	26.9	Σ	+ High	
H-3 (DIST)	2010	2.74E+03	3.33E+U2	2.02E+02	אוויסן בייני	-  -	150		08/11/06 13:40	08/16/06	08	Z	n	
TOTAL SR	2018	-2.02E-01	6.56E-01	1.44E+00	pCI/L		420		00/11/00/13/10	20/14/00	7530	Cop	11	No
MN_54	2007	4.10E-01	2.53E+00	4.62E+00	pCi/L		3088.86	ш	08/11/06 13:40 08/14/00	08/14/00	020/	325		140
FC-NIM	2007	_4 68E_01	2 75E+00	4.82F+00	pCi/L		3088.86	m	08/11/06 13:40	08/14/06	7538	Sec		No
CU-38	7007	4 115:00	_	0.2117	nCi/I		3088.86	ш	08/11/06 13:40	08/14/06	7538	Sec		No
FE-59	7007	-4.11E+00	_	7.41.100	1/:0-		3088 86	-	08/11/06 13:40 08/14/06	08/14/06	7538	Sec	n	No
09-02	2007	-5.87E-01	2.22E+00	4.08E+00	pc//r		3000.00	1111	00/11/00/12/10	70/11/00	7530	Coc	11	No
7N-65	2007	6.12E-01	5.47E+00	8.78E+00	pCi/L		3088.86	Ē	08/11/06 13:40 08/14/06	08/14/00	/330	330	) 	140
ND 05	2007	-4 30F-01	2.43E+00	4.30E+00	pCi/L		3088.86	E E	08/11/06 13:40 08/14/06	08/14/06	7538	Sec	0	- ON ;
CC-GNI	2007	8 34E-01	4 97F+00	8 93F+00	nCi/L		3088.86	lm	08/11/06 13:40	08/14/06	7538	Sec	_ _	No No
2K-73	7007	1 227 02	2.00.000	4 38E+00	nCi/I.		3088.86	lm	08/11/06 13:40 08/14/06	08/14/06	7538	Sec	ח	No
CS-134	7007	1.225-02		4.304.00	1 102		20 0000		08/11/06 13:40 08/14/06	08/14/06	7538	Sec	Ω	No No
CS-137	2007	-1.92E+00	2.93E+00	4.90E+00	pCI/L		2000.00		01.01.00/11/00	20/11/00	7530	COS	11	No
BA-140	2007	8.37E+00	1.07E+01	2.04E+01	pCi/L		3088.86	E	08/11/06 13:40 08/14/06	08/14/00	0000/	355		No
I A-140	2007	-2.74E-01	3.02E+00	5.70E+00	pCi/L		3088.86	ш	08/11/06 13:40	08/14/06	/338	သင္သေ	-	
מדיו שלו				William Commence of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Proper			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s							

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma
Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Jo Page 5

Bolded text indicates reportable value. Low recovery High recovery

Compound/Analyte not detected or less than 3 sigma

Flag Values

U* High Spec

### QC Results Summary

# QC Summary Report

L29576

for

8/16/2006

3:09:38PM

BROWN ENGINEERING
A Teledyne Technologies Company

	<u>Qualifier P/F</u> U P	Range Qualifier P/F 70-130 + P	Range Qualifier P/F <30 *** NE
		Spike Recovery 103.6	RPD
	Units pCi/Total	Units pCi/Total	Units pCi/L
	ary <u>Blank Result</u> < 1.880E+00	ary <u>LCS Result</u> 5.230E+02	<b>y</b> <u>DUP Result</u> < 1.860E+02
H-3 (DIST)	Method Blank Summary  Bla  < 1	LCS Sample Summary Spike Value 5.05E+002	Duplicate Summary Original Result < 1.830E+02
	Count Date/Time 08/15/2006 14:44	Count Date/Time 08/15/2006 15:48	Count Date/Time 08/15/2006 16:06
	Matrix WO	Matrix WO	Matrix WG
	Radionuclide H-3 (DIST)	Radionuclide H-3 (DIST) 1706-1 +002	Radionuclide H-3 (DIST)
	TBE Sample ID WG4320-1	TBE Sample ID         Rad           WG4320-2         H-3 (           Spike ID: 3H-041706-1         Spike conc: 5.05E+002           Spike Vol: 1.00E+000	TBE Sample ID WG4320-3 L29576-1

Page:

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated

Nuclide not detected

Spiking level < 5 times activity

Pass Fail Not evaluated

* * * + > * *

# QC Summary Report

3:09:38PM 8/16/2006

L29576

for

BROWN ENGINEERING
A Teledyne Technologies Company

		Qualifier P/F U P		Range         Qualifier         P/E           70-130         +         P			Range Qualifier P/F <30 ** NE
		<u>Units</u> pCi/Total		Units Spike Recovery pCi/Total 108.8			Units RPD pCi/L
TOTAL SR	Method Blank Summary	Blank Result   U    C	LCS Sample Summary	LCS Result 6.350E+01		Duplicate Summary	Original Result DUP Result C
TOT	M	Matrix Count Date/Time WO 08/15/2006 18:45		Matrix         Count Date/Time         Spike Value           WO         08/15/2006         18:45         5.84E+001			Matrix         Count Date/Time           WG         08/15/2006         18:45
		TBE Sample ID Radionuclide WG4323-1 TOTAL SR		TBE Sample ID Radionuclide WG4323-2 TOTAL SR	Spike ID: 90SR-011905 Spike conc: 2.34E+002	Spike Voi: 2.30E-001	TBE Sample ID Radionuclide WG4323-3 TOTAL SR L29576-1

Page:

7

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC <br/>
< 5 times the MDC are not evaluated

Nuclide not detected

Spiking level < 5 times activity Pass Fail Not evaluated

+D* * * d L Z

### Raw Data

Raw Data Sheet (rawdata) Aug 16 2006, 01:24 pm

	& vth Analyst	WO		DW		DW		MO		DW		
	Decay & Eff. Ingrowth		) ) i	.209		.211		.208		.202		
	Bkg	dt (min)		9		0.9		9		9		
	t A	ounts d		1.98		1.98		1.98		1.98		
Page: 1	1	dt (min) counts	0	42.81		9		26.04		26.9		
		rotal	112	376		152		384		384		
		Counter Total ID counts	LS7	LS7		LS7		1.87		LS7		
			15-aug-06 17:10	15-aug-06	18:14	15-aug-06	19:00	AO - Prite - AL	20:03	15.20.06	20:32	
ı		Mount	0	0		c	•		0		<b>-</b>	
	76	Milking	1					110				
	ESPDRES-(	Scavenge	Date/ cm									
Customer: Exelon	Project : EX001-3ESPDRES-06	Volume/	Aliguor 10 ml	MDC: 1.83E+02 *	10 ml	MDC: 2.16E+02	10 ml	MDC: 1.81E+02 *	10 ml	MDC: 2.79E+02	10 ml	
Cu	Pr	Reference	Date/time T	-017 1.09E+02	Į.	018 2.11E+02	Ħ	1.17E+02	TE	1-020 3.36E+02	3.T	L-021
76	ST)	Run Analysis	H-3 DIST	WG-DN-MW-DN-119S-081106-GL-017 Activity: -2.6E+01 Error: 1.09E+02	H-3 DIST	WG-DN-MW-DN-119I-081106-GL-018 artivity: 1.47E+03 * Error: 2.11E+02	H-3 DIST	WG-DN-MW-DN-1151-081106-GL-019	H-3 DIST	WG-DN-MW-DN-114S-081106-GL-020	H-3 DIST	WG-DN-MW-DN-114S-081106-GL-021
Work Order: <u>129576</u>	Nuclide: H-3 (DIST)		1D # 6-1	MW-DN-119 V: -2.6E+	6-2	MW-DN-115	16-3	-MW-DN-11!	76-4	-MW-DN-11	76-5	-MW-DN-11
Work Or	Nuclide	Sample ID	Client ID L29576-1	WG-DN- Activit	129576-2	WG-DN-	L29576-3	-NG-DM	129576-4	WG-DN.	L29576-5	MG-DM

Raw Data Sheet (rawdata) Aug 16 2006, 01:24 pm

Page: 2

Nuclide: SR-90 (FAST)	Work Order: <u>L29576</u>	Customer: Exelon		ı									
ce         Volume/ Alignot         Scavenge Date/Lime         Milking Date/Lime         Mount Date/Lime         Count Date/Lime         Count Date/Lime         Count Date/Lime         Counts Date/Lime         Counts Date/Lime         Counts Date/Lime         Alignot Date/Lime         Date/Lime         Mount Date/Lime         Count Date/Lime         Count Date/Lime         Count Date/Lime         Counts Occupies         Count Alignot         Count Count         Count Date/Lime         Alignot Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime         Date/Lime		Project : <b>EX001-3E</b>	SPDRES-06						-	ţ	t t	Decay & Rff. Ingrowtl	Decay & Ingrowth Analyst
Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   Harden   H	rence/time	Volume/ Aliquot	Scavenge Milking Date/time Date/time	Mount			ounter ID x	rotal counts 65	dt (min) co	unts d	t (min) 400		LCB
MDC: 1.44E+00 *         I5-aug-06         0         15-aug-06         X4C         173         200         299           Ig-06         450 ml         13:45         62.91         20:45         20:45         200         340           Ig-06         450 ml         15-aug-06         0         50.27         20:45         200         340           Ig-06         450 ml         15-aug-06         0         16-aug-06         X1A         70         80         308           MDC: 1.71E+00 *         15-aug-06         0         80.22         13:15         80         342           MDC: 1.65E+00 *         15-aug-06         0         97.25         13:15         80         342           MDC: 1.48E+00 *         13:45         97.25         13:15         80         342	-aug-		15-aug-06 13:45	0	90.11	18:45	2	;					
15-aug-06   15-aug-06   15-aug-06   173   200   255     16-aug-06   15-aug-06   15-aug-06   147   200   340     16-aug-06   15-aug-06   0   16-aug-06   147   200   340     16-aug-06   16-aug-06   0   16-aug-06   13:15     16-aug-06   16-aug-06   0   16-aug-06   16-aug-06   13:15     16-aug-06   16-aug-06   0   16-aug-06   13:15     16-aug-06   16-aug-06   0   16-aug-06   13:15     16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-aug-06   16-a	5	* 1 448+00								0	004	7 7 6	LCB
MDC: 1.29E+00 *  MDC: 1.29E+00 *  MDC: 1.29E+00 *  MDC: 1.25E+00 *  MDC: 1.55E+00 *  MDC: 1.65E+00 *  MDC: 1.45E+00 *  MDC: 1.44E+00 *  MDC: 1.44E+00 *	-aug-	06 450 ml	15-aug-06 13:45	0	62.91	15-aug-06 20:45	x4C	173	200	n n	0 0 #	i	
MDC:         1.55m + 00         1.5-aug-06         X4D         147         200         350           MDC:         1.71E+00 *         13:45         50.27         20:45         X1A         70         80         308           Ago ml         13:45         80.22         13:15         70         80         308           ug-06         1.65E+00 *         15-aug-06         0         16-aug-06         X1B         63         80         342           ug-06         13:45         97.25         13:15         80         342           MDC:         1.44E+00 *         13:45         80         342	ŗ	* 007480 1 .500					-			0.4.0	00.4	353 1	ICB
MDC: 1.71E+00 * 15-aug-06 0 16-aug-06 X1A 70 80 308 19-06 450 ml 13:45 80.22 13:15	-01 L-aug-	MDC: 1.235700 06 450 ml	15-aug-06 13:45	0	50.27	15-aug-06 20:45	x4D	147	200	340	) •	1	
MDC: 1./1E+00 x 1A 70 80 308  1g-06 450 ml 13:45  MDC: 1.65E+00 * 15-aug-06 0 16-aug-06 x 1A 63 80 342  1g-06 450 ml 13:45 97.25 13:15		1					-					. 046	80.1
MDC: 1.65E+00 * 15-aug-06 0 16-aug-06 XIB 63 80 342 ag-06 450 ml 13:45 97.25 13:15	1 -aug- 15	MDC: 1./1E+00 7 .06 450 ml	15-aug-06 13:45	0	80.22	16-aug-06 13:15	X1A	70	08	308	400	1 0	}
MDC: 1.625+00 15-aug-06 0 16-aug-06 XIB 63 80 342  1g-06 450 ml 13:45 97.25 13:15  MDC: 1.44E+00 *	1	÷									3	6.50	1.7.E
	-01 1-aug	MUC: 1.635+00 .06 450 ml	15-aug-06 13:45	0	97.25	16-aug-06 13:15	XIB	63	08	ይ 4 2	4	<del>1</del>	
	-01	MDC: 1.44E+00 *		7,000									

Sec. Review:

Analyst:

LIMS:

_____

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-AUG-2006 18:09:21.12 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 14-AUG-2006 15:33:36.58

LIMS No., Customer Name, Client ID: WG4314-1 WG EX/DRES

Sample ID : 04WG4314-1 Smple Date: 11-AUG-2006 09:00:00.

Sample Type : WG Geometry : 043L082004

 Quantity
 : 2.86930E+00 L
 BKGFILE
 : 04BG072806MT

 Start Channel
 : 90
 Energy Tol
 : 1.00000
 Real Time
 : 0 02:35:34.31

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time
 : 0 02:35:32.55

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.24*	68	277	1.23	133.41	6.61E-01	7.24E-03	44.0	1.55E+00
2	1	139.51*	55	261	1.81	279.97	2.04E+00	5.85E-03	56.5	2.03E+00
3	1	198.35*	64	197	1.09	397.67	1.87E+00	6.85E-03	41.2	1.10E+00
4	2	238.59*	9	118	1.28	478.17	1.68E+00	1.01E-03	197.2	1.67E+00
5	2	242.12	84	134	1.35	485.24	1.66E+00	9.04E-03	26.7	
6	1	295.45*	167	175	1.36	591.91	1.45E+00	1.79E-02	19.3	3.77E+00
7	1	351.83*	294	135	1.21	704.67	1.28E+00	3.15E-02	10.1	7.17E-01
8	1	500.52	48	61	2.01	1002.05	9.85E-01	5.17E-03	33.9	4.98E+00
9	1	583.03*	15	54	1.99	1167.08	8.77E-01	1.63E-03	97.9	3.29E+00
10	1	609.19*	256	51	1.49	1219.39	8.49E-01	2.75E-02	8.5	1.51E+00
11	1	767.84	70	78	6.29	1536.66	7.10E-01	7.53E-03	36.4	4.61E+00
12	1	1120.04*	75	15	2.43	2240.87	5.27E-01	8.01E-03	16.9	1.25E+00
13	1	1333.62	27	23	0.79	2667.84	4.60E-01	2.85E-03	36.6	6.84E+00
14	1	1378.88	53	16	1.58	2758.32	4.49E-01	5.67E-03	18.2	1.91E+01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

1,001100	27501 2000				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
TH-228	238.63	9			1.269E+00		394.44
	240.98		3.95	1.669E+00	Li	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity

Page: 2

Sample ID : 04WG4314-1 Acquisition date : 14-AUG-2006 15:33:36

Total number of lines in spectrum 14
Number of unidentified lines 12

Number of lines tentatively identified by NID 2 14.29%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags

_____

TH-228 1.91Y 1.00 1.269E+00 1.274E+00 5.024E+00 394.44

Total Activity: 1.269E+00 1.274E+00

Grand Total Activity: 1.269E+00 1.274E+00

Flags: "K" = Keyline not found "M" = Manually accepted

_____

"E" = Manually edited "A" = Nuclide specific abn. limit

Act/MDA

MDA error

Unidentified Energy Lines Sample ID : 04WG4314-1

Page : Acquisition date : 14-AUG-2006 15:33:36

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 2 1 1 1 1 1 1	66.24 139.51 198.35 242.12 295.45 351.83 500.52 583.03 609.19 767.84 1120.04 1333.62 1378.88	68 55 64 84 167 294 48 15 256 70 75 27	277 261 197 134 175 135 61 54 51 78 15 23 16	1.23 1.81 1.09 1.35 1.36 1.21 2.01 1.99 1.49 6.29 2.43 0.79 1.58	2240.87 2667.84	698 996 1165 1215 1528 2232 2663	9 8 20 14 12 11 10 10 26 15	7.24E-03 5.85E-03 6.85E-03 9.04E-03 1.79E-02 3.15E-02 5.17E-03 1.63E-03 2.75E-02 7.53E-03 8.01E-03 2.85E-03 5.67E-03	38.6 20.2 67.7 **** 17.0 72.9 33.9 73.2	6.61E-01 2.04E+00 1.87E+00 1.66E+00 1.45E+00 9.85E-01 8.77E-01 8.49E-01 7.10E-01 5.27E-01 4.60E-01	. Т

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 14 Number of unidentified lines 12 Number of lines tentatively identified by NID 2 14.29%

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Decay Corr Uncorrected Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Hlife Decay Nuclide 5.024E+00 394.44 1.91Y 1.00 1.269E+00 1.274E+00 TH-228 1.274E+00 Total Activity: 1.269E+00

Grand Total Activity: 1.269E+00 1.274E+00

Activity K.L. Act error

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Idenci	Lied Nuclides				
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-228	1.274E+00	5.024E+00	7.331E+00	0.000E+00	0.174
Non-Id	entified Nuclid	es			
	Key-Line			MIDA	Act /MDA

MDA

Nuclide	(pCi/L) Id	led	(pCi/L)		
BE-7	-2.755E+00	2.164E+01	3.536E+01	0.000E+00	-0.078
NA-24	4.371E+01	9.208E+01	1.634E+02	0.000E+00	0.268
K-40	1.511E+01	4.610E+01	8.959E+01	0.000E+00	0.169
CR-51	8.884E+00	2.103E+01	3.659E+01	0.000E+00	0.243
MN-54	-9.052E-01	2.562E+00	4.144E+00	0.000E+00	-0.218
CO-57	5.863E-01	2.247E+00	3.758E+00	0.000E+00	0.156
CO-58	-2.668E+00	2.768E+00	3.845E+00	0.000E+00	-0.694
FE-59	-1.928E+00	5.209E+00	8.167E+00	0.000E+00	-0.236
CO-60	-1.749E-01	3.827E+00	6.063E+00	0.000E+00	-0.029
ZN-65	-3.371E+00	6.123E+00	7.708E+00	0.000E+00	-0.437
SE-75	-1.930E+00	3.366E+00	5.119E+00	0.000E+00	-0.377
SR-85	-9.137E+00	3.589E+00	4.911E+00	0.000E+00	-1.861
Y-88	-9.726E-01	2.592E+00	3.949E+00	0.000E+00	-0.246
NB-94	7.515E-01	2.565E+00	4.267E+00	0.000E+00	0.176
NB-95	2.416E+00	2.917E+00	5.087E+00	0.000E+00	0.475
ZR-95	3.095E+00	4.615E+00	7.998E+00	0.000E+00	0.387
MO-99	-1.020E+01	4.225E+01	6.569E+01	0.000E+00	-0.155
RU-103	-2.411E+00	2.990E+00	3.854E+00	0.000E+00	-0.626
RU-106	-1.636E+01	2.458E+01	3.704E+01	0.000E+00	-0.442
AG-110m	-2.410E+00	2.350E+00	3.297E+00	0.000E+00	-0.731
SN-113	1.105E+00	3.251E+00	5.578E+00	0.000E+00	0.198
SB-124	-6.147E-01	2.827E+00	4.342E+00	0.000E+00	-0.142
SB-125	-3.729E+00	7.282E+00	1.160E+01	0.000E+00	-0.321
TE-129M	1.207E+01	3.460E+01	5.880E+01	0.000E+00	0.205
I-131	2.835E-01	3.322E+00	5.614E+00	0.000E+00	0.051
BA-133	-1.722E+00	3.965E+00	5.624E+00	0.000E+00	-0.306
CS-134	1.737E+00	2.903E+00	4.468E+00	0.000E+00	0.389
CS-136	-1.219E+00	2.807E+00	4.490E+00	0.000E+00	-0.271
CS-137	8.150E-01	2.701E+00	4.524E+00	0.000E+00	0.180
CE-139	1.110E+00	2.368E+00	3.956E+00	0.000E+00	0.281
BA-140	-6.404E+00	1.041E+01	1.599E+01	0.000E+00	-0.401
LA-140	6.395E-01	3.457E+00	5.978E+00	0.000E+00	0.107
CE-141	8.376E-02	4.373E+00	7.171E+00	0.000E+00	0.012
CE-144	-1.237E+01	1.856E+01	2.947E+01	0.000E+00	-0.420
EU-152	1.241E+00	8.223E+00	1.399E+01	0.000E+00	0.089
EU-154	-4.136E-01	4.659E+00	7.649E+00	0.000E+00	-0.054
RA-226	-8.241E-01	6.733E+01	1.115E+02	0.000E+00	-0.007
AC-228	-1.352E+01	1.066E+01	1.613E+01	0.000E+00	-0.838
TH-232	-1.351E+01	1.065E+01	1.611E+01	0.000E+00	-0.838
U-235	1.444E+00	2.075E+01	3.054E+01	0.000E+00	0.047
U-238	-2.532E+01	2.768E+02	4.546E+02	0.000E+00	-0.056
AM-241	-1.886E+01	2.387E+01	3.881E+01	0.000E+00	-0.486

```
2.869E+00,WG4314-1 WG EX
                     ,08/14/2006 18:09,08/11/2006 09:00,
A,04WG4314-1
                                             ,08/14/2006 09:43,043L082004
                     ,LIBD
B,04WG4314-1
                                                                    0.174
                                                   7.331E+00,,
                                   5.024E+00,
                    1.274E+00,
           ,YES,
C, TH-228
                                                                   -0.078
                                                   3.536E+01,,
                   -2.755E+00,
                                   2.164E+01,
           , NO
C, BE-7
                                                                    0.268
                                                   1.634E+02,,
                                    9.208E+01,
           , NO
                    4.371E+01,
C, NA-24
                                                                    0.169
                                                   8.959E+01,,
                                    4.610E+01,
                     1.511E+01,
C, K-40
            , NO
                                                                    0.243
                                                   3.659E+01,,
                                    2.103E+01,
C, CR-51
            , NO
                     8.884E+00,
                                                   4.144E+00,,
                                                                   -0.218
                                    2.562E+00,
            ,NO
                   -9.052E-01,
C,MN-54
                                                                    0.156
                                                   3.758E+00,,
                                    2.247E+00,
                     5.863E-01,
C, CO-57
            , NO
                                                                   -0.694
                                                   3.845E+00,,
                                    2.768E+00,
                    -2.668E+00,
C, CO-58
            , NO
                                                                   -0.236
                                                   8.167E+00,,
                                    5.209E+00,
                    -1.928E+00,
C, FE-59
            , NO
                                                   6.063E+00,,
                                                                   -0.029
                                    3.827E+00,
                    -1.749E-01,
C, CO-60
            , NO
                                                                   -0.437
                                                   7.708E+00,,
                                    6.123E+00,
            , NO
                    -3.371E+00,
C, ZN-65
                                                                   -0.377
                                                   5.119E+00,,
                                    3.366E+00,
            , NO
                    -1.930E+00,
C, SE-75
                                                                   -1.861
                                                   4.911E+00,,
                    -9.137E+00,
                                    3.589E+00,
            , NO
C, SR-85
                                                                   -0.246
                                    2.592E+00,
                                                   3.949E+00,,
                    -9.726E-01,
            , NO
C, Y-88
                                                                    0.176
                                                   4.267E+00,,
                                    2.565E+00,
                     7.515E-01,
            , NO
C, NB-94
                                                                     0.475
                                                   5.087E+00,,
                                    2.917E+00,
            , NO
                     2.416E+00,
C, NB-95
                                                                     0.387
                                                   7.998E+00,,
                                    4.615E+00,
                     3.095E+00,
            ,NO
C, ZR-95
                                                                   -0.155
                                                   6.569E+01,,
                                    4.225E+01,
                    -1.020E+01,
            , NO
C, MO-99
                                                                   -0.626
                                                   3.854E+00,,
                                    2.990E+00,
                    -2.411E+00,
            , NO
C, RU-103
                                                                   -0.442
                                    2.458E+01,
                                                   3.704E+01,,
                    -1.636E+01,
C, RU-106
            , NO
                                                                   -0.731
                                                   3.297E+00,,
                                    2.350E+00,
C, AG-110m , NO
                    -2.410E+00,
                                                                     0.198
                                                   5.578E+00,,
                                    3.251E+00,
                     1.105E+00,
            , NO
C, SN-113
                                                                    -0.142
                                                   4.342E+00,,
                                    2.827E+00,
                    -6.147E-01,
            , NO
C,SB-124
                                                                    -0.321
                                                   1.160E+01,,
                                    7.282E+00,
                    -3.729E+00,
            ,NO
C,SB-125
                                                                     0.205
                                                   5.880E+01,,
                                    3.460E+01,
                     1.207E+01,
C, TE-129M
            , NO
                                                                     0.051
                                                   5.614E+00,,
                                     3.322E+00,
                     2.835E-01,
            ,NO
 C, I-131
                                                                    -0.306
                                     3.965E+00,
                                                    5.624E+00,,
            , NO
                    -1.722E+00,
 C, BA-133
                                                   4.468E+00,,
                                                                     0.389
                                     2.903E+00,
            , NO
                     1.737E+00,
 C, CS-134
                                                                    -0.271
                                                    4.490E+00,,
            , NO
                                     2.807E+00,
                    -1.219E+00,
 C, CS-136
                                                                     0.180
                                                    4.524E+00,,
                      8.150E-01,
                                     2.701E+00,
 C, CS-137
            , NO
                                                                     0.281
                                     2.368E+00,
                                                    3.956E+00,,
                      1.110E+00,
 C, CE-139
            , NO
                                                    1.599E+01,,
                                                                    -0.401
                                     1.041E+01,
                     -6.404E+00,
            , NO
 C,BA-140
                                                                     0.107
                                                    5.978E+00,,
                                     3.457E+00,
                      6.395E-01,
 C, LA-140
            , NO
                                                                     0.012
                                                    7.171E+00,,
                                     4.373E+00,
 C, CE-141
                      8.376E-02,
             , NO
                                                                    -0.420
                                                    2.947E+01,,
                     -1.237E+01,
                                     1.856E+01,
             , NO
 C, CE-144
                                     8.223E+00,
                                                    1.399E+01,,
                                                                     0.089
                      1.241E+00,
             , NO
 C, EU-152
                                                    7.649E+00,,
                                                                    -0.054
                                     4.659E+00,
             , NO
                     -4.136E-01,
 C,EU-154
                                                                    -0.007
                                                    1.115E+02,,
                                     6.733E+01,
                     -8.241E-01,
 C, RA-226
             , NO
                                                    1.613E+01,,
                                                                    -0.838
                                     1.066E+01,
                     -1.352E+01,
             , NO
 C, AC-228
                                                                    -0.838
                                                    1.611E+01,,
                                     1.065E+01,
                     -1.351E+01,
             ,NO
 C, TH-232
                                                    3.054E+01,,
                                                                     0.047
                                     2.075E+01,
                      1.444E+00,
             , NO
 C, U-235
                                                                    -0.056
                                                    4.546E+02,,
                                     2.768E+02,
                     -2.532E+01,
             , NO
 C, U-238
                                                    3.881E+01,,
                                                                    -0.486
                     -1.886E+01,
                                     2.387E+01,
 C,AM-241
             , NO
```

2-Giama

Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-AUG-2006 15:00:14.00 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 14-AUG-2006 13:45:04.91

-----

LIMS No., Customer Name, Client ID: L29576-1 WG EX/DRES

Smple Date: 11-AUG-2006 09:00:00. : 07L29576-1 Sample ID

Geometry : 073L082504 : WG Sample Type : 07BG072806MT BKGFILE : 2.86930E+00 L Quantity Real Time : 0 01:15:02.30 Energy Tol : 1.00000 Start Channel : 40 Pk Srch Sens: 5.00000 Live time : 0 01:15:01.31 End Channel : 4090

Library Used: LIBD MDA Constant : 0.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 1 1	295.08* 351.96* 583.29* 595.82 609.21* 769.56 910.97* 1120.17* 1259.93 1376.99* 1765.17*	109 149 19 35 160 10 14 29 14 33 24	81 100 19 15 48 31 9 15 7	1.49 2.22 2.48 1.60 1.61 6.83	591.69 705.58 1168.68 1193.77 1220.58 1541.50 1824.47 2243.04 2522.61 2756.72 3532.90	1.61E+00 1.12E+00 1.10E+00 1.09E+00 9.19E-01 8.14E-01 7.03E-01 6.47E-01	7.87E-03 3.54E-02 2.28E-03 3.00E-03 6.34E-03 3.08E-03 7.29E-03	17.7 57.6 25.7 12.3 124.4 57.1 32.7 44.4 24.9	2.67E+00 8.18E-01 8.87E+00 3.70E+00 2.85E+00 1.14E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide 1	ypc. nacar	<b></b>			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
AC-228	835.50		1.75	8.662E-01	Lir	ne Not Found	
AC-220	911.07	14	27.70*	8.145E-01	1.254E+01	1.255E+01	114.20
TH-232	583.14	19	30.25	1.120E+00	1.151E+01	1.151E+01	115.20
111-252	911.07	14	27.70*	8.145E-01	1.254E+01	1.254E+01	114.20
	969.11		16.60	7.793E-01	Lir	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2

Sample ID: 07L29576-1 Acquisition date: 14-AUG-2006 13:45:04

Total number of lines in spectrum 11

Number of unidentified lines 9

Number of lines tentatively identified by NID 2 18.18%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags

AC-228 5.75Y 1.00 1.254E+01 1.255E+01 1.434E+01 114.20 TH-232 1.41E+10Y 1.00 1.254E+01 1.254E+01 1.432E+01 114.20

Total Activity: 2.508E+01 2.509E+01

Grand Total Activity: 2.508E+01 2.509E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 07L29576-1 Page: 3
Acquisition date: 14-AUG-2006 13:45:04

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1 1	295.08 351.96 595.82 609.21 769.56 1120.17 1259.93 1376.99	109 149 35 160 10 29 14 33 24	81 100 15 48 31 15 7 10	1.50 1.36 2.09 1.49 2.22 1.60 1.61 6.83 2.14	1220.58 1541.50 2243.04 2522.61 2756.72	700 1190 1214 1532 2238 2516 2748	14 8 13 14 9 10	2.43E-02 3.30E-02 7.87E-03 3.54E-02 2.28E-03 6.34E-03 3.08E-03 7.29E-03 5.27E-03	35.4 51.4 24.6 **** 65.4 88.8 49.8	1.81E+00 1.61E+00 1.10E+00 1.09E+00 9.19E-01 7.03E-01 6.47E-01 6.07E-01 5.12E-01	) ) - - L

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 11
Number of unidentified lines 9
Number of lines tentatively identified by NID 2

18.18%

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma 📁 Uncorrected Decay Corr Decay Corr 2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay 81.18 0.973E+01 1.198E+01 1.198E+01 1.00 TH-232 1.41E+10Y _____ ______

Total Activity: 1.198E+01 1.198E+01

Grand Total Activity: 1.198E+01 1.198E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

Interfering Interfered
-----Nuclide Line Nuclide Line
TH-232 911.07 AC-228 911.07

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-232	1.198E+01	9.728E+00	2.056E+01	0.000E+00	0.583
Non-Ident	cified Nuclides				

Key-Line
Activity K.L. Act error MDA MDA error Act/MDA
Nuclide (pCi/L) Ided (pCi/L)

7 F F	1 2150.01	2.579E+01	4.588E+01	0.000E+00	0.287
BE-7	1.315E+01	1.536E+02	2.192E+02	0.000E+00	0.046
NA-24	1.005E+01 -2.289E+01	5.117E+01	1.008E+02	0.000E+00	-0.227
K-40		3.139E+01	5.167E+01	0.000E+00	0.060
CR-51	3.107E+00	3.519E+00	5.603E+00	0.000E+00	-0.079
MN-54	-4.422E-01 -1.405E+00	3.412E+00	5.266E+00	0.000E+00	-0.267
CO-57		3.610E+00	6.020E+00	0.000E+00	0.110
CO-58	6.647E-01	6.626E+00	1.122E+01	0.000E+00	0.067
FE-59	7.497E-01	3.253E+00	5.198E+00	0.000E+00	-0.074
CO-60	-3.851E-01	8.249E+00	1.115E+01	0.000E+00	-0.169
ZN-65	-1.889E+00	4.723E+00	7.792E+00	0.000E+00	0.003
SE-75	2.235E-02	4.662E+00	6.843E+00	0.000E+00	-1.126
SR-85	-7.707E+00	3.158E+00	4.911E+00	0.000E+00	-0.149
Y-88	-7.329E-01	3.477E+00	6.043E+00	0.000E+00	0.280
NB-94	1.694E+00	4.381E+00	6.616E+00	0.000E+00	0.261
NB-95	1.729E+00		9.619E+00	0.000E+00	-0.203
ZR-95	-1.950E+00	6.168E+00	8.799E+01	0.000E+00	-0.084
MO-99	-7.428E+00	5.486E+01	5.697E+00	0.000E+00	-0.039
RU-103	-2.195E-01	3.415E+00	4.661E+01	0.000E+00	-0.600
RU-106	-2.799E+01	3.179E+01	5.252E+00	0.000E+00	-0.228
AG-110m	-1.196E+00	3.341E+00		0.000E+00	-0.312
SN-113	-2.265E+00	4.739E+00	7.265E+00	0.000E+00	-0.455
SB-124	-2.354E+00	3.998E+00	5.177E+00	0.000E+00	-1.017
SB-125	-1.460E+01	1.063E+01	1.435E+01	0.000E+00	-0.085
TE-129M	-5.072E+00	3.817E+01	5.986E+01	0.000E+00	0.289
I-131	2.174E+00	4.427E+00	7.527E+00	0.000E+00	0.326
BA-133	2.421E+00	4.885E+00	7.429E+00		-0.078
CS-134	-4.017E-01	3.653E+00	5.159E+00	0.000E+00 0.000E+00	0.207
CS-136	1.475E+00	4.183E+00	7.126E+00		0.491
CS-137	3.315E+00	3.690E+00	6.752E+00	0.000E+00	-0.482
CE-139	-2.591E+00	3.346E+00	5.376E+00	0.000E+00	-0.450
BA-140	-8.089E+00	1.187E+01	1.796E+01	0.000E+00	-0.211
LA-140	-1.394E+00	4.418E+00	6.595E+00	0.000E+00	-0.211
CE-141	-1.697E-01	6.021E+00	1.020E+01	0.000E+00	
CE-144	-2.113E+01	2.843E+01	4.274E+01	0.000E+00	-0.494
EU-152	1.509E+00	1.129E+01	1.857E+01	0.000E+00	0.081
EU-154	-6.880E+00	7.179E+00	1.060E+01	0.000E+00	-0.649
RA-226	7.164E-01	8.601E+01	1.523E+02	0.000E+00	0.005
AC-228	1.255E+01	1.434E+01	2.725E+01	0.000E+00	0.461
TH-228	-4.886E+00	7.827E+00	1.309E+01	0.000E+00	-0.373
U-235	-8.375E+00	2.886E+01	4.505E+01	0.000E+00	-0.186
U-238	-2.042E+02	3.627E+02	5.576E+02	0.000E+00	-0.366
AM-241	-1.544E+01	3.039E+01	4.791E+01	0.000E+00	-0.322

```
,08/14/2006 15:00,08/11/2006 09:00,
                                                                 2.869E+00,L29576-1 WG EX
A,07L29576-1
                                             ,08/14/2006 09:44,073L082504
                     ,LIBD
B,07L29576-1
                                                                    0.583
           , YES,
                                    9.728E+00,
                                                   2.056E+01,,
C, TH-232
                     1.198E+01,
                                                                    0.287
                     1.315E+01,
                                    2.579E+01,
                                                   4.588E+01,,
C, BE-7
            , NO
                                    1.536E+02,
                                                   2.192E+02,,
                                                                    0.046
C, NA-24
           , NO
                     1.005E+01,
                                                   1.008E+02,,
                                                                   -0.227
C, K-40
            , NO
                    -2.289E+01,
                                    5.117E+01,
                                                                    0.060
                                    3.139E+01,
                                                   5.167E+01,,
C, CR-51
                     3.107E+00,
            , NO
                                                                    -0.079
                                                   5.603E+00,,
                    -4.422E-01,
                                    3.519E+00,
C, MN-54
           ,NO
                                                   5.266E+00,,
                                                                    -0.267
            , NO
                    -1.405E+00,
                                    3.412E+00,
C, CO-57
                     6.647E-01,
                                    3.610E+00,
                                                   6.020E+00,,
                                                                    0.110
C, CO-58
            , NO
                                                   1.122E+01,,
                                                                    0.067
                                    6.626E+00,
                     7.497E-01,
C, FE-59
            , NO
                                                   5.198E+00,,
                                                                    -0.074
                    -3.851E-01,
                                    3.253E+00,
C, CO-60
            , NO
                                                                    -0.169
                                                   1.115E+01,,
                    -1.889E+00,
                                    8.249E+00,
C, ZN-65
            ,NO
                                                   7.792E+00,,
                                                                    0.003
                                    4.723E+00,
            , NO
                     2.235E-02,
C, SE-75
                                                                    -1.126
C, SR-85
                    -7.707E+00,
                                    4.662E+00,
                                                   6.843E+00,,
            , NO
                                                   4.911E+00,,
                                                                    -0.149
                    -7.329E-01,
                                    3.158E+00,
            , NO
C, Y-88
                                                   6.043E+00,,
                                                                     0.280
                                    3.477E+00,
C, NB-94
            , NO
                     1.694E+00,
                                                   6.616E+00,,
                                                                     0.261
            , NO
                     1.729E+00,
                                    4.381E+00,
C, NB-95
                                    6.168E+00,
                                                   9.619E+00,,
                                                                    -0.203
C, ZR-95
            , NO
                    -1.950E+00,
                                                   8.799E+01,,
                                                                    -0.084
C,MO-99
                                    5.486E+01,
            , NO
                    -7.428E+00,
                                                   5.697E+00,,
                                                                    -0.039
                    -2.195E-01,
                                    3.415E+00,
C, RU-103
            , NO
                                                                    -0.600
                                                   4.661E+01,,
            , NO
                                    3.179E+01,
                    -2.799E+01,
C, RU-106
                                                   5.252E+00,,
                                                                    -0.228
                    -1.196E+00,
                                    3.341E+00,
C, AG-110m
            , NO
                                                   7.265E+00,,
                                                                    -0.312
C, SN-113
            , NO
                    -2.265E+00,
                                    4.739E+00,
                                                   5.177E+00,,
                                                                    -0.455
                    -2.354E+00,
                                    3.998E+00,
C,SB-124
            , NO
                                                   1.435E+01,,
                                                                    -1.017
                    -1.460E+01,
                                    1.063E+01,
C,SB-125
            , NO
                                                   5.986E+01,,
                                                                    -0.085
                                    3.817E+01,
                    -5.072E+00,
C, TE-129M
            , NO
                                                   7.527E+00,,
                                                                     0.289
                                    4.427E+00,
C, I-131
            , NO
                     2.174E+00,
                                                   7.429E+00,,
                                                                     0.326
C, BA-133
            ,NO
                     2.421E+00,
                                    4.885E+00,
            ,NO
                    -4.017E-01,
                                    3.653E+00,
                                                   5.159E+00,,
                                                                    -0.078
C, CS-134
                                                   7.126E+00,,
                                                                     0.207
                                    4.183E+00,
C, CS-136
                     1.475E+00,
            , NO
                                                    6.752E+00,,
                                                                     0.491
                     3.315E+00,
                                    3.690E+00,
C, CS-137
            , NO
                                                    5.376E+00,,
                                                                    -0.482
C,CE-139
            , NO
                    -2.591E+00,
                                    3.346E+00,
                                                   1.796E+01,,
                                                                    -0.450
                    -8.089E+00,
                                    1.187E+01,
C, BA-140
            , NO
                                     4.418E+00,
                                                    6.595E+00,,
                                                                    -0.211
C, LA-140
            , NO
                    -1.394E+00,
                                                    1.020E+01,,
                                                                    -0.017
                                     6.021E+00,
                    -1.697E-01,
C, CE-141
            , NO
                                                                    -0.494
                                     2.843E+01,
                                                    4.274E+01,,
            , NO
                    -2.113E+01,
C, CE-144
                                                    1.857E+01,,
                                                                     0.081
            , NO
C, EU-152
                     1.509E+00,
                                     1.129E+01,
            , NO
                    -6.880E+00,
                                     7.179E+00,
                                                    1.060E+01,,
                                                                    -0.649
C, EU-154
            , NO
                                     8.601E+01,
                                                    1.523E+02,,
                                                                     0.005
C, RA-226
                     7.164E-01,
                                                    2.725E+01,,
                                                                     0.461
                     1.255E+01,
                                     1.434E+01,
C, AC-228
            , NO
                                                    1.309E+01,,
                                                                    -0.373
                    -4.886E+00,
                                     7.827E+00,
C, TH-228
            , NO
                                                                    -0.186
                                     2.886E+01,
                                                    4.505E+01,,
            , NO
                    -8.375E+00,
C, U-235
            , NO
                                     3.627E+02,
                                                    5.576E+02,,
                                                                    -0.366
C, U-238
                    -2.042E+02
                                     3.039E+01,
                                                    4.791E+01,,
                                                                    -0.322
```

-1.544E+01,

C, AM-241

,NO,

Sec. Review: Analyst; LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-AUG-2006 15:59:59.05 TBE23 03017322 HpGe ******* Aquisition Date/Time: 14-AUG-2006 14:21:18.76

LIMS No., Customer Name, Client ID: L29576-2 WG EX/DRES

Sample ID : 23L29576-2 Smple Date: 11-AUG-2006 09:10:00.

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
	5		26 40	10 68	1.09	67.70 74.50		4.43E-03 7.00E-03		2.55E+00
3	5 0	37.11* 139.01	51	185	0.97	278.08	2.32E+00	8.93E-03	47.6	
4	0	351.88*	30	77	0.97	703.46		5.16E-03		
5	0	596.10	51	40	0.64	1191.72	9.56E-01	8.91E-03	28.8	
6	0	610.12*	11	64	1.80	1219.75	-	1.90E-03		
7	0	1120.12*	13	21	1.08	2240.22		2.29E-03		
8	0	1460.71*	8	0	1.64	2922.32		1.46E-03		
9	0	1764.28*	8	11	0.55	3530.71	4.38E-01	1.40E-03	109.4	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Sigma pCi/L %Error %Eff pCi/L %Abn Area Nuclide Energy 201.42 2.310E+01 2.310E+01 10.67* 5.096E-01 8 K-401460.81

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity

Acquisition date : 14-AUG-2006 14:21:18 Sample ID : 23L29576-2

Total number of lines in spectrum 9 Number of unidentified lines 8

Number of lines tentatively identified by NID 1 11.11%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Decay pCi/L pCi/L 2-Sigma Error %Error Flags

1.00 2.310E+01 2.310E+01 4.652E+01 201.42 Nuclide Hlife

______

K-40 1.28E+09Y 1.00 2.310E+01

Total Activity : 2.310E+01 2.310E+01

2.310E+01 Grand Total Activity: 2.310E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Page :

Unidentified Energy Lines Sample ID : 23L29576-2

Acquisition date : 14-AUG-2006 14:21:18

机装件用

Bkgnd FWHM Channel Left Pw Cts/Sec %Err %Eff Flags Ιt Area Energy 8.12E-02 64 24 4.43E-03 **** 5 33.70 26 10 1.09 67.70 1.40E-01 68 1.60 74.50 64 24 7.00E-03 98.0 5 37.11 40 276 8 8.93E-03 95.2 2.32E+00 185 0.97 278.08 0 139.01 51 703.46 698 10 5.16E-03 **** 1.43E+00 77 0.97 0 351.88 30 1191.72 1186 13 8.91E-03 57.5 9.56E-01 51 40 0.64 0 596.10 1219.75 1213 12 1.90E-03 **** 9.39E-01 610.12 11 64 1.80 0 13 21 1.08 2240.22 2235 14 2.29E-03 **** 6.16E-01 1120.12 0 3530.71 3521 16 1.40E-03 **** 4.38E-01 1764.28 8 11 0.55

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

9 Total number of lines in spectrum Number of unidentified lines 8

Number of lines tentatively identified by NID 11.11% 1

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay 2.310E+01 2.310E+01 4.652E+01 201.42 K-40 1.28E+09Y 1.00 

2.310E+01 Total Activity: 2.310E+01

Grand Total Activity: 2.310E+01 2.310E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	2.310E+01	4.652E+01	5.628E+01	0.000E+00	0.410

Non-Identified Nuclides							
Nuclide	Key-Line Activity K.L (pCi/L) Ide		MDA (pCi/L)	MDA error	Act/MDA		
BE-7 NA-24 CR-51	-6.795E+00 -4.325E+01 -1.458E+01	2.530E+01 1.005E+02 2.825E+01	4.471E+01 1.800E+02 4.618E+01	0.000E+00 0.000E+00 0.000E+00	-0.152 -0.240 -0.316		

NANT E A	6.893E-01	2.645E+00	5.023E+00	0.000E+00	0.137
MN-54 CO-57	-1.708E+00	3.066E+00	5.127E+00	0.000E+00	-0.333
CO-57	-3.671E-01	2.562E+00	4.629E+00	0.000E+00	-0.079
FE-59	-1.768E+00	5.786E+00	1.000E+01	0.000E+00	-0.177
CO-60	1.444E+00	2.884E+00	5.958E+00	0.000E+00	0.242
	-2.012E+00	7.009E+00	1.026E+01	0.000E+00	-0.196
ZN-65 SE-75	1.203E+00	4.267E+00	7.414E+00	0.000E+00	0.162
	-4.369E+00	3.910E+00	6.368E+00	0.000E+00	-0.686
SR-85		3.158E+00	5.860E+00	0.000E+00	-0.121
Y-88	-7.082E-01		4.475E+00	0.000E+00	-0.644
NB-94	-2.884E+00	2.822E+00		0.000E+00	0.253
NB-95	1.536E+00	3.198E+00	6.060E+00	0.000E+00	-0.040
ZR-95	-3.733E-01	5.227E+00	9.413E+00		0.265
MO-99	2.529E+01	4.967E+01	9.546E+01	0.000E+00	
RU-103	-2.778E+00	3.006E+00	4.954E+00	0.000E+00	-0.561
RU-106	2.084E+01	3.048E+01	5.837E+01	0.000E+00	0.357
AG-110m	1.518E+00	2.728E+00	5.295E+00	0.000E+00	0.287
SN-113	-5.815E-01	4.175E+00	7.430E+00	0.000E+00	-0.078
SB-124	-2.716E+00	4.953E+00	5.317E+00	0.000E+00	-0.511
SB-125	2.646E+00	8.240E+00	1.535E+01	0.000E+00	0.172
TE-129M	-4.842E+00	3.502E+01	6.262E+01	0.000E+00	-0.077
I-131	2.978E-01	4.171E+00	7.170E+00	0.000E+00	0.042
BA-133	1.602E+00	4.765E+00	7.391E+00	0.000E+00	0.217
CS-134	-7.629E-01	3.487E+00	5.272E+00	0.000E+00	-0.145
CS-136	1.200E+00	3.346E+00	6.363E+00	0.000E+00	0.189
CS-137	-2.554E-01	2.754E+00	5.012E+00	0.000E+00	-0.051
CE-139	-2.329E+00	3.207E+00	5.270E+00	0.000E+00	-0.442
BA-140	-2.290E+00	1.122E+01	2.006E+01	0.000E+00	-0.114
LA-140	-1.095E+00	3.421E+00	6.268E+00	0.000E+00	-0.175
CE-141	-1.131E+00	6.073E+00	9.930E+00	0.000E+00	-0.114
CE-144	3.078E+01	2.402E+01	4.363E+01	0.000E+00	0.706
EU-152	-5.251E-01	1.019E+01	1.726E+01	0.000E+00	-0.030
EU-154	7.306E-01	6.279E+00	1.086E+01	0.000E+00	0.067
RA-226	-3.013E+01	8.230E+01	1.455E+02	0.000E+00	-0.207
AC-228	1.010E+01	1.126E+01	2.355E+01	0.000E+00	0.429
TH-228	-1.166E-01	6.227E+00	1.081E+01	0.000E+00	-0.011
TH-232	1.009E+01	1.125E+01	2.353E+01	0.000E+00	0.429
U-235	3.773E+01	2.713E+01	4.485E+01	0.000E+00	0.841
U-238	1.800E+02	2.982E+02	6.209E+02	0.000E+00	0.290
AM-241	-1.326E+01	1.739E+01	2.927E+01	0.000E+00	-0.453

```
3.137E+00, L29576-2 WG EX
                     ,08/14/2006 16:00,08/11/2006 09:10,
A,23L29576-2
                                             ,08/14/2006 10:01,233L082404
                     , LIBD
B,23L29576-2
                                                                     0.410
                                                   5.628E+01,,
                                    4.652E+01,
C, K-40
            , YES,
                     2.310E+01,
                                                                    -0.152
            , NO
                    -6.795E+00,
                                    2.530E+01,
                                                   4.471E+01,,
C, BE-7
                                                                    -0.240
C, NA-24
                                    1.005E+02,
                                                   1.800E+02,,
                    -4.325E+01,
            , NO
                                    2.825E+01,
                                                   4.618E+01,,
                                                                    -0.316
                    -1.458E+01,
C, CR-51
            , NO
                                                   5.023E+00,,
                                                                     0.137
                                    2.645E+00,
                     6.893E-01,
C, MN-54
            , NO
                                                                    -0.333
                                                   5.127E+00,,
                                    3.066E+00,
C, CO-57
                    -1.708E+00,
            , NO
                                                                    -0.079
                                                   4.629E+00,,
C, CO-58
            , NO
                    -3.671E-01,
                                    2.562E+00,
                                    5.786E+00,
                                                   1.000E+01,,
                                                                    -0.177
                    -1.768E+00,
C,FE-59
            , NO
                                                   5.958E+00,,
                                                                     0.242
                     1.444E+00,
                                    2.884E+00,
C, CO-60
            , NO
                                                   1.026E+01,,
                                                                    -0.196
                                    7.009E+00,
            ,NO
                    -2.012E+00,
C, ZN-65
                                                                     0.162
                     1.203E+00,
                                                   7.414E+00,,
                                    4.267E+00,
C, SE-75
            , NO
                                                   6.368E+00,,
                                                                    -0.686
                                    3.910E+00,
            , NO
                    -4.369E+00,
C, SR-85
                                                                    -0.121
                    -7.082E-01,
                                    3.158E+00,
                                                   5.860E+00,,
C, Y-88
            , NO
                                    2.822E+00,
                                                   4.475E+00,,
                                                                    -0.644
C, NB-94
            , NO
                    -2.884E+00,
                                                   6.060E+00,,
                                                                     0.253
                                    3.198E+00,
                     1.536E+00,
C, NB-95
            , NO
                                                   9.413E+00,,
                                                                    -0.040
            , NO
                                    5.227E+00,
C, ZR-95
                    -3.733E-01,
                                    4.967E+01,
                                                   9.546E+01,,
                                                                     0.265
            , NO
                     2.529E+01,
C, MO-99
                                                   4.954E+00,,
                                                                    -0.561
            , NO
                                    3.006E+00,
C, RU-103
                    -2.778E+00,
                                                    5.837E+01,,
                                                                     0.357
                     2.084E+01,
                                    3.048E+01,
C, RU-106
            ,NO
                                                                     0.287
                                    2.728E+00,
                                                    5.295E+00,,
                     1.518E+00,
C, AG-110m
            , NO
                                                    7.430E+00,,
                                                                    -0.078
                                    4.175E+00,
C, SN-113
            , NO
                    -5.815E-01,
                                                                    -0.511
                                                    5.317E+00,,
            ,NO
                    -2.716E+00,
                                    4.953E+00,
C,SB-124
                                                                     0.172
                                    8.240E+00,
                                                    1.535E+01,,
                     2.646E+00,
C,SB-125
            , NO
                                                    6.262E+01,,
                                                                    -0.077
                                    3.502E+01,
C, TE-129M , NO
                    -4.842E+00,
                                                                     0.042
                                    4.171E+00,
                                                    7.170E+00,,
            , NO
                     2.978E-01,
C, I-131
                                                                     0.217
                                    4.765E+00,
                                                    7.391E+00,,
                     1.602E+00,
C, BA-133
            , NO
                                                    5.272E+00,,
                                                                    -0.145
                    -7.629E-01,
                                     3.487E+00,
C, CS-134
            , NO
                                     3.346E+00,
                                                    6.363E+00,,
                                                                     0.189
                     1.200E+00,
C, CS-136
            , NO
                                                    5.012E+00,,
                                                                    -0.051
C, CS-137
            , NO
                    -2.554E-01,
                                     2.754E+00,
                                                    5.270E+00,,
                                                                    -0.442
                    -2.329E+00,
                                     3.207E+00,
            , NO
C, CE-139
                    -2.290E+00,
                                                    2.006E+01,,
                                                                    -0.114
                                     1.122E+01,
C, BA-140
            , NO
                                                                    -0.175
                                                    6.268E+00,,
                    -1.095E+00,
                                     3.421E+00,
C, LA-140
            , NO
                                                                    -0.114
                                     6.073E+00,
                                                    9.930E+00,,
                    -1.131E+00,
C, CE-141
            , NO
                                                    4.363E+01,,
                                                                     0.706
                                     2.402E+01,
C, CE-144
            , NO
                     3.078E+01,
                                                                    -0.030
                                     1.019E+01,
                                                    1.726E+01,,
                    -5.251E-01,
C, EU-152
            , NO
                                                    1.086E+01,,
                                                                     0.067
                     7.306E-01,
                                     6.279E+00,
C, EU-154
            ,NO
                                                    1.455E+02,,
                                                                    -0.207
                    -3.013E+01,
                                     8.230E+01,
C, RA-226
            , NO
                                                                     0.429
                                                    2.355E+01,,
                                     1.126E+01,
C, AC-228
            ,NO
                     1.010E+01,
                                                                    -0.011
                                     6.227E+00,
                                                    1.081E+01,,
                     -1.166E-01,
C, TH-228
            , NO
                                                                     0.429
                                                    2.353E+01,,
 C, TH-232
                      1.009E+01,
                                     1.125E+01,
            , NO
                                                                     0.841
                                     2.713E+01,
                                                    4.485E+01,,
 C, U-235
            , NO
                      3.773E+01,
                                                    6.209E+02,,
                                                                     0.290
 C, U-238
                      1.800E+02,
                                     2.982E+02,
            , NO
                                                    2.927E+01,,
                                                                    -0.453
```

1.739E+01,

, NO

-1.326E+01,

C, AM-241

LIMS: Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-AUG-2006 15:28:27.08 TBE04 P-40312B HpGe ******** Aquisition Date/Time: 14-AUG-2006 14:21:21.15 

LIMS No., Customer Name, Client ID: L29576-3 WG EX/DRES

Smple Date: 11-AUG-2006 11:30:00. : 04L29576-3 Sample ID

Geometry : 043L082004 : WG Sample Type BKGFILE : 04BG072806MT : 3.08110E+00 L Quantity 

Pk :	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1	77.19* 87.18* 241.93 295.21* 351.85* 595.07 609.11* 768.06 933.79 1119.94* 1237.67*	55 28 64 116 199 27 155 14 19 28 27 39	82 106 81 47 33 18 24 6 17 6 2		2476.03	1.39E+00 1.66E+00 1.45E+00 1.28E+00 8.64E-01 8.49E-01	1.60E-02 2.89E-02 4.95E-02 6.63E-03 3.85E-02 3.52E-03 4.71E-03 6.85E-03 6.64E-03	65.1 27.1 16.0 9.6 36.6 10.7 38.7 50.7 26.8 22.5	2.39E+00 4.16E-01 2.38E+00 2.81E+00 1.45E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID: 04L29576-3

Acquisition date : 14-AUG-2006 14:21:21

12 Total number of lines in spectrum Number of unidentified lines 11

8.33%

Number of lines tentatively identified by NID 1
**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found

"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 04L29576-3

Page: 3 Acquisition date : 14-AUG-2006 14:21:21

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	77.19	55	82	1.10	155.30	153	_	1.38E-02		1.06E+00	
1	87.18	28	106	1.18	175.30	173	7	7.00E-03	***	1.39E+00	
1	241.93	64	81	0.96	484.84	481	8	1.60E-02	54.2	1.66E+00	
1	295.21	116	47	1.55	591.42	587	12	2.89E-02	32.0	1.45E+00	
1	351.85	199	33	1.34	704.72	698	11	4.95E-02	19.1	1.28E+00	1
1	595.07	27	18	2.93	1191.16	1184	12	6.63E-03	73.1	8.64E-01	
1	609.11	155	24	1.34	1219.22	1214	12	3.85E-02	21.5	8.49E-01	
1	768.06	14	6	1.72	1537.09	1534	8	3.52E-03	77.4	7.10E-01	
1	933.79	19	17	2.74	1868.49	1863	14	4.71E-03	* * * *	6.09E-01	-
1	1119.94	28	6	1.89	2240.68	2234	10	6.85E-03	53.5	5.27E-01	-
1	1237.67	27	2	2.48	2476.03	2470	11	6.64E-03	44.9	4.88E-01	•
1	1763.82	39	0	3.40			14	9.64E-03	33.7	3.77E-01	-
1	1700.02		Ŭ							* * *	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

12 Total number of lines in spectrum Number of unidentified lines 11
Number of lines tentatively identified by NID 1
**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report 

No interference correction performed

Combined Activity-MDA Report 

---- Non-Identified Nuclides ----

Nuclide		K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95	-2.658E+00 6.362E+01 5.395E+00 -3.268E+01 -1.413E+00 1.196E+00 -2.140E+00 2.190E+00 -2.908E-01 -3.468E+00 -1.177E+00 -1.525E+01 -4.714E-01 3.926E+00 3.013E+00		3.731E+01 1.122E+02 5.638E+01 3.299E+01 3.312E+00 3.540E+00 4.151E+00 8.320E+00 4.630E+00 1.028E+01 5.063E+00 5.372E+00 3.958E+00 3.556E+00 3.707E+00 6.475E+00	6.118E+01 2.105E+02 1.149E+02 5.031E+01 5.127E+00 5.984E+00 1.437E+01 8.339E+00 1.333E+01 7.847E+00 6.276E+00 6.333E+00 6.745E+00 8.074E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.043 0.302 0.047 -0.650 -0.276 0.200 -0.358 0.152 -0.035 -0.260 -0.150 -2.430 -0.074 0.582 0.476 -0.818
ZR-95	-6.605E+00		0.4/51/00	0.0, 12.00		

***	1.289E+01	5.424E+01	9.131E+01	0.000E+00	0.141
MO-99	-1.960E+00	3.681E+00	5.598E+00	0.000E+00	-0.350
RU-103	-1.501E+01	3.363E+01	5.043E+01	0.000E+00	-0.298
RU-106	-4.086E+00	3.709E+00	4.778E+00	0.000E+00	-0.855
AG-110m	1.539E+00	4.912E+00	8.494E+00	0.000E+00	0.181
SN-113	1.664E+00	3.783E+00	6.173E+00	0.000E+00	0.270
SB-124	-2.563E+00	1.069E+01	1.727E+01	0.000E+00	-0.148
SB-125 TE-129M	1.437E+01	4.401E+01	7.588E+01	0.000E+00	0.189
I-131	-3.768E-01	4.920E+00	8.195E+00	0.000E+00	-0.046
BA-133	1.321E+00	5.236E+00	8.070E+00	0.000E+00	0.164
CS-134	-1.622E+00	3.764E+00	4.798E+00	0.000E+00	-0.338
CS-134 CS-136	-1.524E+00	4.209E+00	6.661E+00	0.000E+00	-0.229
CS-137	4.731E-01	4.639E+00	7.620E+00	0.000E+00	0.062
CE-139	7.734E-01	3.801E+00	6.284E+00	0.000E+00	0.123
BA-140	-2.730E+00	1.632E+01	2.615E+01	0.000E+00	-0.104
LA-140	-7.738E-02	5.906E+00	9.884E+00	0.000E+00	-0.008
CE-141	-2.290E+00	6.626E+00	1.058E+01	0.000E+00	-0.216
CE-144	1.444E+01	2.724E+01	4.650E+01	0.000E+00	0.310
EU-152	4.007E+00	1.194E+01	2.075E+01	0.000E+00	0.193
EU-154	1.414E+00	7.536E+00	1.260E+01	0.000E+00	0.112
RA-226	1.075E+01	9.236E+01	1.571E+02	0.000E+00	0.068
AC-228	-7.497E-01	1.442E+01	2.606E+01	0.000E+00	-0.029
TH-228	-4.491E+00	8.512E+00	1.256E+01	0.000E+00	-0.358
TH-232	-7.489E-01	1.440E+01	2.603E+01	0.000E+00	-0.029
U-235	1.149E+01	2.765E+01	4.671E+01	0.000E+00	0.246
U-238	2.305E+02	4.637E+02	8.333E+02	0.000E+00	0.277
AM-241	-1.122E+01	3.729E+01	6.182E+01	0.000E+00	-0.181

```
3.081E+00,L29576-3 WG EX
                     ,08/14/2006 15:28,08/11/2006 11:30,
A,04L29576-3
                                             ,08/14/2006 09:43,043L082004
                     ,LIBD
B,04L29576-3
                                                   6.118E+01,,
                                                                   -0.043
           ,NO
                                    3.731E+01,
                    -2.658E+00,
C, BE-7
                                                                     0.302
                     6.362E+01,
                                    1.122E+02,
                                                   2.105E+02,,
C, NA-24
            , NO
                                                                     0.047
                                                   1.149E+02,,
                                    5.638E+01,
C, K-40
            , NO
                     5.395E+00,
                                                   5.031E+01,,
                                                                    -0.650
                    -3.268E+01,
                                    3.299E+01,
C, CR-51
            , NO
                                                   5.127E+00,,
                                                                    -0.276
            , NO
                                    3.312E+00,
                    -1.413E+00,
C, MN-54
                                                   5.984E+00,,
                                                                     0.200
                                    3.540E+00,
                     1.196E+00,
C, CO-57
            , NO
                                                   5.974E+00,,
                                                                    -0.358
                    -2.140E+00,
                                    4.151E+00,
C, CO-58
            , NO
                                                   1.437E+01,,
                                                                     0.152
                     2.190E+00,
                                    8.320E+00,
C, FE-59
            , NO
                                                   8.339E+00,,
                                                                    -0.035
                    -2.908E-01,
            , NO
                                    4.630E+00,
C, CO-60
                                                   1.333E+01,,
                                                                    -0.260
            , NO
                                    1.028E+01,
                    -3.468E+00,
C, ZN-65
                                                                    -0.150
                    -1.177E+00,
                                                   7.847E+00,,
                                    5.063E+00,
C, SE-75
            , NO
                                                   6.276E+00,,
                                                                    -2.430
                                    5.372E+00,
            , NO
                    -1.525E+01,
C, SR-85
                                                                    -0.074
                                                   6.333E+00,,
                    -4.714E-01,
                                    3.958E+00,
C, Y-88
            , NO
                                                                     0.582
                                    3.556E+00,
                                                   6.745E+00,,
C, NB-94
            ,NO
                     3.926E+00,
                                                   6.327E+00,,
                                                                     0.476
                     3.013E+00,
                                    3.707E+00,
C, NB-95
            , NO
                                                                    -0.818
                                    6.475E+00,
                                                   8.074E+00,,
                    -6.605E+00,
C, ZR-95
            , NO
                                                                     0.141
                                    5.424E+01,
                                                   9.131E+01,,
                     1.289E+01,
C, MO-99
            , NO
                                                                    -0.350
                                                   5.598E+00,,
            ,NO
                                    3.681E+00,
C, RU-103
                    -1.960E+00,
                                                                    -0.298
                                                   5.043E+01,,
                    -1.501E+01,
                                    3.363E+01,
C, RU-106
            , NO
                                                   4.778E+00,,
                                                                    -0.855
                    -4.086E+00,
                                    3.709E+00,
C, AG-110m , NO
                                    4.912E+00,
                                                   8.494E+00,,
                                                                     0.181
                     1.539E+00,
C, SN-113
            , NO
                                                   6.173E+00,,
                                                                     0.270
                                    3.783E+00,
                     1.664E+00,
C,SB-124
            , NO
                                                   1.727E+01,,
                                                                    -0.148
            , NO
                                    1.069E+01,
C,SB-125
                    -2.563E+00,
                                                                     0.189
                                                   7.588E+01,,
            , NO
                     1.437E+01,
                                    4.401E+01,
C, TE-129M
                                                                    -0.046
            , NO
                                    4.920E+00,
                                                   8.195E+00,,
                    -3.768E-01,
C, I-131
                                    5.236E+00,
                                                   8.070E+00,,
                                                                     0.164
                     1.321E+00,
            , NO
C,BA-133
                                                   4.798E+00,,
                                                                    -0.338
                                     3.764E+00,
                    -1.622E+00,
C, CS-134
            , NO
                                                    6.661E+00,,
                                                                    -0.229
                                     4.209E+00,
C, CS-136
            , NO
                    -1.524E+00,
                                                                     0.062
                                                    7.620E+00,,
C, CS-137
            , NO
                     4.731E-01,
                                     4.639E+00,
                                                    6.284E+00,,
                     7.734E-01,
                                     3.801E+00,
                                                                     0.123
C, CE-139
            , NO
                                                    2.615E+01,,
                                                                    -0.104
                                     1.632E+01,
                    -2.730E+00,
            , NO
C, BA-140
                                                                    -0.008
                                                    9.884E+00,,
            , NO
                                     5.906E+00,
                    -7.738E-02,
C, LA-140
                                                                    -0.216
                                                    1.058E+01,,
                                     6.626E+00,
            , NO
                    -2.290E+00,
C, CE-141
                                                                     0.310
                                                    4.650E+01,,
            , NO
                     1.444E+01,
                                     2.724E+01,
C, CE-144
                     4.007E+00,
                                     1.194E+01,
                                                    2.075E+01,,
                                                                     0.193
C, EU-152
            , NO
                                                    1.260E+01,,
                                                                     0.112
                                     7.536E+00,
            , NO
                     1.414E+00,
C, EU-154
                                                                     0.068
                                     9.236E+01,
                                                    1.571E+02,,
                     1.075E+01,
C, RA-226
            , NO
                                                    2.606E+01,,
                                                                    -0.029
                                     1.442E+01,
C, AC-228
            , NO
                    -7.497E-01,
                                                    1.256E+01,,
                                                                    -0.358
                                     8.512E+00,
C, TH-228
            , NO
                    -4.491E+00,
                                     1.440E+01,
                                                    2.603E+01,,
                                                                    -0.029
                    -7.489E-01,
C, TH-232
            , NO
                                                                     0.246
                                     2.765E+01,
                                                    4.671E+01,,
            , NO
                      1.149E+01,
 C, U-235
                                                                      0.277
                                                    8.333E+02,,
                                     4.637E+02,
                      2.305E+02,
 C, U-238
            , NO
```

3.729E+01,

-1.122E+01,

C, AM-241

, NO

6.182E+01,,

-0.181

Sec. Review:

Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-AUG-2006 18:09:27.81 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 14-AUG-2006 15:07:49.99

LIMS No., Customer Name, Client ID: L29576-4 WG EX/DRES

Smple Date: 11-AUG-2006 13:15:00. : 07L29576-4 Sample ID

Geometry : 073L082504 Sample Type : WG BKGFILE : 07BG072806MT Quantity : 2.86760E+00 L End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 03:01:32.31 MDA Constant: 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1	65.40* 198.34* 295.00* 351.80* 595.71 609.34* 846.17* 910.83* 1539.53 1543.69	155 82 61 140 82 148 25 22 16	689 359 203 202 57 112 21 25 8	4.51 2.87 1.56 2.30		2.25E+00 1.81E+00 1.61E+00 1.10E+00 1.09E+00 8.58E-01 8.15E-01 5.62E-01 5.61E-01	1.43E-02 7.56E-03 5.64E-03 1.29E-02 7.57E-03 1.36E-02 2.28E-03 2.02E-03 1.51E-03	48.7 48.5 23.7 20.9 18.6 49.3 58.3 48.0 32.3	2.51E+00 1.51E+00 2.33E+00 1.13E+00 1.73E+00 3.20E+00 2.20E+00 5.52E-01 6.27E-01
11	1	1764.58*	27	19	2.48	3531.72	5.12E-01	2.50E-03	43.9	8.03E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-819ma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
AC-228	835.50		1.75	8.662E-01	Lir	ne Not Found	
	911.07	2.2	27.70*	8.146E-01	8.446E+00	8.455E+00	116.56

Flaq: "*" = Keyline

Page: 2 Summary of Nuclide Activity

Acquisition date : 14-AUG-2006 15:07:49 Sample ID : 07L29576-4

Total number of lines in spectrum 11 10 Number of unidentified lines

9.09% Number of lines tentatively identified by NID 1

_____

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma Hlife Decay pCi/L pCi/L 2-Sigma Error %Error 5.75Y 1.00 8.446E+00 8.455E+00 9.855E+00 116.56 2-Sigma Error %Error Flags Nuclide Hlife

_____

AC-228

8.455E+00 Total Activity: 8.446E+00

Grand Total Activity: 8.446E+00 8.455E+00

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

3

Unidentified Energy Lines Sample ID : 07L29576-4

Page: Acquisition date: 14-AUG-2006 15:07:49

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	65.40 198.34 295.00 351.80 595.71 609.34 846.17 1539.53 1543.69 1764.58	155 82 61 140 82 148 25 16 17	689 359 203 202 57 112 21 8 5	4.00 1.89 1.40 1.39 1.90 1.26 4.51 1.56 2.30	3081.77 3090.08	391 587 698 1188 1213 1688 3075 3087	12 11 13 11 15 12 13 10		97.5 97.1 47.3 41.8 37.1 98.5 96.1 64.6	7.69E-01 2.25E+00 1.81E+00 1.61E+00 1.10E+00 1.09E+00 8.58E-01 5.62E-01 5.61E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 11 Number of unidentified lines 10 Number of lines tentatively identified by NID 9.09% 1

Nuclide Type : natural

Wtd Mean Wtd Mean 2-Sigma Uncorrected Decay Corr Decay Corr pCi/L 2-Sigma Error %Error Flags Nuclide Hlife Decay pCi/L 9.855E+00 116.56 AC-228 5.75Y 1.00 8.446E+00 8.455E+00 _____ _____

8.455E+00

Grand Total Activity: 8.446E+00 8.455E+00

Flags: "K" = Keyline not found "M" = Manually accepted

8.446E+00

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Total Activity:

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
AC-228	8.455E+00	9.855E+00	1.291E+01	0.000E+00	0.655
Non-Ide	ntified Nuclides				
	Key-Line Activity K.L.	Act error	MDA	MDA error	Act/MDA

Nuclide (pCi/L) Ided (pCi/L) 2.948E+01 0.000E+00 0.044 1.742E+01 1.286E+00 BE-7

	£ 40477 00	7 FOOD 01	1.253E+02	0.000E+00	0.052
NA-24	6.494E+00	7.582E+01 3.435E+01	6.762E+01	0.000E+00	-0.084
K-40	-5.673E+00	1.847E+01	2.936E+01	0.000E+00	-0.261
CR-51	-7.650E+00 -8.431E-01	2.158E+00	3.363E+00	0.000E+00	-0.251
MN-54		2.156E+00 2.085E+00	3.250E+00	0.000E+00	-0.270
CO-57	-8.771E-01 -3.551E-01	2.085E+00 2.286E+00	3.662E+00	0.000E+00	-0.097
CO-58	7.711E-01	4.078E+00	6.918E+00	0.000E+00	0.111
FE-59	4.230E-01	2.336E+00	3.911E+00	0.000E+00	0.108
CO-60	-8.376E+00	4.986E+00	6.857E+00	0.000E+00	-1.221
ZN-65	-1.659E-01	2.700E+00	4.439E+00	0.000E+00	-0.037
SE-75 SR-85	-7.859E+00	2.700E+00 2.885E+00	4.170E+00	0.000E+00	-1.885
Y-88	7.477E-01	2.005E+00 2.256E+00	3.929E+00	0.000E+00	0.190
Y-88 NB-94	3.527E-01	1.988E+00	3.316E+00	0.000E+00	0.106
NB-94 NB-95	-5.787E-01	2.287E+00	3.649E+00	0.000E+00	-0.159
ZR-95	-8.702E-02	3.541E+00	5.770E+00	0.000E+00	-0.015
MO-99	2.082E+01	3.401E+01	5.879E+01	0.000E+00	0.354
RU-103	-3.305E-01	2.279E+00	3.792E+00	0.000E+00	-0.087
RU-103	-3.637E+00	1.973E+01	3.217E+01	0.000E+00	-0.113
AG-110m	-9.218E-01	1.927E+00	3.036E+00	0.000E+00	-0.304
SN-113	7.659E-01	2.861E+00	4.697E+00	0.000E+00	0.163
SB-124	2.103E+00	2.435E+00	3.669E+00	0.000E+00	0.573
SB-125	-1.819E+00	5.942E+00	9.295E+00	0.000E+00	-0.196
TE-129M	1.186E+01	2.590E+01	4.278E+01	0.000E+00	0.277
I-131	2.716E-01	2.587E+00	4.222E+00	0.000E+00	0.064
BA-133	2.426E+00	3.131E+00	4.764E+00	0.000E+00	0.509
CS-134	1.180E-01	2.389E+00	3.459E+00	0.000E+00	0.034
CS-136	6.088E-01	2.496E+00	4.151E+00	0.000E+00	0.147
CS-137	-2.146E+00	2.245E+00	3.379E+00	0.000E+00	-0.635
CE-139	-1.246E+00	1.990E+00	3.270E+00	0.000E+00	-0.381
BA-140	7.021E+00	8.474E+00	1.503E+01	0.000E+00	0.467
LA-140	5.145E-01	2.753E+00	4.571E+00	0.000E+00	0.113
CE-141	-1.189E+00	3.539E+00	5.926E+00	0.000E+00	-0.201
CE-144	-8.495E+00	1.643E+01	2.538E+01	0.000E+00	-0.335
EU-152	-4.217E+00	6.807E+00	1.020E+01	0.000E+00	-0.413
EU-154	1.977E-01	4.446E+00	7.089E+00	0.000E+00	0.028
RA-226	-1.034E+01	5.444E+01	9.379E+01	0.000E+00	-0.110
TH-228	-2.564E+00	4.323E+00	7.293E+00	0.000E+00	-0.352
TH-232		+ 9.844E+00	1.558E+01	0.000E+00	0.542
U-235	-1.852E+00	1.731E+01	2.706E+01	0.000E+00	-0.068
U-238	7.816E+01	2.335E+02	3.930E+02	0.000E+00	0.199
AM-241	1.264E+01	1.995E+01	3.041E+01	0.000E+00	0.416

```
2.868E+00,L29576-4 WG EX
                     ,08/14/2006 18:09,08/11/2006 13:15,
A,07L29576-4
                                             ,08/14/2006 09:44,073L082504
                     ,LIBD
B,07L29576-4
                                                   1.291E+01,,
                                                                    0.655
                                    9.855E+00,
                    8.455E+00,
C, AC-228
           ,YES,
                                                                    0.044
                                    1.742E+01,
                                                   2.948E+01,,
C, BE-7
           , NO
                    1.286E+00,
                                                                    0.052
                                                   1.253E+02,,
                    6.494E+00,
                                    7.582E+01,
C, NA-24
           , NO
                                                                   -0.084
                   -5.673E+00,
                                    3.435E+01,
                                                   6.762E+01,,
           , NO
C, K-40
                                                   2.936E+01,,
                                                                   -0.261
                   -7.650E+00,
C, CR-51
           ,NO
                                    1.847E+01,
                                                   3.363E+00,,
                                                                   -0.251
                                    2.158E+00,
                    -8.431E-01,
C,MN-54
            , NO
                                                   3.250E+00,,
                                                                   -0.270
                                    2.085E+00,
C, CO-57
           , NO
                    -8.771E-01,
                                                                   -0.097
                                                   3.662E+00,,
           , NO
                                    2.286E+00,
C, CO-58
                    -3.551E-01,
                                                                    0.111
                                    4.078E+00,
                                                   6.918E+00,,
                     7.711E-01,
C, FE-59
            , NO
                                                   3.911E+00,,
                                                                    0.108
            , NO
                                    2.336E+00,
C,CO-60
                     4.230E-01,
                                                                   -1.221
                                                   6.857E+00,,
                                    4.986E+00,
C, ZN-65
            , NO
                    -8.376E+00,
                                                   4.439E+00,,
                                                                   -0.037
                                    2.700E+00,
C, SE-75
            , NO
                    -1.659E-01,
                                                                   -1.885
                                                   4.170E+00,,
                    -7.859E+00,
                                    2.885E+00,
C,SR-85
            , NO
                                                                    0.190
                                                   3.929E+00,,
            , NO
                                    2.256E+00,
C, Y-88
                     7.477E-01,
                                                   3.316E+00,,
                                                                    0.106
                                    1.988E+00,
            ,NO
                     3.527E-01,
C, NB-94
                                                                   -0.159
                                                   3.649E+00,,
            , NO
                                    2.287E+00,
C, NB-95
                    -5.787E-01,
                                                   5.770E+00,,
                                                                   -0.015
            , NO
                    -8.702E-02,
                                    3.541E+00,
C, ZR-95
                                                   5.879E+01,,
                                                                    0.354
C, MO-99
            , NO
                     2.082E+01,
                                    3.401E+01,
                                                   3.792E+00,,
                                                                   -0.087
                                    2.279E+00,
            , NO
                    -3.305E-01,
C, RU-103
                                                   3.217E+01,,
                                                                   -0.113
                                    1.973E+01,
C, RU-106
                    -3.637E+00,
            , NO
                                                                   -0.304
                                                   3.036E+00,,
                                    1.927E+00,
C, AG-110m
            , NO
                    -9.218E-01,
                                    2.861E+00,
                                                                     0.163
            , NO
                                                   4.697E+00,,
C, SN-113
                     7.659E-01,
                                                   3.669E+00,,
                                                                    0.573
C,SB-124
            , NO
                     2.103E+00,
                                    2.435E+00,
                    -1.819E+00,
                                    5.942E+00,
                                                   9.295E+00,,
                                                                   -0.196
            , NO
C,SB-125
                                                   4.278E+01,,
                                                                     0.277
            ,NO
                                    2.590E+01,
C, TE-129M
                     1.186E+01,
                                                   4.222E+00,,
                                                                     0.064
                     2.716E-01,
                                    2.587E+00,
            , NO
C, I-131
                                                                     0.509
                                                   4.764E+00,,
C, BA-133
            ,NO
                     2.426E+00,
                                    3.131E+00,
                                                   3.459E+00,,
                                                                     0.034
                     1.180E-01,
                                    2.389E+00,
C, CS-134
            , NO
                                                                     0.147
                     6.088E-01,
                                    2.496E+00,
                                                   4.151E+00,,
C, CS-136
            , NO
                                    2.245E+00,
                                                   3.379E+00,,
                                                                    -0.635
            , NO
                    -2.146E+00,
C, CS-137
                                                   3.270E+00,,
                                                                    -0.381
                                    1.990E+00,
                    -1.246E+00,
C, CE-139
            , NO
                                                                     0.467
                                                   1.503E+01,,
            , NO
                                    8.474E+00,
C,BA-140
                     7.021E+00,
                                                                     0.113
C, LA-140
            , NO
                     5.145E-01,
                                    2.753E+00,
                                                   4.571E+00,,
                                    3.539E+00,
                                                   5.926E+00,,
                                                                    -0.201
C, CE-141
                    -1.189E+00,
            ,NO
                                                   2.538E+01,,
                                                                    -0.335
                    -8.495E+00,
                                    1.643E+01,
C, CE-144
            , NO
                                                                    -0.413
                                                   1.020E+01,,
                    -4.217E+00,
                                    6.807E+00,
C, EU-152
            , NO
                                                   7.089E+00,,
                                                                     0.028
                                    4.446E+00,
C, EU-154
                     1.977E-01,
            , NO
                                                   9.379E+01,,
                                                                    -0.110
C, RA-226
            , NO
                    -1.034E+01,
                                    5.444E+01,
                    -2.564E+00,
                                     4.323E+00,
                                                   7.293E+00,,
                                                                    -0.352
C, TH-228
            , NO
                                                   1.558E+01,,
                                                                     0.542
                     8.446E+00,
                                     9.844E+00,
            , NO
C, TH-232
                                                    2.706E+01,,
                                                                    -0.068
                                     1.731E+01,
            , NO
                    -1.852E+00,
C, U-235
                                                    3.930E+02,,
                                                                     0.199
                                     2.335E+02,
            , NO
                     7.816E+01,
C, U-238
```

1.995E+01,

C, AM-241

, NO

1.264E+01,

3.041E+01,,

0.416

Sec. Review: Apalyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 14-AUG-2006 18:13:27.89 TBE23 03017322 HpGe ******* Aquisition Date/Time: 14-AUG-2006 16:07:30.52

LIMS No., Customer Name, Client ID: L29576-5 WG EX/DRES

Sample ID : 23L29576-5 Smple Date: 11-AUG-2006 13:40:00.

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	4	35.19*	29	35	1.53	70.68	1.05E-01	3.88E-03	73.4	4.04E+00
2	4	36.84*	49	58	1.57	73.96	1.35E-01	6.43E-03	45.1	
3	4	38.87	68	88	1.54	78.03	1.79E-01	9.00E-03	31.4	
4	4	42.30*	62	179	1.77	84.88	2.67E-01	8.24E-03	39.8	
5	0	140.08*	30	395	1.42	280.20	2.32E+00	4.02E-033	133.7	
6	0	198.26	143	264	1.54	396.46	2.11E+00	1.90E-02	25.4	
7	0	294.84*	57	167	1.93	589.44	1.64E+00	7.50E-03	50.6	
8	0	352.16*	109	136	1.32	704.01	1.43E+00	1.45E-02	25.5	
9	0	510.89*	9	58	2.85	1021.34	1.07E+00	1.24E-032	257.6	
10	0	609.19*	122	37	1.67	1217.89	9.40E-01	1.62E-02	15.2	
11	0	1121.05*	35	32	2.03	2242.08	6.15E-01	4.58E-03	44.2	
12	0	1764.40*	18	5	1.38	3530.95	4.38E-01	2.43E-03	37.3	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Summary of Nuclide Activity Sample ID: 23L29576-5 Page: 2 Acquisition date : 14-AUG-2006 16:07:30

Total number of lines in spectrum 12 Number of unidentified lines 12
Number of lines tentatively identified by NID 0

0.00%

**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID : 23L29576-5

Acquisition date : 14-AUG-2006 16:07:30

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
4	35.19	29	35	1.53	70.68			3.88E-03		1.05E-01	
4	36.84	49	58	1.57	73.96			6.43E-03		1.35E-01	_
4	38.87	68	88	1.54	78.03	65	26	9.00E-03	62.7	1.79E-01	_
4	42.30	62	179	1.77	84.88	65	26	8.24E-03	79.6	2.67E-01	-
0	140.08	30	395	1.42	280.20	273	12	4.02E-03	***	2.32E+00	)
0	198.26	143	264	1.54	396.46	390	14	1.90E-02	50.8	2.11E+00	
0	294.84	57	167	1.93	589.44	585	14	7.50E-03	***	1.64E+00	)
0	352.16	109	136	1.32	704.01	698	14	1.45E-02	50.9	1.43E+00	)
0	510.89	9	58	2.85	1021.34	1013		1.24E-03	****	1.07E+00	)
0	609.19	122	37	1.67	1217.89	1209	16	1.62E-02	30.3	9.40E-01	L
0	1121.05	35	32	2.03	2242.08	2234	20	4.58E-03	88.5	6.15E-01	<del></del>
0	1764.40	18	5	1.38	3530.95	3528	9	2.43E-03	74.6	4.38E-01	_

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 12 Number of unidentified lines 12 Number of lines tentatively identified by NID 0 0.00% **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

"E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	4.984E+00		2.456E+01	4.44E+01	0.000E+00	0.112
NA-24	5.651E+01		8.972E+01	1.819E+02	0.000E+00	0.311
K-40	-1.468E+01		4.627E+01	1.007E+02	0.000E+00	-0.146
CR-51	1.083E+01		2.455E+01	4.286E+01	0.000E+00	0.253
MN-54	4.095E-01		2.526E+00	4.620E+00	0.000E+00	0.089
CO-57	-7.020E-01		2.897E+00	4.896E+00	0.000E+00	-0.143
CO-58	-4.681E-01		2.747E+00	4.815E+00	0.000E+00	-0.097
FE-59	-4.110E+00		5.728E+00	9.213E+00	0.000E+00	-0.446
CO-60	-5.874E-01		2.215E+00	4.077E+00	0.000E+00	-0.144
ZN-65	6.120E-01		5.471E+00	8.776E+00	0.000E+00	0.070
SE-75	-2.965E+00		3.828E+00	6.172E+00	0.000E+00	-0.480
SR-85	4.413E+00		2.808E+00	5.513E+00	0.000E+00	0.800
Y-88	-2.038E+00		2.762E+00	4.511E+00	0.000E+00	-0.452
NB-94	1.053E+00		2.418E+00	4.534E+00	0.000E+00	0.232
NB-95	-4.302E-01		2.433E+00	4.297E+00	0.000E+00	-0.100
ZR-95	8.336E-01		4.920E+00	8.934E+00	0.000E+00	0.093

MO-99	-1.840E+01	4.216E+01	7.206E+01	0.000E+00	-0.255
RU-103	-2.241E+00	2.669E+00	4.444E+00	0.000E+00	-0.504
RU-106	-4.104E+00	2.279E+01	4.036E+01	0.000E+00	-0.102
AG-110m	-7.625E-01	2.386E+00	4.160E+00	0.000E+00	-0.183
SN-113	4.014E-01	3.486E+00	6.287E+00	0.000E+00	0.064
SB-124	-1.369E+00	3.059E+00	4.460E+00	0.000E+00	-0.307
SB-125	9.456E-01	7.844E+00	1.415E+01	0.000E+00	0.067
TE-129M	1.066E+00	2.977E+01	5.368E+01	0.000E+00	0.020
I-131	1.801E+00	3.797E+00	6.644E+00	0.000E+00	0.271
BA-133	3.042E+00	4.109E+00	6.567E+00	0.000E+00	0.463
CS-134	1.222E-02	2.811E+00	4.375E+00	0.000E+00	0.003
CS-136	-8.321E-01	2.852E+00	4.957E+00	0.000E+00	-0.168
CS-137	-1.915E+00	2.929E+00	4.899E+00	0.000E+00	-0.391
CE-139	-4.256E-01	2.935E+00	4.950E+00	0.000E+00	-0.086
BA-140	8.373E+00	1.066E+01	2.044E+01	0.000E+00	0.410
LA-140	-2.741E-01	3.019E+00	5.701E+00	0.000E+00	-0.048
CE-141	-3.033E-01	5.868E+00	9.202E+00	0.000E+00	-0.033
CE-144	6.813E+00	2.468E+01	3.752E+01	0.000E+00	0.182
EU-152	2.469E+00	9.340E+00	1.602E+01	0.000E+00	0.154
EU-154	-1.372E-01	6.061E+00	1.033E+01	0.000E+00	-0.013
RA-226	-3.299E+01	7.367E+01	1.283E+02	0.000E+00	-0.257
AC-228	4.619E+00	1.069E+01	2.061E+01	0.000E+00	0.224
TH-228	-4.564E+00	5.808E+00	9.581E+00	0.000E+00	-0.476
TH-232	4.614E+00	1.068E+01	2.059E+01	0.000E+00	0.224
U-235	-1.391E+01	2.700E+01	3.922E+01	0.000E+00	-0.355
U-238	2.403E+01	3.069E+02	5.699E+02	0.000E+00	0.042
AM-241	-2.587E+01	1.576E+01	2.547E+01	0.000E+00	-1.016

```
A,23L29576-5
                     ,08/14/2006 18:13,08/11/2006 13:40,
                                                                 3.089E+00,L29576-5 WG EX
B,23L29576-5
                                             ,08/14/2006 10:01,233L082404
                     ,LIBD
           , NO
                                    2.456E+01,
C, BE-7
                    4.984E+00,
                                                   4.444E+01,,
                                                                    0.112
                                                   1.819E+02,,
                                                                    0.311
C, NA-24
           , NO
                    5.651E+01,
                                    8.972E+01,
C, K-40
           , NO
                    -1.468E+01,
                                    4.627E+01,
                                                   1.007E+02,,
                                                                   -0.146
C, CR-51
                    1.083E+01,
                                                                    0.253
           , NO
                                    2.455E+01,
                                                   4.286E+01,,
C, MN-54
                    4.095E-01,
                                    2.526E+00,
                                                   4.620E+00,,
                                                                    0.089
           , NO
C, CO-57
                    -7.020E-01,
                                    2.897E+00,
                                                   4.896E+00,,
                                                                   -0.143
           , NO
C, CO-58
                                    2.747E+00,
                                                   4.815E+00,,
                                                                   -0.097
           , NO
                    -4.681E-01,
                                                   9.213E+00,,
                                                                   -0.446
C, FE-59
           , NO
                    -4.110E+00,
                                    5.728E+00,
C, CO-60
                                    2.215E+00,
                                                   4.077E+00,,
                                                                   -0.144
            , NO
                    -5.874E-01,
C, ZN-65
                     6.120E-01,
                                    5.471E+00,
                                                   8.776E+00,,
                                                                    0.070
           , NO
                                                                   -0.480
C, SE-75
                    -2.965E+00,
                                    3.828E+00,
                                                   6.172E+00,,
           , NO
                                                   5.513E+00,,
                                                                    0.800
C,SR-85
            , NO
                    4.413E+00,
                                    2.808E+00,
C, Y-88
           , NO
                    -2.038E+00,
                                    2.762E+00,
                                                   4.511E+00,,
                                                                   -0.452
           ,NO
C, NB-94
                     1.053E+00,
                                    2.418E+00,
                                                   4.534E+00,,
                                                                    0.232
C, NB-95
                    -4.302E-01,
                                    2.433E+00,
                                                   4.297E+00,,
                                                                   -0.100
            , NO
            , NO
                                                   8.934E+00,,
C, ZR-95
                     8.336E-01,
                                    4.920E+00,
                                                                    0.093
                                                   7.206E+01,,
C, MO-99
                    -1.840E+01,
                                    4.216E+01,
                                                                   -0.255
            , NO
C, RU-103
            , NO
                                                   4.444E+00,,
                    -2.241E+00,
                                    2.669E+00,
                                                                   -0.504
C,RU-106
            , NO
                    -4.104E+00,
                                    2.279E+01,
                                                   4.036E+01,,
                                                                   -0.102
C, AG-110m
           , NO
                    -7.625E-01,
                                    2.386E+00,
                                                   4.160E+00,,
                                                                   -0.183
            , NO
                                                   6.287E+00,,
C, SN-113
                     4.014E-01,
                                    3.486E+00,
                                                                    0.064
            , NO
                                                   4.460E+00,,
                                                                   -0.307
C, SB-124
                    -1.369E+00,
                                    3.059E+00,
            , NO
                                    7.844E+00,
C,SB-125
                     9.456E-01,
                                                   1.415E+01,,
                                                                    0.067
                                                   5.368E+01,,
C, TE-129M
           , NO
                     1.066E+00,
                                    2.977E+01,
                                                                    0.020
C, I-131
            , NO
                     1.801E+00,
                                    3.797E+00,
                                                   6.644E+00,,
                                                                    0.271
                     3.042E+00,
                                    4.109E+00,
                                                   6.567E+00,,
                                                                    0.463
C, BA-133
            , NO
            , NO
                                                   4.375E+00,,
C, CS-134
                     1.222E-02,
                                    2.811E+00,
                                                                    0.003
            , NO
C, CS-136
                    -8.321E-01,
                                    2.852E+00,
                                                   4.957E+00,,
                                                                   -0.168
C, CS-137
            , NO
                    -1.915E+00,
                                    2.929E+00,
                                                   4.899E+00,,
                                                                   -0.391
C, CE-139
            , NO
                    -4.256E-01,
                                    2.935E+00,
                                                   4.950E+00,,
                                                                   -0.086
C, BA-140
                     8.373E+00,
                                    1.066E+01,
                                                   2.044E+01,,
                                                                    0.410
            , NO
                                                   5.701E+00,,
C, LA-140
            , NO
                    -2.741E-01,
                                    3.019E+00,
                                                                   -0.048
                                                   9.202E+00,,
C, CE-141
            , NO
                    -3.033E-01,
                                    5.868E+00,
                                                                   -0.033
C, CE-144
            , NO
                     6.813E+00,
                                    2.468E+01,
                                                   3.752E+01,,
                                                                    0.182
C, EU-152
                     2.469E+00,
                                    9.340E+00,
                                                   1.602E+01,,
                                                                    0.154
            , NO
C, EU-154
            , NO
                    -1.372E-01,
                                    6.061E+00,
                                                   1.033E+01,,
                                                                   -0.013
                                                   1.283E+02,,
C, RA-226
                    -3.299E+01,
                                    7.367E+01,
                                                                   -0.257
            , NO
                                                   2.061E+01,,
C, AC-228
            , NO
                     4.619E+00,
                                    1.069E+01,
                                                                    0.224
C, TH-228
            , NO
                    -4.564E+00,
                                    5.808E+00,
                                                   9.581E+00,,
                                                                   -0.476
                                    1.068E+01,
                                                   2.059E+01,,
                                                                    0.224
C, TH-232
            , NO
                     4.614E+00,
C, U-235
            , NO
                    -1.391E+01,
                                    2.700E+01,
                                                   3.922E+01,,
                                                                   -0.355
C, U-238
            , NO
                     2.403E+01,
                                    3.069E+02,
                                                   5.699E+02,,
                                                                    0.042
```

1.576E+01,

2.547E+01,,

-1.016

-2.587E+01,

C, AM-241

,NO ,



2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L29586 R1
Exelon
August 28, 2006

A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville CT 06062

#### Case Narrative - L29586 EX001-3ESPDRES-06

08/28/2006 16:16

#### Sample Receipt

The following samples were received on August 15, 2006 in good condition, unless otherwise noted.

Revision 1

The total strontium result for sample WG-DB-MW-DN-108I-081406-GL-022 (L29586-1) and WG-DB-MW-DN-108I-081406-GL-023 (L29586-2) was above 2 pCi/L. The samples were analyzed for strontium 90 and the results confirmed the total strontium results.

Cross Reference Table

0.000 110,0.000	
Laboratory ID	Station ID(if applicable)
L29586-1	
L29586-2	
L29586-3	
L29586-4	
L29586-5	
	Laboratory ID L29586-1 L29586-2 L29586-3 L29586-4

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3 (DIST)	TBE-2010	
SR-90	TBE-2019	EPA 905.0
TOTAL SR	TBE-2018	EPA 905.0

A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

#### Case Narrative - L29586 EX001-3ESPDRES-06

08/28/2006 16:16

#### Gamma Spectroscopy

#### **Quality Control**

Quality control samples were analyzed as WG4324.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

<u>Client ID</u> WG-DN-MW-DN-108I-081406-GL-022 <u>Laboratory ID</u> L29586-4 <u>QC Sample #</u> WG4324-1

H-3 (DIST)

#### **Quality Control**

Quality control samples were analyzed as WG4320.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

<u>Client ID</u> WG-DN-MW-DN-119S-081106-GL-017 Laboratory ID L29576-1 QC Sample # WG4320-3



A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

#### Case Narrative - L29586 EX001-3ESPDRES-06

08/28/2006 16:16

#### TOTAL SR

#### **Quality Control**

Quality control samples were analyzed as WG4326.

#### Method Blank

All blanks were within acceptance limits, unless otherwise noted.

#### Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

#### **Duplicate Sample**

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID

Laboratory ID

QC Sample #

WG-DN-MW-DN-108I-081406-GL-022

L29586-1

WG4326-3

#### Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

### Sample Receipt Summary

08/15/06 10:29

Teledyne Brown Engineering Sample Receipt Verification/Variance Report

SR #: SR09923

Client: Exelon

Project #: EX001-3ESPDRES-06

LIMS #:L29586

Initiated By: PMARSHALL Init Date: 08/15/06 Receive Date: 08/15/0	06
Notification	on of Variance
Person Notified:	Contacted By:
Notify Date:	
Notify Method: Notify Comment:	
NOTITY Commence.	
Client Respo	onse
Person Responding:	
Response Date:	
Response Method:	
Response Comment	
Criteria	Yes No NA Comment
1 Shipping container custody seals present	NA
and intact.	
2 Sample container custody seals present and intact.	NA
3 Sample containers received in good condition	Y
4 Chain of custody received with samples	Y
5 All samples listed on chain of custody received	Y
6 Sample container labels present and legible.	Y
7 Information on container labels correspond with chain of custody	Y
8 Sample(s) properly preserved and in appropriate container(s)	N Gamma samples required 5mL of
	nitric to bring pH to 2.
9 Other (Describe)	NA

REMARKS 004825 DATE: DATE: DATE: TIME: TIME: TIME: 00/1 RECEIVED FOR LABORATORY BY 45329187746 TREDYNE BROWN ENGINEERING DATE: 8/15/66 TIME:___ CKERLON PROJECT NAME: in Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Com PARAMETERS × AIR BILL No. RECEIVED BY: RECEIVED BY: RECEIVED BY: Ę Ś N SAMPLE 14°0 45136-23-5015 (ELLIS REFERENCE NUMBER: DATE: 874-06 N. YIESTER (Laboratory Name): TIME: 1330 6-6-04 1445 WG - DN-NW-DN-1235-CEOECG-61-026 - 4 - 0 25 WG-DN-MW-DN-108II-081406-GL-022 -023 G. LEWIS PRINTED GEEGET T SAMPLE TEAM DATE: DATE: SHIPPED TO TIME: TIME: SAMPLE IDENTIFICATION No. TOTAL NUMBER OF CONTAINERS CONESTOGA-ROVERS & ASSOCIATES - 1155-- 1001 - 1 × - IMT-Receiving Laboratory Copy CHAIN-OF-CUSTODY RECORD West Chester, Ohio 45069 METHOD OF SHIPMENT: DHL Fully Executed Copy 513-942-4750 phone 513-942-8585 fax 9033 Meridian Way -Sampler Copy -Shipper Copy のようなのなど ioic TIME BIO RELINQUISHED BY: RELINQUISHED BY: RELINQUISHED BY: SAMPLER'S SIGNATURE DATE Goldenrod Yellow White SEQ. No.

1001-00(SOURCE)GN-CO004

8/15/06

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

#### ACKNOWLEDGEMENT

This is not an invoice

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Road Plainville, CT 06062 August 15, 2006

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on August 15, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by August 18, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID: EX001-3ESPDRES-06

P.O. #: 00411203

Release #:

Contract#: 00411203

Kathy Shaw, FAX#:860-747-1900, larry.walton@exeloncorp.com

Client ID/	Laboratory ID	Vol/Units Start Collect End Collect
Station	Analysis	Price Date/Time Date/Time
WG-DN-MW-DN-1081-081406-GL-0	L29586-1	08/14/06:0945
WG	GELI	135.00
WG	H-3 (DIST)	135.00
WG	SR-90 (FAST)	175.00
WG-DN-MW-DN-108I-081406-GL-0	L29586-2	08/14/06:1010
WG	GELI	135.00
WG	H-3 (DIST)	135.00
WG	SR-90 (FAST)	175.00
WG-DN-MW-DN-115S-081406-GL-0	L29586-3	08/14/06:1110
WG	GELI	135.00
WG	H-3 (DIST)	135.00
WG	SR-90 (FAST)	175.00
WG-DN-MW-DN-114I-081406-GL-0	L29586-4	08/14/06:1255
WG	GELI	135.00
WG	H-3 (DIST)	135.00
WG	SR-90 (FAST)	175.00
WG-DN-MW-DN-1235-080806-GL-0	L29586-5	08/08/06:1445

Page 1

Client ID/ Station	Laboratory ID Analysis	Vol/Units Price	Start Collect Date/Time	End Collect Date/Time
WG	H-3 (DIST)	135.00		

### Internal Chain of Custody

Teledyne Brown Engineering
Internal Chain of Custody

Page: 1 of 3

**************************************		**************************************	******	****
Prod SR-90	Analy: LCB	st		
H-3 (DIST)	DW			
SR-90 (FAST)	LCB			
GELI	DW			
Relinquish Date Reli	nquish By		Received By	
08/15/2006 00:00			099999	Sample Custodian
08/15/2006 12:43	099999	Sample Custodian	030854	Donna Webb
08/15/2006 13:43	030854	Donna Webb	099999	Sample Custodian
**************************************		**************************************	******	****
Prod SR-90	Analy LCB	st		
H-3 (DIST)	DW			
SR-90 (FAST)	LCB			
GELI	D <b>W</b>			
Relinquish Date Reli 08/15/2006 00:00	inquish By		Received By 099999	Sample Custodian
08/15/2006 12:43	030854	Donna Webb	029728	Lauren Larsen
08/15/2006 12:43	099999	Sample Custodian	030854	Donna Webb
08/17/2006 15:50	029728	Lauren Larsen	030854	Donna Webb
08/17/2006 15:51	030854	Donna Webb	099999	Sample Custodian
• •		*****	****	****
Sample # L29586-2		Containernum 1		
Prod SR-90	Analy LCB	rst		
H-3 (DIST)	DW			
SR-90 (FAST)	LCB			
GELI	DW			
Relinquish Date Rel			Received By	
08/15/2006 00:00	riiqursii by		099999	Sample Custodian
08/15/2006 12:43	099999	Sample Custodian	030854	Donna Webb
08/15/2006 13:43	030854	Donna Webb	099999	Sample Custodian
**************************************	*****	**************************************	*******	****
Prod SR-90	Analy LCB	yst		
H-3 (DIST)	D <b>W</b>			
SR-90 (FAST)	LCB			
GELI	DW			
Relinquish Date Rel 08/15/2006 00:00	inquish By		Received By 099999	Sample Custodian
08/15/2006 12:43	030854	Donna Webb	029728	Lauren Larsen
08/15/2006 12:43	099999	Sample Custodian	030854	Donna Webb

08/15/2006 12:43

Teledyne Brown Engineering Internal Chain of Custody

2 of 3 Page:

************************ Containernum 2 Sample # L29586-2 Received By Relinquish Date Donna Webb 030854 Lauren Larsen 08/16/2006 17:28 029728 099999 Sample Custodian Donna Webb 08/16/2006 17:28 030854 *********************** Containernum 1 Sample # L29586-3 Analyst Prod H-3 (DIST) DW LCB SR-90 (FAST) DW GELI Received By Relinquish Date Relinquish By Sample Custodian 099999 08/15/2006 00:00 Donna Webb 030854 Sample Custodian 08/15/2006 12:43 099999 Sample Custodian 099999 Donna Webb 030854 08/15/2006 13:43 ********************** Containernum 2 Sample # L29586-3 Analyst Prod DWH-3 (DIST) LCB SR-90 (FAST) DW Received By Relinquish Date Relinquish By Sample Custodian 099999 08/15/2006 00:00 Lauren Larsen 029728 Donna Webb 08/15/2006 12:43 030854 030854 Donna Webb Sample Custodian 08/15/2006 12:43 099999 Donna Webb 030854 Lauren Larsen 08/17/2006 15:50 029728 Sample Custodian Donna Webb 099999 030854 08/17/2006 15:51 *********************** Containernum 1 Sample # L29586-4 Analyst Prod DW H-3 (DIST) LCB SR-90 (FAST) DW **GELI** Received By Relinquish Date Relinquish By Sample Custodian 099999 08/15/2006 00:00 Donna Webb 030854 Sample Custodian 08/15/2006 12:43 099999 Sample Custodian 099999 Donna Webb 030854 08/15/2006 13:43 *************** Containernum 2 Sample # L29586-4 Analyst Prod DWH-3 (DIST) LCB SR-90 (FAST) GELI Received By Relinquish Date Relinquish By 099999 Sample Custodian 08/15/2006 00:00 029728 Lauren Larsen Donna Webb 08/15/2006 12:43 030854 Donna Webb 030854 Sample Custodian 099999

08/28/06 16:16

Teledyne Brown Engineering Internal Chain of Custody

Page: 3 of 3

**********************

Sample # L29586-4

Containernum 2

Relinquish Date 08/17/2006 15:50

029728

Lauren Larsen

Received By 030854

Donna Webb

08/17/2006 15:51

030854

Donna Webb

099999

Sample Custodian

Sample # L29586-5

************************ Containernum 1

Prod

Analyst

H-3 (DIST)

DW

Relinquish Date Relinquish By 08/15/2006 00:00

Received By 099999

Sample Custodian

08/15/2006 12:43

099999

Sample Custodian

030854

Donna Webb

*******************

Sample # L29586-5

Containernum 2

Prod

Analyst

H-3 (DIST)

Relinquish Date Relinquish By

Received By

099999

Sample Custodian

08/15/2006 00:00

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

#### L29586

*****	*****	****	1129366 *********	******
L29586-1	WG		108I-081406-GL-022	
Process step	Prod		Analyst	Date
Login			RCHARLES	08/15/06
Aliquot	GELI		DW	08/15/06
Aliquot	н-3 (Е	DIST)	DW	08/15/06
Aliquot	SR-90		LCB	08/15/06
Aliquot	SR-90	(FAST)	LCB	08/15/06
Count Room	GELI		ILL	08/16/06
Count Room	н-3 (Г	DIST)	кој	08/15/06
Count Room	SR-90		кој	08/28/06
Count Room	SR-90	(FAST)	KOJ	08/16/06
*****	*****	*****	*****	*****
L29586-2	WG	WG-DN-MW-DN-	108I-081406-GL-023	
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	08/15/06
Aliquot	GELI		DW	08/15/06
Aliquot	H-3 (I	DIST)	DW	08/15/06
Aliquot	SR-90		LCB	08/15/06
Aliquot	SR-90	(FAST)	LCB	08/15/06
Count Room	GELI		ILL	08/16/06
Count Room	H-3 (1	DIST)	кој	08/15/06
Count Room	SR-90		КОЈ	08/28/06
Count Room	SR-90	(FAST)	KOJ	08/16/06
*****	*****	*****	******	*******
L29586-3	WG	WG-DN-MW-DN-	-115S-081406-GL-024	
Process step	Prod		Analyst	<u>Date</u>
Login			PMARSHALL	08/15/06
Aliquot	GELI		DW	08/15/06
Aliquot	н-3 (	DIST)	DW	08/15/06
Aliquot	SR-90	(FAST)	LCB	08/15/06
Count Room	GELI		ILL	08/16/06
Count Room	н-3 (	DIST)	KOJ	08/16/06
Count Room		(FAST)	KOJ	08/16/06
*****	****	*******	********	******
L29586-4	WG	WG-DN-MW-DN-	-114I-081406-GL-025	
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			PMARSHALL	08/15/06
Aliquot	GELI		DW	08/15/06
Aliquot	н-3 (	DIST)	DW	08/15/06
Aliquot	SR-90	(FAST)	LCB	08/15/06
Count Room	GELI		ILL	08/16/06
Count Room	н-3 (	DIST)	KOJ	08/16/06
Count Room		(FAST)	KOJ	08/16/06
*****	*****	****	*******	*******
L29586-5	₩G	WG-DN-MW-DN	-123S-080806-GL-026	
Process step	Prod		Analyst	Date
Login			PMARSHALL	08/15/06

Page 2 of 2

08/28/06

#### Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L29586

L29586-5 WG WG-DN-MW-DN-123S-080806-GL-026

Aliquot H-3 (DIST) DW 08/15/06

Count Room H-3 (DIST) KOJ 08/16/06

### Analytical Results Summary

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29586

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Kathy Shaw

(MG)

Ground Water Matrix: Volume: % Moisture: Collect Start: 08/14/2006 09:45 Receive Date: 08/15/2006 Collect Stop: WG-DN-MW-DN-108I-081406-GL-022 L29586-1 Sample ID: LIMS Number: Station Description:

å ŝ å å 8 å S Flag Values High  $\supset$ +  $\supset$  $\supset$  $\Box$  $\supset$ Units Sec Sec Sec Sec Sec Sec secSec Sec Sec Sec Σ 62920 62920 62920 62920 Count 62920 62920 62920 62920 62920 62920 62920 Time 100 90/91/80 08/16/06 08/16/06 08/16/06 08/16/06 08/16/06 08/16/06 08/16/06 08/16/06 08/16/06 08/16/06 08/16/06 08/15/06 08/28/06 Count Date 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 08/14/06 09:45 Reference Aliquot Units E Ξ Έ E Ε E m ᇤ ᇤ 핕 E E Aliquot Volume 1005.08 1005.08 1005.08 1005.08 1005.08 1005.08 005.08 1005.08 1005.08 005.08 450 450 Run Units pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L DCi/L 3.07E+00 6.38E+00 3.04E+00 3.34E+00 4.32E+00 5.31E+00 2.95E+00 3.14E+00 6.05E+00 1.18E+01 4.00E+00 1.84E+02 3.43E+00 1.48E+00 MDC 1.84E+00 2.11E+003.13E+00 2.04E+00 1.97E+00 7.12E+00 2.96E+00 4.97E+00 2.55E+00 1.22E+02 2.45E+00 1.00E+00 1.97E+00 3.72E+00 Uncertainty 1.37E+00 1.26E+00 -4.74E+00 3.98E+00 -1.55E+00 4.74E+00 -1.52E+00 5.24E-01 1.70E+02 3.21E+00 1.60E-01 4.07E-01 -8.05E-01 -2.04E-01 Activity Conc 2018 2007 2007 2007 2007 2007 2007 2007 2007 Radionuclide TOTAL SR H-3 (DIST) MN-54 CS-134 BA-140 LA-140 CO-58 FE-59 09-00 NB-95 CS-137 2N-65 ZR-95 SR-90

Yes = Peak identified in gamma exercised basis **** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

4 Jo

Page 1

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value II |

MDC exceeds customer technical specification II High Spec

Low recovery

Bolded text indicates reportable value.

OF STREET

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

## L29586

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Collect Start: 08/14/2006 10:10 Collect Stop: Receive Date: 08/15/2006

Matrix: Ground Water Volume: % Moisture:

(MG)

WG-DN-MW-DN-108I-081406-GL-023 Sample ID: Station:

LIMS Number: L29586-2 Description:

Kathy Shaw

LIMIN INMINION: DESCRIP	ì P													
		Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	5	JAMOST CO.
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values	nes
H-3 (DIST)	2010	2.10E+02	1.24E+02	1.83E+02	pCi/L		10	m		08/12/06	09	Σ	+	
SR-90	2019	2.17E+00	7.83E-01	1.05E+00	pCi/L		450	ml	08/14/06 10:10	08/28/06	180	Σ	+	
TOTAL SR	2018	2.72E+00	1.01E+00	1.59E+00	pCi/L		450	m	08/14/06 10:10	08/16/06	100	Σ	+ High	
MN-54	2007	-5.66E-01	4.13E+00	6.56E+00	pCi/L		3137.22	m	08/14/06 10:10	08/16/06	7382	Sec	n	No
CO-58	2007	-1.03E+00	3.73E+00	5.82E+00	pCi/L		3137.22	m	08/14/06 10:10	08/16/06	7382	Sec	ח	No
FE-59	2007	3.62E+00	6.81E+00	1.22E+01	pCi/L		3137.22	m	08/14/06 10:10	08/16/06	7382	Sec	n	No
CO-60	2007	2.22E+00	3.80E+00	6.82E+00	pCi/L		3137.22	m	08/14/06 10:10	90/91/80	7382	Sec	Ω	No
ZN-65	2007	2.32E+00	8.10E+00	1.23E+01	pCi/L		3137.22	m	08/14/06 10:10   08/16/06	08/16/06	7382	Sec	Ŋ	No
NB-95	2007	5.00E-01	4.08E+00	6.73E+00	pCi/L		3137.22	m	08/14/06 10:10 08/16/06	08/16/06	7382	Sec	D	No No
ZR-95	2007	-5.25E+00	6.03E+00	8.56E+00	pCi/L		3137.22	lm.	08/14/06 10:10	08/16/06	7382	Sec	Ω	No
CS-134	2007	1.57E+00	4.04E+00	6.13E+00	pCi/L		3137.22	ш	08/14/06 10:10	- 1	7382	Sec		No
CS-137	2007	-3.13E+00	3.71E+00	5.43E+00	pCi/L		3137.22	m	08/14/06 10:10	08/16/06	7382	Sec	Ŋ	No
BA-140	2007	-1.64E+00	1.43E+01	2.37E+01	pCi/L		3137.22	m	08/14/06 10:10	08/16/06	7382	Sec	ח	No No
LA-140	2007	-3.61E+00	4.74E+00	6.73E+00	pCi/L		3137.22	lm	08/14/06 10:10	08/16/06	7382	Sec	n	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

Jo

Page 2

High Spec

Compound/Analyte not detected or less than 3 sigma
Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only)
Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma
Activity concentration exceeds customer reporting value
MDC exceeds customer technical specification

Low recovery

Bolded text indicates reportable value.

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29586

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

Collect Start: 08/14/2006 11:10

Volume: % Moisture:

Matrix: Ground Water

(MG)

Receive Date: 08/15/2006 Collect Stop: WG-DN-MW-DN-115S-081406-GL-024

1,29586-3 Description:

Sample ID: Station:

Kathy Shaw

LIMS Number: L29586-3	-3													
		Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count Count	Count	,	
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values	lues
H_3 (DIST)	2010	1.79E+02	1.21E+02	1.81E+02	pCi/L		10	lm	NAME OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	90/91/80	09	M	n	
TOTAL SR	2018	1.33E-01	9.14E-01	1.88E+00	pCi/L		450	m	08/14/06 11:10	08/16/06	100	Σ	Ŋ	
MN-54	2007	1.47E+00	2.41E+00	4.14E+00	pCi/L		3136.73	ml	08/14/06 11:10 08/16/06	08/16/06	12557	Sec	ח	No
CO-58	2007	-1.74E+00		3.47E+00	pCi/L		3136.73	m	08/14/06 11:10	08/16/06	12557	Sec	n	No
FE-59	2007	-2.38E+00	4.65E+00	7.38E+00	pCi/L		3136.73	lm	08/14/06 11:10	08/16/06	12557	Sec	D	No
09-00	2007	-2.40E+00	2.22E+00	3.05E+00	pCi/L		3136.73	m	08/14/06 11:10	08/16/06	12557	Sec	Ω	So No
29-NZ	2007	2.03E+00	5.53E+00	8.44E+00	pCi/L		3136.73	lm	08/14/06 11:10	08/16/06	12557	Sec	Ŋ	%
NB-95	2007	1.15E+00		4.40E+00	pCi/L		3136.73	m	08/14/06 11:10 08/16/06	08/16/06	12557	Sec	ח	%   
ZR-95	2007	-1.27E-01		7.36E+00	pCi/L		3136.73	m	08/14/06 11:10	08/16/06	12557	Sec	n	No
CS-134	2007	1.21E+00	2.35E+00	3.58E+00	pCi/L		3136.73	ш	08/14/06 11:10		12557	Sec	n	No
CS-137	2007	1.48E+00	2.92E+00	4.99E+00	pCi/L		3136.73	ml	08/14/06 11:10	08/16/06	12557	Sec	Ω	No
BA-140	2007	-3.19E+00	8.96E+00	1.45E+01	pCi/L		3136.73	ш	08/14/06 11:10	08/16/06	12557	Sec	D	No
LA-140	2007	-2.17E-01	3.26E+00	5.30E+00	pCi/L		3136.73	ml	08/14/06 11:10	08/16/06	12557	Sec	n	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

oę

Page 3

Activity concentration exceeds MDC and 3 signa; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

Bolded text indicates reportable value.

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L29586

Conestoga-Rovers & Associates

EX001-3ESPDRES-06

(MG)

Ground Water

Matrix: Volume:

% Moisture:

Collect Start: 08/14/2006 12:55 Receive Date: 08/15/2006 Collect Stop: WG-DN-MW-DN-114I-081406-GL-025

L29586-4

LIMS Number:

Description:

Sample ID:

Kathy Shaw

Station:

(MG) 2 No 2 2 8 S N 2º S_N å Flag Values High +  $\supset$  $\supset$  $\supset$  $\supset$  $\supset$  $\supset$  $\supset$  $\supset$ Units Count Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Matrix: Ground Water 11457 11457 11457 11457 11457 11457 Count 18.36 11457 11457 11457 11457 Time 11457 100 08/16/06 90/91/80 08/16/06 08/16/06 08/16/06 08/16/06 90/91/80 08/16/06 08/16/06 90/91/80 08/16/06 08/16/06 08/16/06 Count Date 08/14/06 12:55 08/14/06 12:55 08/14/06 12:55 08/14/06 12:55 08/14/06 12:55 08/14/06 12:55 08/14/06 12:55 08/14/06 12:55 08/14/06 12:55 08/14/06 12:55 08/14/06 12:55 Reference Aliquot Units 핕 EE 핕 ш ш 핕 ш 핕 百百 핕 Collect Start: 08/08/2006 14:45 Aliquot Volume 2955.54 2955.54 2955.54 2955.54 2955.54 2955.54 2955.54 2955.54 2955.54 2955.54 2955.54 450 10 Run # Units pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L 4.87E+00 4.03E+00 4.08E+00 8.47E+00 4.75E+00 9.15E+00 7.61E+00 4.85E+00 4.57E+00 1.36E+00 3.65E+00 3.31E+02 1.68E+01 MDC 2.84E+00 2.55E+00 5.37E+00 2.70E+00 6.10E+00 3.10E+00 4.73E+02 2.71E+00 4.42E+00 2.83E+00 3.17E+00 Uncertainty 1.01E+01 6.27E-01 WG-DN-MW-DN-123S-080806-GL-026 2.11E+00 -1.42E+00 -2.22E+00 1.23E+00 2.71E+00 2.53E+00 -4.32E+00 -4.20E-01 1.10E+00 -2.59E-01 -5.11E-01 -7.77E-01 Activity Conc 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 Sample ID: Radionuclide H-3 (DIST) TOTAL SR MN-54 CS-137 BA-140 LA-140 CO-58 59-NZ CS-134 NB-95 ZR-95 FE-59 09-00

Flag Values  $\supset$ Units Count  $\geq$ Count Time 9 08/16/06 Count Date Reference Aliquot Units 핕 Aliquot Volume 10 Run # Units pCi/L 1.83E+02 MDC 1.10E+02 Uncertainty 2 Sigma -1.08E+01 Conc Activity SOP# 2010 Radionuclide H-3 (DIST)

% Moisture:

Receive Date: 08/15/2006

L29586-5

LIMS Number:

Description:

Station

Collect Stop:

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Low recovery Spec

Bolded text indicates reportable value.

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis unless otherwise noted

MDC - Minimum Detectable Concentration

No = Peak not identified in gamma spectrum

 $_{\rm ot}$ 

Page 4

### QC Results Summary

## QC Summary Report 8/28/2006

LA MERCEL

4:17:27PM

L29586 for

BROWN ENGINEERING A Teledyne Technologies Company

H-3 (DIST)

	Qualifier P/F U P		Range Qualifier P/F 70-130 + P			Range Qualifier P/F <30 ** NE
	al		Spike Recovery al 103.6			RPD
	Units pCi/Total		Units pCi/Total			Units pCi/L
ary	Blank Result < 1.880E+00	ury	LCS Result 5.230E+02		y	DUP Result < 1.860E+02
Method Blank Summary		LCS Sample Summary	Spike Value 5.05E+002		Duplicate Summary	Original Result < 1.830E+02
	Count Date/Time 08/15/2006 14:44		Count Date/Time S 08/15/2006 15:48 5			Count Date/Time 08/15/2006 16:06
	<u>Matrix</u> WO		Matrix WO			<u>Matrix</u> WG
	TBE Sample ID Radionuclide WG4320-1 H-3 (DIST)		TBE Sample ID Radionuclide WG4320-2 H-3 (DIST)	Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000		TBE Sample ID Radionuclide WG4320-3 H-3 (DIST) L29576-1

Page:

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC <br/>
< 5 times the MDC are not evaluated<br/>
Nuclide not detected

Spiking level < 5 times activity

Pass Fail Not evaluated

+ D * * * 4 L X

# QC Summary Report

4:17:27PM

L29586

for



$\simeq$	
Š	
7	
7	
Ó	

	Qualifier P/F U P		Range Qualifier P/F 70-130 + P			Range Qualifier P/F <30 * NE	
	la		Spike Recovery			RPD	
	Units pCi/Total		Units pCi/Total			Units pCi/L	
ary	Blank Result < 7.620E-01	ıry	LCS Result 5.700E+01		V	DUP Result 3.200E+00	
Method Blank Summary		LCS Sample Summary	Spike Value 5.84E+001		Duplicate Summary	Original Result 3.210E+00	
	Count Date/Time 08/16/2006 17:42		Count Date/Time 08/16/2006 17:42			Count Date/Time 08/16/2006 17:42	
	Matrix WO		<u>Matrix</u> WO			<u>Matrix</u> WG	
	<u>Radionuclide</u> TOTAL SR		Radionuclide TOTAL SR	011905 ;+002 -001		<u>Radionuclide</u> TOTAL SR	
	TBE Sample ID WG4326-1		TBE Sample ID WG4326-2	Spike ID: 90SR-011905 Spike conc: 2.34E+002 Spike Vol: 2.50E-001		TBE Sample ID WG4326-3 L29586-1	

7 Page:

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected

+ > * *

Spiking level < 5 times activity Pass Fail Not evaluated

### Raw Data

Raw Data Sheet (rawdata) Aug 28 2006, 04:19 pm

Customer: Exelon

Page: 1

Project : EX001-3ESPDRES-06 Nuclide: H-3 (DIST) Work Order: <u>L29586</u>

ואתכדותם: זוים (אדדאו											Десау &	
end and the land	/ emiton er	Scavenge	Milking	Mount	Count	Counter Total	Total	Sample	Bkg		Eff. Ingrowth Analyst	Analyst
run Anarysts		Date/time	Date/time	Weight		Ð	counts	dt (min) counts dt (min)	counts d	t (min)	Factor	
H-3 DIST		200	200	0	15-aug-06	LS7	166	09	1.98	09	.207	DW
	10 ml				22:06							
WG-DN-MW-DN-1081-081406-GL-022												
Activity: 1.7E+02 Error: 1.22E+02	MDC: 1.84E+02 *											
				0	15-aug-06	LS7	177	9	1.98	09	.209	ž Č
	10 ml				23:10							
WG-DN-MW-DN-108I-081406-GL-023												
Activity: 2.1E+02 * Error: 1.24E+02	MDC: 1.83E+02								-			
L29586-3 H-3 DIST				0	16-aug-06	LS7	169	09	1.98	09	.211	M C
	10 ml				00:13							
WG-DN-MW-DN-115S-081406-GL-024												
Activity: 1.79E+02 Error: 1.21E+02	MDC: 1.81E+02 *					- [				1		
L29586-4 H-3 DIST				0	16-aug-06	LS7	392	18.36	1.98	9	.208	MG
	10 ml				01:17							
WG-DN-MW-DN-1141-081406-GL-025												
Activity: 4.19E+03 * Error: 4.73E+02	MDC: 3.31E+02					1			,			200
L29586-5 H-3 DIST				0	16-aug-06	LS7	116	09	B . T	0 9	502.	X.C.
	10 ml				01:38							
WG-DN-MW-DN-123S-080806-GL-026												
Activity: -1.08E+01 Error: 1.1E+02	MDC: 1.83E+02 *											

Raw Data Sheet (rawdata) Aug 28 2006, 04:19 pm

Page: 2

Customer: Exelon

Work Order: 129586

LCB Decay & Eff. Ingrowth Analyst Factor .449 .878 .902 .474 200 Sample Bkg Bkg dt(min) counts dt(min) 84 180 counts Counter Total ID X1C YIB 28-aug-06 15:30 Recovery Date/time 77.81 28-aug-06 16:52 Count 102.96 16-aug-06 28-aug-06 0.0348 14:30 09:00 Scavenge Milking Mount
Date/time Date/time Weight
16-aug-06 28-aug-06 0.0263
14:30 09:00 Project : EX001-3ESPDRES-06 MDC: 3.43E+00 MDC: 1.05E+00 Aliquot Volume/ 450 ml 450 ml 14-aug-06 14-aug-06 Reference Date/time WG-DN-MW-DN-108I-081406-GL-022 Activity: 4.74E+00 * Error: 2.45E+00 L29586-2 SR-90 14-aug-10:10 WG-DN-MW-DN-1081-081406-GL-023 Activity: 2.17E+00 * Error: 7.83E-01 09:45 Sample ID Run Analysis
Client ID #
L29586-1 SR-90 Nuclide: SR-90

THE RESTRICT

Raw Data Sheet (rawdata) Aug 28 2006, 04:19 pm

Work Order: L29586

1.0. \$55500 E.

Page: 3

Customer: Exelon

LCB LCB LCB Ingrowth Analyst Decay & Factor .343 .345 .344 Bff. 400 400 400 400 Sample Bkg Bkg dt(min) counts dt(min) 277 289 307 100 100 100 100 counts 140 Counter Total 72 69 X2D X2A X2C X2B Ü 16-aug-06 17:42 16-aug-06 17:42 16-aug-06 17:42 Recovery Date/time 16-aug-06 72.25 17:42 Count 72.25 60.16 87.36 72.25 Mount 0 0 0 Scavenge Milking Date/time Date/time 16-aug-06 14:30 16-aug-06 14:30 16-aug-06 16-aug-06 14:30 14:30 Project : EX001-3ESPDRES-06 MDC: 1.36E+00 * MDC: 1.59E+00 MDC: 1.48E+00 MDC: 1.88E+00 Aliquot Volume/ 450 ml 450 ml 450 ml 450 ml WG-DN-MW-DN-108I-081406-GL-023
Activity: 2.72E+00 * Error: 1.01E+00
L29586-3 TOTAL SR 14-aug-06 14-aug-06 WG-DN-MW-DN-108I-081406-GL-022 Activity: 3.21E+00 * Error: 1E+00 L29586-2 TOTAL SR 14-aug-06 TOTAL SR 14-aug-06 Reference Date/time 09:45 WG-DN-MW-DN-115S-081406-GL-024
Activity: 1.33E-01 Error: 9.14E-01
L29586-4 TOTAL SR 14-av 12:55 Activity: -2.59E-01 Error: 6.27E-01 WG-DN-MW-DN-114I-081406-GL-025 TOTAL SR Run Analysis Nuclide: SR-90 (FAST) Sample ID Client ID L29586-1

Sec. Review: Apalyst: LIMS:

-----

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 17-AUG-2006 13:40:02.68
TBE23 03017322 HpGe ******* Aquisition Date/Time: 17-AUG-2006 11:45:59.16

LIMS No., Customer Name, Client ID: WG WG4324-1 DRES

Sample ID : 23WG4324-1 Smple Date: 14-AUG-2006 12:55:00.

 Sample Type
 : WG
 Geometry
 : 233L082404

 Quantity
 : 2.95550E+00 L
 BKGFILE
 : 23BG072806MT

 Start Channel
 : 50
 Energy Tol
 : 1.00000
 Real Time
 : 0 01:53:55.48

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time
 : 0 01:53:50.79

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	63.72*	6	316	1.10	127.67	1.06E+00	8.69E-045	36.3	
2	0	77.91*	65	451	1.05	156.00	1.56E+00	9.58E-03	65.2	
3	0	92.39*	61	328	0.85	184.94	1.93E+00	8.92E-03	58.4	
4	0	186.24*	54	242	1.45	372.44	2.17E+00	7.95E-03	58.3	
5	0	243.01	75	278	0.76	485.88	1.88E+00	1.09E-02	46.2	
6	0	295.08*	161	107	1.10	589.93	1.64E+00	2.35E-02	13.9	
7	0	351.86*	282	100	1.20	703.41	1.43E+00	4.12E-02	9.2	
8	0	595.45	41	32	3.87	1190.42	9.56E-01	5.93E-03	33.0	
9	0	609.22*	256	73	1.18	1217.95	9.40E-01	3.75E-02	9.5	
10	0	1120.44*	50	24	1.75	2240.86	6.16E-01	7.28E-03	25.2	
11	0	1460.41*	30	12	1.82	2921.73	5.10E-01	4.37E-03	42.4	
12	0	1764.13*	51	3	1.32	3530.40	4.38E-01	7.43E-03	17.3	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	30	10.67*	5.097E-01	7.348E+01	7.348E+01	84.81
RA-226	186.21	54	3.28*	2.172E+00	1.021E+02	1.021E+02	116.51

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity Acquisition date : 17-AUG-2006 11:45:59 Sample ID : 23WG4324-1

12 Total number of lines in spectrum Number of unidentified lines 10

Number of lines tentatively identified by NID 2 16.67%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma pCi/L 2-Sigma Error %Error Flags 7.348E+01 6.232E+01 84.81 pCi/L pCi/L Nuclide Hlife Decay K-40 1.28E+09Y 1.00 7.348E+01 7.348E+01 RA-226 1600.00Y 1.00 1.021E+02 1.021E+02 1.189E+02 116.51 _____ 1.756E+02 1.756E+02 Total Activity:

Grand Total Activity : 1.756E+02 1.756E+02

"M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit

"E" = Manually edited

Page : 3
Acquisition date : 17-AUG-2006 11:45:59

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0 0 0 0 0 0	63.72 77.91 92.39 243.01 295.08 351.86 595.45	6 65 61 75 161 282 41 256	316 451 328 278 107 100 32	1.10 1.05 0.85 0.76 1.10 1.20 3.87	127.67 156.00 184.94 485.88 589.93 703.41 1190.42	181 480 586 698 1183	11 9 12 8 10 13	4.12E-02	18.4 66.0	1.06E+00 1.56E+00 1.93E+00 1.88E+00 1.64E+00 1.43E+00 9.56E-01 9.40E-01	
0	1120.44 1764.13	50 51	24 3	1.75 1.32	2240.86 3530.40	2235	11	7.28E-03 7.43E-03	50.3	6.16E-01 4.38E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 12
Number of unidentified lines 10
Number of lines tentatively identified by NID 2 16.67%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr		
Nuclide	Hlife	Decay			2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	7.348E+01	7.348E+01	6.232E+01	84.81	
	1600.00Y	1.00	1.021E+02	1.021E+02	1.189E+02	116.51	
	Total Act:	ivity :	1.756E+02	1.756E+02			

Grand Total Activity : 1.756E+02 1.756E+02

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226	7.348E+01 1.021E+02	6.232E+01 1.189E+02	5.568E+01 1.465E+02	0.000E+00 0.000E+00	1.320 0.697
Non-Ider	tified Nuclides				

Key-Line
Activity K.L. Act error MDA MDA error Act/MDA
Nuclide (pCi/L) Ided (pCi/L)

BE-7	-2.163E+01	2.362E+01	3.909E+01	0.000E+00	-0.553
NA-24	5.462E+00	8.338E+01	1.586E+02	0.000E+00	0.034
CR-51	-1.314E+01	2.999E+01	4.915E+01	0.000E+00	-0.267
MN-54	-3.197E-01	2.954E+00	5.231E+00	0.000E+00	-0.061
CO-57	-5.051E-01	3.307E+00	5.611E+00	0.000E+00	-0.090
CO-58	-8.411E-01	3.129E+00	5.427E+00	0.000E+00	-0.155
FE-59	-3.819E-01	6.337E+00	1.117E+01	0.000E+00	-0.034
CO-60	2.600E+00	2.974E+00	6.253E+00	0.000E+00	0.416
ZN-65	-3.020E+00	8.012E+00	1.138E+01	0.000E+00	-0.265
SE-75	-2.900E+00	4.539E+00	7.382E+00	0.000E+00	-0.393
SR-85	-2.373E+00	3.921E+00	6.626E+00	0.000E+00	-0.358
Y-88	2.686E-01	3.431E+00	6.567E+00	0.000E+00	0.041
NB-94	-1.098E+00	2.850E+00	4.903E+00	0.000E+00	-0.224
NB-95	5.211E-02	3.492E+00	6.191E+00	0.000E+00	0.008
ZR-95	-7.854E-02	5.257E+00	9.429E+00	0.000E+00	-0.008
MO-99	-1.715E+01	5.083E+01	8.754E+01	0.000E+00	-0.196
RU-103	-1.693E-01	3.021E+00	5.402E+00	0.000E+00	-0.031
RU-106	-1.520E+01	2.704E+01	4.587E+01	0.000E+00	-0.331
AG-110m	-3.567E-01	3.021E+00	5.348E+00	0.000E+00	-0.067
SN-113	1.242E+00	4.100E+00	7.474E+00	0.000E+00	0.166
SB-124	1.516E-01	3.669E+00	5.401E+00	0.000E+00	0.028
SB-125	-1.080E+00	8.975E+00	1.592E+01	0.000E+00	-0.068
TE-129M	7.561E-03	3.693E+01	6.605E+01	0.000E+00	0.000
I-131	-3.427E+00	4.322E+00	6.857E+00	0.000E+00	-0.500
BA-133	-2.588E-01	5.291E+00	7.747E+00	0.000E+00	-0.033
CS-134	1.075E+00	3.280E+00	5.316E+00	0.000E+00	0.202
CS-136	6.576E-01	3.247E+00	5.991E+00	0.000E+00	0.110
CS-137	-6.371E-01	3.644E+00	6.379E+00	0.000E+00	-0.100
CE-139	-8.301E-01	3.461E+00	5.810E+00	0.000E+00	-0.143
BA-140	-2.103E+00	1.283E+01	2.266E+01	0.000E+00	-0.093
LA-140	1.028E+00	4.079E+00	7.934E+00	0.000E+00	0.130
CE-141	1.403E+00	6.090E+00	1.045E+01	0.000E+00	0.134
CE-144	1.444E+01	2.663E+01	4.626E+01	0.000E+00	0.312
EU-152	-3.533E+00	1.083E+01	1.785E+01	0.000E+00	-0.198
EU-154	-3.903E+00	7.046E+00	1.176E+01	0.000E+00	-0.332
AC-228	3.429E-01	1.179E+01	2.201E+01	0.000E+00	0.016
TH-228	4.119E+00	7.400E+00	1.164E+01	0.000E+00	0.354
TH-232	3.425E-01	1.178E+01	2.199E+01	0.000E+00	0.016
U-235	-1.497E+01	2.733E+01	4.533E+01	0.000E+00	-0.330
U-238	-5.434E+00	3.464E+02	6.378E+02	0.000E+00	-0.009
AM-241	4.838E+00	2.124E+01	3.289E+01	0.000E+00	0.147

77.1

```
,08/17/2006 13:40,08/14/2006 12:55,
                                                                 2.955E+00,WG WG4324-1 DR
A,23WG4324-1
                                             ,08/14/2006 10:01,233L082404
                     ,LIBD
B,23WG4324-1
                                                   5.568E+01,,
                                    6.232E+01,
                                                                     1.320
                     7.348E+01,
C, K-40
            ,YES,
            , YES,
                                                                     0.697
C, RA-226
                     1.021E+02,
                                    1.189E+02,
                                                   1.465E+02,,
                                                   3.909E+01,,
                                                                    -0.553
                                    2.362E+01,
C, BE-7
            , NO
                    -2.163E+01,
                                                   1.586E+02,,
C, NA-24
                     5.462E+00,
                                    8.338E+01,
                                                                     0.034
            , NO
                                                   4.915E+01,,
                                                                    -0.267
            , NO
                                    2.999E+01,
C, CR-51
                    -1.314E+01,
                                                   5.231E+00,,
                                                                    -0.061
                    -3.197E-01,
                                    2.954E+00,
C, MN-54
            , NO
            , NO
                                                   5.611E+00,,
                                                                    -0.090
C, CO-57
                    -5.051E-01,
                                    3.307E+00,
                                                                    -0.155
C, CO-58
                    -8.411E-01,
                                    3.129E+00,
                                                   5.427E+00,,
            , NO
                                                   1.117E+01,,
                                                                    -0.034
C, FE-59
                    -3.819E-01,
                                    6.337E+00,
            , NO
C, CO-60
                                    2.974E+00,
                                                   6.253E+00,,
                                                                     0.416
                     2.600E+00,
            , NO
                                                                    -0.265
                    -3.020E+00,
                                                   1.138E+01,,
C, ZN-65
                                    8.012E+00,
            , NO
                                    4.539E+00,
                                                   7.382E+00,,
                                                                    -0.393
C, SE-75
            , NO
                    -2.900E+00,
                                                   6.626E+00,,
                                                                    -0.358
C, SR-85
            , NO
                    -2.373E+00,
                                    3.921E+00,
                                                   6.567E+00,,
                                                                     0.041
C, Y-88
                     2.686E-01,
                                    3.431E+00,
            , NO
            , NO
                    -1.098E+00,
                                    2.850E+00,
                                                   4.903E+00,,
                                                                    -0.224
C, NB-94
                                                   6.191E+00,,
                                                                     0.008
                                    3.492E+00,
C, NB-95
                     5.211E-02,
            , NO
                                                   9.429E+00,,
                                    5.257E+00,
                                                                    -0.008
C, ZR-95
                    -7.854E-02,
            , NO
                                                   8.754E+01,,
                                                                    -0.196
C, MO-99
            , NO
                    -1.715E+01,
                                    5.083E+01,
                                                   5.402E+00,,
C, RU-103
            ,NO
                    -1.693E-01,
                                    3.021E+00,
                                                                    -0.031
            , NO
                                    2.704E+01,
                                                   4.587E+01,,
                                                                    -0.331
C, RU-106
                    -1.520E+01,
                                                   5.348E+00,,
                                                                    -0.067
                    -3.567E-01,
                                    3.021E+00,
C, AG-110m
            , NO
                                                   7.474E+00,,
                                                                     0.166
            , NO
C, SN-113
                     1.242E+00,
                                    4.100E+00,
                                                   5.401E+00,,
                                                                     0.028
                                    3.669E+00,
C,SB-124
            , NO
                     1.516E-01,
C,SB-125
            , NO
                    -1.080E+00,
                                    8.975E+00,
                                                   1.592E+01,,
                                                                    -0.068
                                    3.693E+01,
                                                   6.605E+01,,
                                                                     0.000
C, TE-129M
            , NO
                     7.561E-03,
                                                                    -0.500
                    -3.427E+00,
                                    4.322E+00,
                                                   6.857E+00,,
C, I-131
            , NO
                                                   7.747E+00,,
                                                                    -0.033
                                    5.291E+00,
            , NO
                    -2.588E-01,
C, BA-133
                                    3.280E+00,
                                                   5.316E+00,,
                                                                     0.202
C, CS-134
            , NO
                     1.075E+00,
                                                   5.991E+00,,
C, CS-136
            , NO
                     6.576E-01,
                                    3.247E+00,
                                                                     0.110
                    -6.371E-01,
                                    3.644E+00,
                                                   6.379E+00,,
                                                                    -0.100
C, CS-137
            , NO
                                                    5.810E+00,,
                                     3.461E+00,
                                                                    -0.143
C, CE-139
            , NO
                    -8.301E-01,
                                                                    -0.093
                                     1.283E+01,
                                                    2.266E+01,,
                    -2.103E+00,
C, BA-140
            , NO
            , NO
                                                                     0.130
C, LA-140
                     1.028E+00,
                                    4.079E+00,
                                                    7.934E+00,,
                                                    1.045E+01,,
                     1.403E+00,
                                     6.090E+00,
                                                                     0.134
C, CE-141
            , NO
            ,NO
C, CE-144
                     1.444E+01,
                                     2.663E+01,
                                                    4.626E+01,,
                                                                     0.312
                                                    1.785E+01,,
                                                                    -0.198
            , NO
                    -3.533E+00,
                                     1.083E+01,
C, EU-152
                                                    1.176E+01,,
                                     7.046E+00,
                                                                    -0.332
C, EU-154
            , NO
                    -3.903E+00,
                                                    2.201E+01,,
                                                                     0.016
C, AC-228
            , NO
                     3.429E-01,
                                     1.179E+01,
                                                    1.164E+01,,
C, TH-228
                                     7.400E+00,
                                                                     0.354
                     4.119E+00,
            , NO
C, TH-232
                     3.425E-01,
                                     1.178E+01,
                                                    2.199E+01,,
                                                                     0.016
            , NO
                                     2.733E+01,
                                                    4.533E+01,,
                                                                    -0.330
                    -1.497E+01,
C, U-235
            , NO
                    -5.434E+00,
                                     3.464E+02,
                                                    6.378E+02,,
                                                                    -0.009
C, U-238
            , NO
                                                    3.289E+01,,
                                                                     0.147
C, AM-241
            , NO
                     4.838E+00,
                                     2.124E+01,
```

Sec. Review: Analyst: LIMS:

-----

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 17-AUG-2006 09:02:50.77 TBE04 P-40312B HpGe ******* Aquisition Date/Time: 16-AUG-2006 15:33:57.87

TBE04 P-40312B HpGe ******* Aquisition Date/Time: 16-Aug-2006 15:33:57.67

LIMS No., Customer Name, Client ID: L29586-1 WG EX/DRES

Sample ID : 04L29586-1 Smple Date: 14-AUG-2006 09:45:00.

 Sample Type
 : WG
 Geometry
 : 041L082004

 Quantity
 : 1.00510E+00 L
 BKGFILE
 : 04BG072806MT

 Start Channel
 : 90
 Energy Tol
 : 1.00000
 Real Time
 : 0 17:28:50.83

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time
 : 0 17:28:40.39

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	6	63.48*	250	1524	1.61	127.93	1.00E+00	3.97E-03	32.6	3.77E+00
2	6	66.18*	254	1306	1.30	133.34	1.16E+00	4.03E-03	28.4	
3	4	74.82*	156	999	1.05	150.62	1.69E+00	2.48E-03	43.9	3.52E+00
4	4	76.94*	157	997	1.01	154.86	1.81E+00	2.49E-03	41.6	
5	4	87.24*	36	919	0.93	175.45	2.33E+00	5.73E-041	161.1	6.70E-01
6	1	139.60*	278	1163	1.37	280.17	3.29E+00	4.42E-03	24.7	7.67E+00
7	1	185.87*	17	1518	1.21	372.72	3.06E+00	2.71E-044	198.7	6.86E-01
8	1	198.32*	149	1216	1.25	397.62	2.97E+00	2.36E-03	47.1	8.08E-01
9	1	238.57*	138	751	1.14	478.13	2.66E+00	2.20E-03	42.8	2.56E+00
10	1	241.91	320	818	1.29	484.79	2.63E+00	5.08E-03	16.8	
11	1	295.21*	443	926	1.00	591.40	2.29E+00	7.04E-03	15.1	4.81E-01
12	1	338.40*	40	623	2.46	677.78	2.06E+00	6.30E-041		
13	1	351.94*	826	790	1.16	704.85	2.00E+00	1.31E-02	8.4	2.03E+00
14	1	596.08	221	483	3.82	1193.10	1.31E+00	3.52E-03	23.3	1.63E+00
15	1	609.27*	605	426	1.31	1219.48	1.28E+00	9.61E-03	9.4	
16	1	769.12	398	280	0.66	1539.15	1.05E+00	6.32E-03	8.3	4.08E+02
17	1	968.97*	26	162	1.80	1938.79	8.62E-01	4.05E-043	119.5	1.89E+00
18	1	1119.98*	158	177	1.86	2240.75	7.60E-01		21.7	8.07E-01
19	1	1237.77*	139	111	3.45	2476.28	6.97E-01	2.21E-03	20.4	1.24E+00
20	1	1728.50	45	67	2.56	3457.45	5.40E-01	7.15E-04	35.3	5.02E+00
21	1	1763.95*	77	154	2.44	3528.33	5.33E-01	1.23E-03	47.2	2.45E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
RA-226	186.21	17	3.28*	3.062E+00	7.253E+00	7.253E+00	997.38
TH-228	238.63	138	44.60*	2.659E+00	4.979E+00	4.992E+00	85.57
	240.98	320	3.95	2.634E+00	1.313E+02	1.316E+02	33.59
U-235	143.76		10.50*	3.283E+00	Li	ne Not Found	
	163.35		4.70	3.212E+00	Li	ne Not Found	
	185.71	17	54.00	3.062E+00	4.405E-01	4.405E-01	997.38
	205.31		4.70	2.912E+00	Li	ne Not Found	

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity Acquisition date : 16-AUG-2006 15:33:57 Sample ID : 04L29586-1

Total number of lines in spectrum Number of unidentified lines 21 17

Number of lines tentatively identified by NID 4 19.05%

Nuclide Type : natural

			Uncorrected			2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Error	%Error	Flags
RA-226	1600.00Y	1.00	7.253E+00	7.253E+00	72.34E+00	997.38	
TH-228	1.91Y	1.00	4.979E+00	4.992E+00	4.272E+00	85.57	
U-235	7.04E+08Y	1.00	4.405E-01	4.405E-01	43.94E-01	997.38	K

Total Activity : 1.267E+01 1.269E+01

Grand Total Activity: 1.267E+01 1.269E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3
Acquisition date: 16-AUG-2006 15:33:57

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
6	63.48	250	1524	1.61	127.93	123	15	3.97E-03	65.1	1.00E+00	
6	66.18	254	1306	1.30	133.34	123	15	4.03E-03	56.7	1.16E+00	
4	74.82	156	999	1.05	150.62	142	17	2.48E-03	87.8	1.69E+00	
4	76.94	157	997	1.01	154.86	142	17	2.49E-03	83.1	1.81E+00	
4	87.24	36	919	0.93	175.45	164	15	5.73E-04	***	2.33E+00	
1	139.60	278	1163	1.37	280.17	277	8	4.42E-03	49.4	3.29E+00	
1	198.32	149	1216	1.25	397.62	393	9	2.36E-03	94.2	2.97E+00	
1	295.21	443	926	1.00	591.40	587	10	7.04E-03	30.2	2.29E+00	
1	338.40	40	623	2.46	677.78	673	10	6.30E-04	***	2.06E+00	
1	351.94	826	790	1.16	704.85	699	12	1.31E-02	16.9	2.00E+00	
1	596.08	221	483	3.82	1193.10	1186	16	3.52E-03	46.5	1.31E+00	
1	609.27	605	426	1.31	1219.48	1213	12	9.61E-03	18.8	1.28E+00	
1	769.12	398	280	0.66	1539.15	1532	11	6.32E-03	16.5	1.05E+00	
1	968.97	26	162	1.80	1938.79	1933	10	4.05E-04	***	8.62E-01	${f T}$
1	1119.98	158	177	1.86	2240.75	2235	13	2.51E-03	43.3	7.60E-01	
1	1237.77	139	111	3.45	2476.28	2470	15	2.21E-03	40.8	6.97E-01	
1	1728.50	45	67	2.56	3457.45	3453	10	7.15E-04	70.6	5.40E-01	
1	1763.95	77	154	2.44	3528.33	3520	22	1.23E-03	94.5	5.33E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 21
Number of unidentified lines 17
Number of lines tentatively identified by NID 4

Number of lines tentatively identified by NID 4 19.05%

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife pCi/L Decay pCi/L 2-Sigma Error %Error Flags RA-226 1.00 7.253E+00 72.34E+00 1600.00Y 7.253E+00 997.38 TH-228 1.00 4.979E+00 1.91Y 4.992E+00 4.272E+00 85.57 _____ _ _ _ _ _ _ _ _ _ _ Total Activity: 1.223E+01 1.224E+01

Grand Total Activity: 1.223E+01 1.224E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Activity Act error MDA MDA error Act/MDA Nuclide (pCi/L)

RA-226 TH-228	7.253E+00 4.992E+00	7.234E+01 4.272E+00	6.055E+01 4.742E+00	0.000E+00 0.000E+00	0.120 1.053
Non-Ide	entified Nuclides	400 GO SON WAS			
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124	6.234E+00 -5.205E+00 5.582E+00 4.696E-01 -1.522E+00 -2.394E-01 1.604E-01 4.074E-01 -8.050E-01 -4.735E+00 1.591E-01 -1.921E+01 1.031E+00 -1.269E+00 -2.039E-01 1.369E+00 -1.077E+00 -3.025E+00 -2.866E+00 -4.582E-01 2.982E+00 1.872E+00	1.588E+01 3.227E+01 3.774E+01 1.469E+01 1.968E+00 1.366E+00 1.843E+00 2.959E+00 4.970E+00 2.133E+00 2.759E+00 1.988E+00 1.687E+00 2.113E+00 3.128E+00 2.609E+01 1.878E+00 1.686E+01 1.735E+00 2.208E+00 2.818E+00	(PC1/L)  2.621E+01 5.309E+01 6.266E+01 2.455E+01 3.142E+00 2.228E+00 3.066E+00 6.051E+00 4.321E+00 3.608E+00 3.682E+00 3.682E+00 3.735E+00 2.735E+00 3.370E+00 2.735E+01 2.861E+01 2.861E+00 2.671E+01 2.888E+00 3.799E+00 3.007E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.238 -0.098 0.089 0.019 -0.484 -0.107 0.052 0.067 -0.186 -0.742 0.044 -5.217 0.306 -0.464 -0.067 0.258 -0.025 -1.057 -0.107 -0.159 0.785 0.623
SB-125 TE-129M I-131 BA-133 CS-134 CS-136	1.081E+00 -6.731E+00 -5.776E-01 7.864E-01 1.256E+00 -4.857E-01	4.868E+00 2.038E+01 2.167E+00 2.584E+00 2.044E+00 1.956E+00	8.046E+00 3.286E+01 3.561E+00 3.818E+00 2.954E+00 3.199E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.134 -0.205 -0.162 0.206 0.425 -0.152
CS-137 CE-139 BA-140 LA-140 CE-141	5.238E-01 -7.962E-01 3.978E+00 -1.547E+00 -2.430E+00	1.968E+00 1.514E+00 7.116E+00 2.545E+00 2.615E+00	3.343E+00 2.410E+00 1.175E+01 3.995E+00 4.154E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.157 -0.330 0.338 -0.387 -0.585
CE-144 EU-152 EU-154 AC-228 TH-232 U-235	5.719E+00 4.026E-01 -2.812E-01 -9.628E+00 -9.620E+00 6.997E+00	1.078E+01 5.305E+00 2.865E+00 1.114E+01 1.113E+01 1.266E+01	1.780E+01 8.549E+00 4.679E+00 1.337E+01 1.336E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.321 0.047 -0.060 -0.720 -0.720 0.375

2.186E+02

1.353E+01

3.580E+02

2.103E+01

0.000E+00

0.000E+00

0.055

0.531

U-238

AM-241

1.960E+01

1.116E+01

```
,08/17/2006 09:02,08/14/2006 09:45,
                                                                 1.005E+00,L29586-1 WG EX
A,04L29586-1
B,04L29586-1
                     , LIBD
                                              08/16/2006 15:06,041L082004
            , YES,
                                                   6.055E+01,,
C, RA-226
                     7.253E+00,
                                    7.234E+01,
                                                                     0.120
           , YES,
                                                   4.742E+00,,
                                                                     1.053
C, TH-228
                     4.992E+00,
                                    4.272E+00,
           , NO
                                                   2.621E+01,,
C, BE-7
                     6.234E+00,
                                    1.588E+01,
                                                                     0.238
C, NA-24
            , NO
                    -5.205E+00,
                                    3.227E+01,
                                                   5.309E+01,,
                                                                    -0.098
C, K-40
            , NO
                     5.582E+00,
                                    3.774E+01,
                                                   6.266E+01,,
                                                                     0.089
C, CR-51
                                                   2.455E+01,,
            , NO
                     4.696E-01,
                                    1.469E+01,
                                                                     0.019
                                    1.968E+00,
                                                   3.142E+00,,
C, MN-54
            , NO
                    -1.522E+00,
                                                                    -0.484
C, CO-57
                                    1.366E+00,
                                                   2.228E+00,,
                                                                    -0.107
            , NO
                    -2.394E-01,
C, CO-58
            , NO
                     1.604E-01,
                                    1.843E+00,
                                                   3.066E+00,,
                                                                     0.052
C, FE-59
            , NO
                     4.074E-01,
                                    3.716E+00,
                                                   6.051E+00,,
                                                                     0.067
C, CO-60
                    -8.050E-01,
                                    2.959E+00,
                                                   4.321E+00,,
                                                                    -0.186
            , NO
            , NO
                                    4.970E+00,
                                                   6.378E+00,,
C, ZN-65
                    -4.735E+00,
                                                                    -0.742
                                                                     0.044
C, SE-75
                     1.591E-01,
                                    2.133E+00,
                                                   3.608E+00,,
            , NO
                                                   3.682E+00,,
C, SR-85
            , NO
                    -1.921E+01,
                                    2.759E+00,
                                                                    -5.217
C, Y-88
            , NO
                     1.031E+00,
                                    1.988E+00,
                                                   3.370E+00,,
                                                                     0.306
C, NB-94
                    -1.269E+00,
                                    1.687E+00,
                                                   2.735E+00,,
                                                                    -0.464
            , NO
                                                   3.037E+00,,
C, NB-95
            ,NO
                    -2.039E-01,
                                    2.113E+00,
                                                                    -0.067
                                    3.128E+00,
                                                   5.311E+00,,
C, ZR-95
            , NO
                     1.369E+00,
                                                                     0.258
C, MO-99
            , NO
                    -1.077E+00,
                                    2.609E+01,
                                                   4.345E+01,,
                                                                    -0.025
C, RU-103
            , NO
                    -3.025E+00,
                                    1.878E+00,
                                                   2.861E+00,,
                                                                    -1.057
            ,NO
                                                   2.671E+01,,
C, RU-106
                    -2.866E+00,
                                    1.686E+01,
                                                                    -0.107
C, AG-110m
           , NO
                    -4.582E-01,
                                    1.735E+00,
                                                   2.888E+00,,
                                                                    -0.159
            , NO
                                                   3.799E+00,,
C, SN-113
                     2.982E+00,
                                    2.208E+00,
                                                                     0.785
C,SB-124
            , NO
                                                   3.007E+00,,
                     1.872E+00,
                                    2.818E+00,
                                                                     0.623
            , NO
C,SB-125
                     1.081E+00,
                                    4.868E+00,
                                                   8.046E+00,,
                                                                     0.134
C, TE-129M , NO
                    -6.731E+00,
                                    2.038E+01,
                                                   3.286E+01,,
                                                                    -0.205
C, I-131
            , NO
                    -5.776E-01,
                                    2.167E+00,
                                                   3.561E+00,,
                                                                    -0.162
                                                   3.818E+00,,
C,BA-133
            , NO
                     7.864E-01,
                                    2.584E+00,
                                                                     0.206
C, CS-134
            , NO
                     1.256E+00,
                                    2.044E+00,
                                                   2.954E+00,,
                                                                     0.425
C, CS-136
            ,NO
                    -4.857E-01,
                                    1.956E+00,
                                                   3.199E+00,,
                                                                    -0.152
                                                                     0.157
C, CS-137
            , NO
                     5.238E-01,
                                    1.968E+00,
                                                   3.343E+00,,
            , NO
C, CE-139
                    -7.962E-01,
                                    1.514E+00,
                                                   2.410E+00,,
                                                                    -0.330
                                                   1.175E+01,,
C, BA-140
            , NO
                     3.978E+00,
                                    7.116E+00,
                                                                     0.338
C, LA-140
            , NO
                    -1.547E+00,
                                    2.545E+00,
                                                   3.995E+00,,
                                                                    -0.387
C, CE-141
                    -2.430E+00,
                                    2.615E+00,
                                                   4.154E+00,,
            , NO
                                                                    -0.585
C, CE-144
                     5.719E+00,
                                                   1.780E+01,,
            , NO
                                    1.078E+01,
                                                                     0.321
C, EU-152
                     4.026E-01,
                                    5.305E+00,
                                                   8.549E+00,,
                                                                     0.047
            , NO
            , NO
                                                   4.679E+00,,
C, EU-154
                    -2.812E-01,
                                    2.865E+00,
                                                                    -0.060
C, AC-228
            , NO
                    -9.628E+00,
                                    1.114E+01,
                                                   1.337E+01,,
                                                                    -0.720
C, TH-232
                    -9.620E+00,
                                    1.113E+01,
                                                   1.336E+01,,
                                                                    -0.720
            , NO
            , NO
                                                   1.866E+01,,
C, U-235
                     6.997E+00,
                                    1.266E+01,
                                                                     0.375
                                                   3.580E+02,,
C, U-238
            , NO
                     1.960E+01,
                                    2.186E+02,
                                                                     0.055
                                                                     0.531
C, AM-241
                     1.116E+01,
                                    1.353E+01,
                                                   2.103E+01,,
            ,NO,
```

1111

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 16-AUG-2006 15:59:15.71 TBE15 P-10635B HpGe ******* Aquisition Date/Time: 16-AUG-2006 13:56:07.45

LIMS No., Customer Name, Client ID: L29586-2 WG EX/DRES

Sample ID : 15L29586-2 Smple Date: 14-AUG-2006 10:10:00.

 Sample Type
 : WG
 Geometry
 : 153L082604

 Quantity
 : 3.13720E+00 L
 BKGFILE
 : 15BG072806MT

 Start Channel
 : 40
 Energy Tol
 : 1.00000
 Real Time
 : 0 02:03:02.37

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time
 : 0 02:03:01.53

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	295.25*	57	101	1.29	580.78	1.18E+00	7.68E-03	35.4	1.60E+00
2	1	351.60*	153	107	1.41	694.18	1.02E+00	2.07E-02	17.0	7.21E-01
3	1	609.02*	124	31	1.82	1212.02	6.43E-01	1.68E-02	14.3	8.86E-01
4	1	1119.20*	30	24	1.95	2237.72	3.97E-01	4.06E-03	43.7	7.68E-01
5	1	1192.83	14	13	1.26	2385.68	3.78E-01	1.85E-03	60.8	5.45E-01
6	1	1764.69*	19	7	3.30	3534.33	2.78E-01	2.54E-03	44.0	5.15E-01

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Summary of Nuclide Activity Acquisition date : 16-AUG-2006 13:56:07 Sample ID : 15L29586-2

Total number of lines in spectrum 6 Number of unidentified lines 6

0.00%

Number of lines tentatively identified by NID 0
**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit Unidentified Energy Lines Sample ID : 15L29586-2

Page: 3 Acquisition date: 16-AUG-2006 13:56:07

Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	295.25	57	101	1.29	580.78	577	8	7.68E-03	70.7	1.18E+00	
1	351.60	153	107	1.41	694.18	688	13	2.07E-02	33.9	1.02E+00	
1	609.02	124	31	1.82	1212.02	1206	13	1.68E-02	28.5	6.43E-01	
1	1119.20	30	24	1.95	2237.72	2229	16	4.06E-03	87.5	3.97E-01	·
1	1192.83	14	13	1.26	2385.68	2376	13	1.85E-03	****	3.78E-01	
1	1764.69	19	7	3.30	3534.33	3528	15	2.54E-03	87.9	2.78E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 6 Number of unidentified lines Number of lines tentatively identified by NID 0 0.00% **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted

"M" = Manuarry accepted
"A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

	Key-Line					
	-	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L)	Ided		(pCi/L)		,
	_			_		
BE-7	8.834E+00		2.826E+01	4.893E+01	0.000E+00	0.181
NA-24	1.576E+01		4.282E+01	7.443E+01	0.000E+00	0.212
K-40	2.322E+01		5.950E+01	1.223E+02	0.000E+00	0.190
CR-51	1.392E+00		3.213E+01	5.264E+01	0.000E+00	0.026
MN-54	-5.656E-01		4.125E+00	6.557E+00	0.000E+00	-0.086
CO-57	3.101E-01		3.509E+00	5.641E+00	0.000E+00	0.055
CO-58	-1.028E+00		3.732E+00	5.821E+00	0.000E+00	-0.177
FE-59	3.617E+00		6.810E+00	1.215E+01	0.000E+00	0.298
CO-60	2.220E+00		3.797E+00	6.824E+00	0.000E+00	0.325
ZN-65	2.321E+00		8.100E+00	1.229E+01	0.000E+00	0.189
SE-75	2.021E-01		4.652E+00	7.708E+00	0.000E+00	0.026
SR-85	-8.252E+00		4.625E+00	6.780E+00	0.000E+00	-1.217
Y-88	1.775E+00		3.931E+00	7.105E+00	0.000E+00	0.250
NB-94	3.582E+00		4.146E+00	7.353E+00	0.000E+00	0.487
NB-95	5.000E-01		4.080E+00	6.732E+00	0.000E+00	0.074
ZR-95	-5.251E+00		6.025E+00	8.556E+00	0.000E+00	-0.614
MO-99	-3.768E+00		4.752E+01	7.677E+01	0.000E+00	-0.049
RU-103	-2.976E+00		3.889E+00	6.087E+00	0.000E+00	-0.489
RU-106	1.912E+01		3.734E+01	6.477E+01	0.000E+00	0.295
AG-110m	9.205E-01		3.341E+00	5.682E+00	0.000E+00	0.162
SN-113	2.253E+00		4.953E+00	8.290E+00	0.000E+00	0.272
SB-124	1.982E+00		3.996E+00	6.162E+00	0.000E+00	0.322

I-131 -2.14	2E+01 4.185 2E+00 4.330 39E+00 5.807 21E+00 4.039	E+00 6.70 E+00 7.80	9E+00 0.0		193 319
	9E+00 5.807	E+00 7.80	J		
BA-133 -2.66	<b></b> ,		3E+00 0.0	0.0E+0.0 -0.	212
	'1E+00 4.039				
CS-134 1.57		15年100 6.13			256
CS-136 9.85	88E-01 4.320	E+00 7.19	5E+00 0.0	00E+00 0.	137
CS-137 -3.12	3.706 3.706	E+00 5.42	9E+00 0.0	00E+00 -0.	576
CE-139 -2.93	3.123 3.123	E+00 5.26	3E+00 0.0		056
BA-140 -1.63	35E+00 1.434	E+01 2.36	8E+01 0.0		069
LA-140 -3.60	)5E+00 4.741	E+00 6.73	3E+00 0.0	00E+00 -0.	535
CE-141 6.33	31E+00 5.885	SE+00 9.90	9E+00 0.0	00E+00 0.	639
CE-144 -1.22	2.569	E+01 3.97	6E+01 0.0	00E+00 -0.	309
EU-152 -3.62	28E+00 1.165	E+01 1.77	'9E+01 0.0	00E+00 -0.	204
EU-154 -1.99	96E+00 7.430	E+00 1.17	'1E+01 0.0	00E+00 -0.	170
RA-226 -5.59	91E+01 8.346	E+01 1.38	32E+02 0.0	00E+00 -0.	404
AC-228 3.04	1.552 in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	E+01 2.56	59E+01 0.0	00E+00 0.	012
TH-228 -9.09	95E+00 6.89°	7E+00 1.08	39E+01 0.0	00E+00 -0.	. 835
TH-232 3.04	1.551 1.551	LE+01 2.56	57E+01 0.0	00E+00 0.	.012
U-235 5.42	22E+00 2.704	E+01 4.33	32E+01 0.0	00E+00 0.	.125
U-238 -3.55	50E+02 4.110	E+02 6.27	72E+02 0.0	00E+00 -0.	.566
AM-241 -1.49	90E+01 3.833	3E+01 6.19	0.0 OE+01	00E+00 -0.	.241

```
,08/16/2006 15:59,08/14/2006 10:10,
A,15L29586-2
                                                                 3.137E+00,L29586-2 WG EX
                                             ,08/16/2006 09:32,153L082604
B,15L29586-2
                     ,LIBD
                     8.834E+00,
                                    2.826E+01,
                                                   4.893E+01,,
                                                                     0.181
C,BE-7
           , NO
                                                                     0.212
                                                   7.443E+01,,
C, NA-24
            , NO
                     1.576E+01,
                                    4.282E+01,
                                    5.950E+01,
                                                   1.223E+02,,
                                                                     0.190
C, K-40
            , NO
                     2.322E+01,
                                                   5.264E+01,,
C, CR-51
           , NO
                     1.392E+00,
                                    3.213E+01,
                                                                     0.026
                                    4.125E+00,
C, MN-54
                    -5.656E-01,
                                                   6.557E+00,,
                                                                   -0.086
            , NO
           , NO
                                                   5.641E+00,,
                                                                     0.055
                                    3.509E+00,
C,CO-57
                     3.101E-01,
                                                   5.821E+00,,
                                                                    -0.177
C, CO-58
                    -1.028E+00,
                                    3.732E+00,
            , NO
                                                                     0.298
                                    6.810E+00,
                                                   1.215E+01,,
C, FE-59
            , NO
                     3.617E+00,
                                                   6.824E+00,,
                                                                     0.325
C, CO-60
            , NO
                     2.220E+00,
                                    3.797E+00,
C, ZN-65
                     2.321E+00,
                                    8.100E+00,
                                                   1.229E+01,,
                                                                     0.189
            , NO
                                    4.652E+00,
                                                   7.708E+00,,
                                                                     0.026
C, SE-75
                     2.021E-01,
            , NO
                                                   6.780E+00,,
C, SR-85
                    -8.252E+00,
                                    4.625E+00,
                                                                    -1.217
            , NO
C, Y-88
                                    3.931E+00,
                                                   7.105E+00,,
                                                                     0.250
                     1.775E+00,
            , NO
C, NB-94
                                                   7.353E+00,,
                                                                     0.487
            , NO
                     3.582E+00,
                                    4.146E+00,
                     5.000E-01,
                                    4.080E+00,
                                                   6.732E+00,,
                                                                     0.074
C, NB-95
            , NO
                                                   8.556E+00,,
C, ZR-95
            , NO
                    -5.251E+00,
                                    6.025E+00,
                                                                    -0.614
                                                   7.677E+01,,
                                                                    -0.049
                    -3.768E+00,
                                    4.752E+01,
C, MO-99
            , NO
            , NO
                                    3.889E+00,
                                                   6.087E+00,,
                                                                    -0.489
C, RU-103
                    -2.976E+00,
            , NO
                                                   6.477E+01,,
C, RU-106
                     1.912E+01,
                                    3.734E+01,
                                                                     0.295
                     9.205E-01,
                                    3.341E+00,
                                                   5.682E+00,,
                                                                     0.162
C, AG-110m
           , NO
            , NO
                                                   8.290E+00,,
                                                                     0.272
C, SN-113
                     2.253E+00,
                                    4.953E+00,
                                    3.996E+00,
                                                   6.162E+00,,
                                                                     0.322
C,SB-124
                     1.982E+00,
            , NO
                                                   1.851E+01,,
C,SB-125
                     3.686E+00,
                                    1.122E+01,
                                                                     0.199
            , NO
                                                   6.867E+01,,
                                                                    -0.193
C, TE-129M
            , NO
                    -1.322E+01,
                                    4.185E+01,
                    -2.142E+00,
                                    4.330E+00,
                                                   6.709E+00,,
                                                                    -0.319
C, I-131
            , NO
                                                   7.803E+00,,
                                                                    -0.342
C, BA-133
            , NO
                    -2.669E+00,
                                    5.807E+00,
C, CS-134
            , NO
                     1.571E+00,
                                    4.039E+00,
                                                   6.130E+00,,
                                                                     0.256
            , NO
                                                   7.195E+00,,
                                                                     0.137
                     9.858E-01,
                                    4.320E+00,
C, CS-136
                                                   5.429E+00,,
                                                                    -0.576
C, CS-137
            , NO
                    -3.126E+00,
                                    3.706E+00,
                                    3.123E+00,
                                                   5.263E+00,,
                                                                    -0.056
C, CE-139
            , NO
                    -2.933E-01,
                                    1.434E+01,
                                                   2.368E+01,,
                                                                    -0.069
                    -1.635E+00,
C,BA-140
            , NO
            , NO
                                                                    -0.535
C, LA-140
                    -3.605E+00,
                                    4.741E+00,
                                                   6.733E+00,,
                                                   9.909E+00,,
                                                                     0.639
                     6.331E+00,
                                    5.885E+00,
C, CE-141
            , NO
C, CE-144
            , NO
                    -1.228E+01,
                                    2.569E+01,
                                                   3.976E+01,,
                                                                    -0.309
                                    1.165E+01,
                                                   1.779E+01,,
                                                                    -0.204
                    -3.628E+00,
C, EU-152
            , NO
                                                   1.171E+01,,
                                    7.430E+00,
                                                                    -0.170
C, EU-154
                    -1.996E+00,
            , NO
                                                   1.382E+02,,
C, RA-226
            , NO
                    -5.591E+01,
                                    8.346E+01,
                                                                    -0.404
                     3.043E-01,
                                    1.552E+01,
                                                   2.569E+01,,
                                                                     0.012
C, AC-228
            , NO
C, TH-228
                    -9.095E+00,
                                    6.897E+00,
                                                   1.089E+01,,
                                                                    -0.835
            , NO
                     3.041E-01,
                                    1.551E+01,
                                                   2.567E+01,,
                                                                     0.012
C, TH-232
            , NO
            , NO
                                                   4.332E+01,,
C, U-235
                     5.422E+00,
                                    2.704E+01,
                                                                     0.125
                                                    6.272E+02,,
                                                                    -0.566
C, U-238
                    -3.550E+02,
                                    4.110E+02,
            , NO
```

3.833E+01,

6.190E+01,,

-0.241

C, AM-241

, NO

-1.490E+01,

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 16-AUG-2006 17:58:48.01 TBE11 P-20610B HpGe ******* Aquisition Date/Time: 16-AUG-2006 14:29:21.10

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

LIMS No., Customer Name, Client ID: L29586-3 WG EX/DRES

Sample ID : 11L29586-3 Smple Date: 14-AUG-2006 11:10:00.

Sample Type : WG Geometry : 113L082304
Quantity : 3.13670E+00 L BKGFILE : 11BG072806MT
Start Channel : 40 Energy Tol : 1.00000 Real Time : 0 03:29:21.74
End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 03:29:16.67

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Er	r Fit
1 2	0	66.62 139.79*	91 93	557 383	1.53	132.56 279.39		7.21E-03 44. 7.41E-03 39.	_
3	Ō	198.12*	87	225	1.45	396.40	1.75E+00	6.95E-03 31.	8
4	0	238.51*	4	206	1.11	477.42	1.58E+00	3.26E-04645.	4
5	0	294.94*	64	215	1.30	590.56	1.37E+00	5.08E-03 44.	6
6	0	351.28*	159	153	1.70	703.54	1.20E+00	1.26E-02 18.	4
7	0	595.78	62	54	1.20	1193.45	8.04E-01	4.91E-03 25.	8
8	0	609.28*	154	85	1.74	1220.49	7.90E-01	1.22E-02 15.	6
9	0	1120.92	57	24	2.40	2244.26	4.86E-01	4.56E-03 22.	5
10	0	1461.07*	7	53	1.96	2923.80	3.92E-01	5.19E-04291.	4
11	0	1762.36*	34	15	2.91	3525.02	3.39E-01	2.69E-03 34.	. 0

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

	-1F				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĈi/L	%Error
K-40	1460.81	7	10.67*	3.918E-01	1.069E+01	1.069E+01	582.77
TH-228	238.63	4	44.60*	1.577E+00	3.997E-01	4.006E-01	1290.82
	240.98		3.95	1.567E+00	Li	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Sample ID : 11L29586-3 Acquisition date : 16-AUG-2006 14:29:21

Total number of lines in spectrum Number of unidentified lines 11 9

Number of lines tentatively identified by NID 2 18.18%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma 

 Nuclide
 Hlife
 Decay
 pCi/L
 pCi/L
 2-Sigma Error %Error Flags

 K-40
 1.28E+09Y
 1.00
 1.069E+01
 1.069E+01
 6.228E+01
 582.77

 TH-228
 1.91Y
 1.00
 3.997E-01
 4.006E-01
 51.71E-01
 1290.82

> 1.109E+01 Total Activity: 1.109E+01

Grand Total Activity: 1.109E+01 1.109E+01

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted

"A" = Nuclide specific abn. limit

Unidentified Energy Lines
Sample ID: 11L29586-3
Acquisition date: 16-AUG-2

Acquisition date : 16-AUG-2006 14:29:21

Page :

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	66.62	91	557	1.53	132.56	129	7	7.21E-03	89.0	6.97E-01	
0	139.79	93	383	1.03	279.39	275	9	7.41E-03	79.8	1.90E+00	i
0	198.12	87	225	1.45	396.40	393	7	6.95E-03	63.6	1.75E+00	ı
0	294.94	64	215	1.30	590.56	587	9	5.08E-03	89.2	1.37E+00	ı
0	351.28	159	153	1.70	703.54	696	12	1.26E-02	36.9	1.20E+00	ı
0	595.78	62	54	1.20	1193.45	1188	10	4.91E-03	51.6	8.04E-01	
0	609.28	154	85	1.74	1220.49	1215	13	1.22E-02	31.2	7.90E-01	
0	1120.92	57	24	2.40	2244.26	2237	14	4.56E-03	45.1	4.86E-01	
0	1762.36	34	15	2.91	3525.02	3517	15	2.69E-03	68.0	3.39E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 11
Number of unidentified lines 9
Number of lines tentatively identified by NID 2 18.18%

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 1.069E+01 6.228E+01 582.77 1.069E+01 TH-228 1.00 3.997E-01 1.91Y 51.71E-01 1290.82 4.006E-01 Total Activity: 1.109E+01 1.109E+01

Grand Total Activity : 1.109E+01 1.109E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	1.069E+01	6.228E+01	4.162E+01	0.000E+00	0.257
TH-228	4.006E-01	5.171E+00	7.865E+00	0.000E+00	0.051

---- Non-Identified Nuclides ----

	Key-Line	TF T	70. 1			/
NT7 - 2 - 2	_		Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L)	Idea		(pCi/L)		

BE-7	-1.010E-01	2.057E+01	3.438E+01	0.000E+00	-0.003
NA-24	-1.396E+01	2.794E+01	4.299E+01	0.000E+00	-0.325
CR-51	1.110E+01	2.062E+01	3.422E+01	0.000E+00	0.324
MN-54	1.473E+00	2.407E+00	4.140E+00	0.000E+00	0.356
CO-57	-1.389E+00	2.324E+00	3.778E+00	0.000E+00	-0.368
CO-58	-1.741E+00	2.314E+00	3.473E+00	0.000E+00	-0.501
FE-59	-2.376E+00	4.651E+00	7.377E+00	0.000E+00	-0.322
CO-60	-2.400E+00	2.215E+00	3.052E+00	0.000E+00	-0.786
ZN-65	2.027E+00	5.526E+00	8.438E+00	0.000E+00	0.240
SE-75	-1.886E+00	3.182E+00	4.994E+00	0.000E+00	-0.378
SR-85	-6.593E+00	3.188E+00	4.773E+00	0.000E+00	-1.381
Y-88	-7.264E-02	2.568E+00	4.148E+00	0.000E+00	-0.018
NB-94	5.717E-01	2.190E+00	3.678E+00	0.000E+00	0.155
NB-95	1.154E+00	2.594E+00	4.395E+00	0.000E+00	0.263
ZR-95	-1.271E-01	4.513E+00	7.360E+00	0.000E+00	-0.017
MO-99	-1.102E+01	3.140E+01	4.976E+01	0.000E+00	-0.221
RU-103	-2.525E+00	2.458E+00	3.813E+00	0.000E+00	-0.662
RU-106	-2.449E+00	2.280E+01	3.734E+01	0.000E+00	-0.066
AG-110m	-8.229E-01	2.630E+00	4.230E+00	0.000E+00	-0.195
SN-113	1.393E+00	2.922E+00	5.064E+00	0.000E+00	0.275
SB-124	1.050E+00	2.440E+00	3.678E+00	0.000E+00	0.286
SB-125	7.083E-01	7.125E+00	1.204E+01	0.000E+00	0.059
TE-129M	1.245E+01	2.786E+01	4.796E+01	0.000E+00	0.260
I-131	-9.128E-01	3.049E+00	4.781E+00	0.000E+00	-0.191
BA-133	1.481E-01	3.745E+00	5.246E+00	0.000E+00	0.028
CS-134	1.210E+00	2.354E+00	3.583E+00	0.000E+00	0.338
CS-136	-1.913E+00	2.611E+00	3.933E+00	0.000E+00	-0.486
CS-137	1.479E+00	2.923E+00	4.990E+00	0.000E+00	0.296
CE-139	-3.846E-01	2.327E+00	3.808E+00	0.000E+00	-0.101
BA-140	-3.186E+00	8.962E+00	1.450E+01	0.000E+00	-0.220
LA-140	-2.173E-01	3.263E+00	5.297E+00	0.000E+00	-0.041
CE-141	-1.555E+00	4.148E+00	6.525E+00	0.000E+00	-0.238
CE-144	-3.380E+00	1.869E+01	2.973E+01	0.000E+00	-0.114
EU-152	2.429E+00	7.796E+00	1.122E+01	0.000E+00	0.216
EU-154	1.657E+00	4.827E+00	8.121E+00	0.000E+00	0.204
RA-226	-4.592E+01	6.094E+01	9.712E+01	0.000E+00	-0.473
AC-228	-1.029E+00	1.014E+01	1.747E+01	0.000E+00	-0.059
TH-232	-1.028E+00	1.014E+01	1.746E+01	0.000E+00	-0.059
U-235	5.671E+00	1.963E+01	2.897E+01	0.000E+00	0.196
U-238	-1.282E+02	2.667E+02	4.051E+02	0.000E+00	-0.317
AM-241	1.295E+01	2.695E+01	4.616E+01	0.000E+00	0.281

11.2

```
A,11L29586-3
                     ,08/16/2006 17:58,08/14/2006 11:10,
                                                                 3.137E+00,L29586-3 WG EX
B,11L29586-3
                     ,LIBD
                                              ,08/16/2006 09:32,113L082304
C, K-40
           , YES,
                     1.069E+01,
                                    6.228E+01,
                                                   4.162E+01,,
                                                                     0.257
           ,YES,
C, TH-228
                     4.006E-01,
                                    5.171E+00,
                                                   7.865E+00,,
                                                                     0.051
C, BE-7
                                    2.057E+01,
                                                   3.438E+01,,
            , NO
                    -1.010E-01,
                                                                    -0.003
                    -1.396E+01,
C, NA-24
            , NO
                                    2.794E+01,
                                                   4.299E+01,,
                                                                    -0.325
C, CR-51
            , NO
                     1.110E+01,
                                    2.062E+01,
                                                   3.422E+01,,
                                                                     0.324
C, MN-54
                     1.473E+00,
            , NO
                                    2.407E+00,
                                                   4.140E+00,,
                                                                     0.356
            , NO
C, CO-57
                    -1.389E+00,
                                    2.324E+00,
                                                   3.778E+00,,
                                                                    -0.368
C, CO-58
            , NO
                    -1.741E+00,
                                    2.314E+00,
                                                   3.473E+00,,
                                                                    -0.501
            , NO
C, FE-59
                    -2.376E+00,
                                    4.651E+00,
                                                   7.377E+00,,
                                                                    -0.322
C, CO-60
            ,NO
                    -2.400E+00,
                                    2.215E+00,
                                                   3.052E+00,,
                                                                    -0.786
            , NO
C, ZN-65
                     2.027E+00,
                                    5.526E+00,
                                                   8.438E+00,,
                                                                     0.240
C, SE-75
            , NO
                    -1.886E+00,
                                    3.182E+00,
                                                   4.994E+00,,
                                                                    -0.378
C, SR-85
            , NO
                    -6.593E+00,
                                    3.188E+00,
                                                   4.773E+00,,
                                                                    -1.381
C, Y-88
            , NO
                    -7.264E-02,
                                                   4.148E+00,,
                                    2.568E+00,
                                                                    -0.018
C, NB-94
            , NO
                     5.717E-01,
                                    2.190E+00,
                                                   3.678E+00,,
                                                                     0.155
C, NB-95
            , NO
                     1.154E+00,
                                    2.594E+00,
                                                   4.395E+00,,
                                                                     0.263
C, ZR-95
            , NO
                    -1.271E-01,
                                    4.513E+00,
                                                   7.360E+00,,
                                                                    -0.017
            , NO
                                                   4.976E+01,,
C,MO-99
                    -1.102E+01,
                                    3.140E+01,
                                                                    -0.221
C, RU-103
            , NO
                    -2.525E+00,
                                    2.458E+00,
                                                   3.813E+00,,
                                                                    -0.662
            , NO
                                    2.280E+01,
C, RU-106
                    -2.449E+00,
                                                   3.734E+01,,
                                                                    -0.066
C, AG-110m
           , NO
                    -8.229E-01,
                                    2.630E+00,
                                                   4.230E+00,,
                                                                    -0.195
            , NO
C, SN-113
                     1.393E+00,
                                    2.922E+00,
                                                   5.064E+00,,
                                                                     0.275
C,SB-124
            , NO
                     1.050E+00,
                                    2.440E+00,
                                                   3.678E+00,,
                                                                     0.286
C,SB-125
            , NO
                     7.083E-01,
                                                   1.204E+01,,
                                    7.125E+00,
                                                                     0.059
C, TE-129M
                                    2.786E+01,
                                                   4.796E+01,,
            , NO
                     1.245E+01,
                                                                     0.260
C, I-131
            , NO
                    -9.128E-01,
                                    3.049E+00,
                                                   4.781E+00,,
                                                                    -0.191
C, BA-133
            , NO
                     1.481E-01,
                                    3.745E+00,
                                                   5.246E+00,,
                                                                     0.028
C, CS-134
            , NO
                     1.210E+00,
                                    2.354E+00,
                                                   3.583E+00,,
                                                                     0.338
            , NO
                                                   3.933E+00,,
C, CS-136
                    -1.913E+00,
                                    2.611E+00,
                                                                    -0.486
C, CS-137
            , NO
                     1.479E+00,
                                    2.923E+00,
                                                   4.990E+00,,
                                                                     0.296
C, CE-139
            , NO
                    -3.846E-01,
                                    2.327E+00,
                                                   3.808E+00,,
                                                                    -0.101
C,BA-140
            , NO
                    -3.186E+00,
                                                   1.450E+01,,
                                    8.962E+00,
                                                                    -0.220
C, LA-140
            , NO
                    -2.173E-01,
                                    3.263E+00,
                                                   5.297E+00,,
                                                                    -0.041
                                                   6.525E+00,,
C, CE-141
            , NO
                    -1.555E+00,
                                    4.148E+00,
                                                                    -0.238
C, CE-144
            , NO
                    -3.380E+00,
                                    1.869E+01,
                                                    2.973E+01,,
                                                                    -0.114
C, EU-152
            , NO
                                                   1.122E+01,,
                     2.429E+00,
                                    7.796E+00,
                                                                     0.216
C, EU-154
            , NO
                     1.657E+00,
                                    4.827E+00,
                                                   8.121E+00,,
                                                                     0.204
C, RA-226
            , NO
                    -4.592E+01,
                                    6.094E+01,
                                                    9.712E+01,
                                                                    -0.473
C, AC-228
                    -1.029E+00,
                                                   1.747E+01,,
            , NO
                                    1.014E+01,
                                                                    -0.059
C, TH-232
            , NO
                    -1.028E+00,
                                    1.014E+01,
                                                   1.746E+01,,
                                                                    -0.059
C, U-235
            , NO
                     5.671E+00,
                                    1.963E+01,
                                                   2.897E+01,,
                                                                     0.196
C, U-238
            , NO
                    -1.282E+02,
                                    2.667E+02,
                                                   4.051E+02,,
                                                                    -0.317
C, AM-241
            , NO
                     1.295E+01,
                                    2.695E+01,
                                                   4.616E+01,,
                                                                     0.281
```

Sec. Review: Analyst: LIMS:

-----

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 16-AUG-2006 17:59:46.13 TBE10 12892256 HpGe ******* Aquisition Date/Time: 16-AUG-2006 14:48:42.72

LIMS No., Customer Name, Client ID: L29586-4 WG EX/DRES

Sample ID : 10L29586-4 Smple Date: 14-AUG-2006 12:55:00.

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.50	130	538	1.52	132.31	7.34E-01	1.13E-02	33.5	3.75E-01
2	1	74.86*	13	450	0.79	149.05	1.03E+00	1.11E-032	296.1	3.31E+00
3	1	77.19	130	269	0.96	153.72	1.10E+00	1.14E-02	20.7	2.68E+00
4	1	140.49	114	422	0.84	280.42	1.91E+00	9.98E-03	33.7	1.47E+01
5	1	238.53*	16	176	1.17	476.69	1.54E+00	1.41E-031	L44.5	2.33E+00
6	1	242.02	77	200	1.33	483.67	1.52E+00	6.68E-03	33.4	2.36E+00
7	1	295.37*	225	257	1.10	590.48	1.33E+00	1.97E-02	15.7	2.37E+00
8	1	351.93*	367	163	1.58	703.72	1.17E+00	3.20E-02	9.2	2.60E+00
9	1	596.00	46	52	1.49	1192.38	7.86E-01	4.00E-03	31.9	8.41E-01
10	1	609.30*	305	94	1.60	1219.00	7.72E-01	2.66E-02	9.2	1.61E+00
11	1	767.88	76	65	6.12	1536.53	6.46E-01	6.64E-03	27.6	6.73E+00
12	1	934.13	24	20	2.00	1869.43	5.54E-01	2.07E-03	41.1	1.14E+00
13	1	1120.18*	68	18	1.77	2242.01	4.79E-01	5.89E-03	19.8	1.55E+00
14	1	1377.40	24	30	2.25	2757.19	4.07E-01	2.07E-03	50.0	1.61E+00
15	1	1729.90	19	7	2.18	3463.28	3.44E-01	1.64E-03	34.9	7.11E-01
16	1	1764.60*	62	29	2.20	3532.78	3.39E-01	5.40E-03	25.9	8.42E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
TH-228	238.63	16	44.60*	1.539E+00	1.885E+00	1.889E+00	288.99
	240.98		3.95	1.529E+00	Li:	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Sample ID : 10L29586-4 Acquisition date : 16-AUG-2006 14:48:42

Total number of lines in spectrum 16 Number of unidentified lines 15 Number of lines tentatively identified by NID 1 6.25%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma Decay pCi/L pCi/L 2-Sigma Error %Error Flags 1.00 1.885E+00 1.889E+00 5.459E+00 288.99 Nuclide Hlife рС1/L 1.885E+00 1.889E+UU TH-228 1.91Y 1.00

Total Activity: 1.885E+00 1.889E+00

Grand Total Activity: 1.885E+00 1.889E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 10L29586-4

Page: 3
Acquisition date: 16-AUG-2006 14:48:42

6.25%

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	66.50	130	538	1.52	132.31	128	9	1.13E-02	67.1	7.34E-01	L
1	74.86	13	450	0.79	149.05	145	7	1.11E-03	***	1.03E+00	)
1	77.19	130	269	0.96	153.72	152	5	1.14E-02	41.4	1.10E+00	)
1	140.49	114	422	0.84	280.42	276	9	9.98E-03	67.5	1.91E+00	)
1	242.02	77	200	1.33	483.67	481	7	6.68E-03	66.9	1.52E+00	)
1	295.37	225	257	1.10	590.48	586	11	1.97E-02	31.4	1.33E+00	)
1	351.93	367	163	1.58	703.72	698	13	3.20E-02	18.4	1.17E+00	)
1	596.00	46	52	1.49	1192.38	1187	9	4.00E-03	63.8	7.86E-01	L
1	609.30	305	94	1.60	1219.00	1213	13	2.66E-02	18.4	7.72E-01	L
1	767.88	76	65	6.12	1536.53	1531	19	6.64E-03	55.3	6.46E-01	L
1	934.13	24	20	2.00	1869.43	1863	10	2.07E-03	82.3	5.54E-01	L
1	1120.18	68	18	1.77	2242.01	2235	14	5.89E-03	39.7	4.79E-01	L
1	1377.40	24	30	2.25	2757.19	2750	12	2.07E-03	***	4.07E-01	L
1	1729.90	19	7	2.18	3463.28	3458	10	1.64E-03	69.8	3.44E-01	L
1	1764.60	62	29	2.20	3532.78	3524	19	5.40E-03	51.8	3.39E-01	L

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 16
Number of unidentified lines 15
Number of lines tentatively identified by NID 1

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Decay pĈi/L Nuclide Hlife pCi/L 2-Sigma Error %Error Flags TH-228 1.91Y 1.885E+00 1.889E+00 1.00 5.459E+00 288.99 ... .. .. .. .. .. ... ... Total Activity: 1.885E+00 1.889E+00

Grand Total Activity : 1.885E+00 1.889E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

#### ---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-228	1.889E+00	5.459E+00	8.562E+00	0.000E+00	0.221

---- Non-Identified Nuclides ----

	Key-Line					
	Activity	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L)	Ided	THE CITOI	(pCi/L)	MDA CITOL	ACC/MDA
	(P / - /			(201/11)		
BE-7	1.359E+01		2.269E+01	3.970E+01	0.000E+00	0.342
NA-24	1.041E+01		2.660E+01	4.504E+01	0.000E+00	0.231
K-40	-6.988E+00		4.413E+01	8.904E+01	0.000E+00	-0.078
CR-51	-1.648E+01		2.407E+01	3.740E+01	0.000E+00	-0.441
MN-54	-4.324E+00		2.707E+00	3.646E+00	0.000E+00	-1.186
CO-57	4.612E-01		2.738E+00	4.625E+00	0.000E+00	0.100
CO-58	-5.108E-01		2.549E+00	4.083E+00	0.000E+00	-0.125
FE-59	-7.772E-01		5.370E+00	8.473E+00	0.000E+00	-0.092
CO-60	1.234E+00		2.695E+00	4.749E+00	0.000E+00	0.260
ZN-65	2.710E+00		6.104E+00	9.146E+00	0.000E+00	0.296
SE-75	7.963E-01		3.877E+00	6.403E+00	0.000E+00	0.124
SR-85	-7.329E+00		3.343E+00	4.930E+00	0.000E+00	-1.487
Y-88	-9.546E-01		2.899E+00	4.431E+00	0.000E+00	-0.215
NB-94	1.661E+00		2.464E+00	4.311E+00	0.000E+00	0.385
NB-95	2.531E+00		3.095E+00	4.868E+00	0.000E+00	0.520
ZR-95	2.114E+00		4.420E+00	7.611E+00	0.000E+00	0.278
MO-99	-1.985E+01		3.392E+01	5.263E+01	0.000E+00	-0.377
RU-103	-9.193E-01		2.818E+00	4.628E+00	0.000E+00	-0.199
RU-106	1.343E+01		2.616E+01	4.517E+01	0.000E+00	0.297
AG-110m	-5.358E-02		2.575E+00	4.256E+00	0.000E+00	-0.013
SN-113	-5.180E-01		3.766E+00	5.994E+00	0.000E+00	-0.086
SB-124	-7.103E-02		2.816E+00	4.057E+00	0.000E+00	-0.018
SB-125	-3.497E+00		8.088E+00	1.252E+01	0.000E+00	-0.279
TE-129M	6.853E+00		3.148E+01	5.381E+01	0.000E+00	0.127
I-131	2.700E-01		3.427E+00	5.553E+00	0.000E+00	0.049
BA-133	-1.997E+00		4.226E+00	5.687E+00	0.000E+00	-0.351
CS-134	-4.202E-01		2.841E+00	4.032E+00	0.000E+00	-0.104
CS-136	9.834E-01		2.817E+00	4.775E+00	0.000E+00	0.206
CS-137	1.097E+00		2.831E+00	4.845E+00	0.000E+00	0.226
CE-139	-8.279E-01		2.777E+00	4.568E+00	0.000E+00	-0.181
BA-140	-1.424E+00		1.013E+01	1.676E+01	0.000E+00	-0.085
LA-140	-2.224E+00		3.170E+00	4.569E+00	0.000E+00	-0.487
CE-141	4.473E+00		5.100E+00	8.209E+00	0.000E+00	0.545
CE-144	-1.465E+00		2.155E+01	3.601E+01	0.000E+00	-0.041
EU-152	3.652E+00		8.814E+00	1.461E+01	0.000E+00	0.250
EU-154	-3.688E+00		5.809E+00	9.547E+00	0.000E+00	-0.386
RA-226	-2.604E+01		7.298E+01	1.206E+02	0.000E+00	-0.216
AC-228	1.028E+01		1.087E+01	1.997E+01	0.000E+00	0.515
TH-232	1.027E+01		1.086E+01	1.996E+01	0.000E+00	0.515
U-235	2.780E+01		2.352E+01	3.663E+01	0.000E+00	0.759
U-238	-1.449E+02		2.998E+02	4.561E+02	0.000E+00	-0.318
AM-241	-3.212E+00		2.451E+01	3.883E+01	0.000E+00	-0.083

```
A,10L29586-4
                     ,08/16/2006 17:59,08/14/2006 12:55,
                                                                  2.955E+00,L29586-4 WG EX
B,10L29586-4
                     , LIBD
                                              ,08/16/2006 09:41,103L083004
C, TH-228
            , YES,
                     1.889E+00,
                                    5.459E+00,
                                                   8.562E+00,,
                                                                     0.221
C, BE-7
            , NO
                     1.359E+01,
                                                   3.970E+01,,
                                    2.269E+01,
                                                                     0.342
            , NO
C, NA-24
                     1.041E+01,
                                    2.660E+01,
                                                   4.504E+01,,
                                                                     0.231
C, K-40
            , NO
                    -6.988E+00,
                                    4.413E+01,
                                                   8.904E+01,,
                                                                    -0.078
C, CR-51
            , NO
                    -1.648E+01,
                                    2.407E+01,
                                                   3.740E+01,,
                                                                    -0.441
C, MN-54
            , NO
                                    2.707E+00,
                    -4.324E+00,
                                                   3.646E+00,,
                                                                    -1.186
C, CO-57
            , NO
                     4.612E-01,
                                    2.738E+00,
                                                   4.625E+00,,
                                                                     0.100
C, CO-58
            , NO
                    -5.108E-01,
                                    2.549E+00,
                                                   4.083E+00,,
                                                                    -0.125
            , NO
C, FE-59
                    -7.772E-01,
                                    5.370E+00,
                                                   8.473E+00,,
                                                                    -0.092
C, CO-60
            , NO
                     1.234E+00,
                                    2.695E+00,
                                                   4.749E+00,,
                                                                     0.260
C, ZN-65
            , NO
                     2.710E+00,
                                    6.104E+00,
                                                   9.146E+00,,
                                                                     0.296
C, SE-75
            , NO
                     7.963E-01,
                                    3.877E+00,
                                                   6.403E+00,,
                                                                     0.124
C, SR-85
            , NO
                    -7.329E+00,
                                    3.343E+00,
                                                   4.930E+00,,
                                                                    -1.487
C, Y-88
            , NO
                    -9.546E-01,
                                    2.899E+00,
                                                   4.431E+00,,
                                                                    -0.215
C, NB-94
            , NO
                     1.661E+00,
                                    2.464E+00,
                                                   4.311E+00,,
                                                                     0.385
C, NB-95
            , NO
                     2.531E+00,
                                    3.095E+00,
                                                   4.868E+00,,
                                                                     0.520
C, ZR-95
            , NO
                     2.114E+00,
                                    4.420E+00,
                                                   7.611E+00,,
                                                                     0.278
C,MO-99
            , NO
                    -1.985E+01,
                                    3.392E+01,
                                                   5.263E+01,,
                                                                    -0.377
C, RU-103
            , NO
                    -9.193E-01,
                                    2.818E+00,
                                                   4.628E+00,,
                                                                    -0.199
            , NO
C, RU-106
                     1.343E+01,
                                    2.616E+01,
                                                   4.517E+01,,
                                                                     0.297
C, AG-110m
           , NO
                    -5.358E-02,
                                    2.575E+00,
                                                   4.256E+00,,
                                                                    -0.013
C,SN-113
            , NO
                    -5.180E-01,
                                                   5.994E+00,,
                                    3.766E+00,
                                                                    -0.086
C,SB-124
            , NO
                    -7.103E-02,
                                    2.816E+00,
                                                   4.057E+00,,
                                                                    -0.018
C,SB-125
            , NO
                    -3.497E+00,
                                                   1.252E+01,,
                                    8.088E+00,
                                                                    -0.279
C, TE-129M
           , NO
                     6.853E+00,
                                    3.148E+01,
                                                   5.381E+01,,
                                                                     0.127
C,I-131
            , NO
                     2.700E-01,
                                    3.427E+00,
                                                   5.553E+00,,
                                                                     0.049
C,BA-133
            , NO
                    -1.997E+00,
                                    4.226E+00,
                                                   5.687E+00,,
                                                                    -0.351
C, CS-134
            , NO
                    -4.202E-01,
                                    2.841E+00,
                                                   4.032E+00,,
                                                                    -0.104
C,CS-136
            , NO
                     9.834E-01,
                                                   4.775E+00,,
                                    2.817E+00,
                                                                     0.206
C, CS-137
            , NO
                     1.097E+00,
                                    2.831E+00,
                                                   4.845E+00,,
                                                                     0.226
C, CE-139
            , NO
                    -8.279E-01,
                                    2.777E+00,
                                                   4.568E+00,,
                                                                    -0.181
C,BA-140
            , NO
                    -1.424E+00,
                                    1.013E+01,
                                                   1.676E+01,,
                                                                    -0.085
C, LA-140
            , NO
                    -2.224E+00,
                                    3.170E+00,
                                                   4.569E+00,,
                                                                    -0.487
C,CE-141
            , NO
                     4.473E+00,
                                    5.100E+00,
                                                   8.209E+00,,
                                                                     0.545
C, CE-144
            , NO
                    -1.465E+00,
                                    2.155E+01,
                                                   3.601E+01,,
                                                                    -0.041
C,EU-152
            , NO
                     3.652E+00,
                                    8.814E+00,
                                                   1.461E+01,,
                                                                     0.250
C, EU-154
            , NO
                    -3.688E+00,
                                    5.809E+00,
                                                   9.547E+00,,
                                                                    -0.386
C, RA-226
            , NO
                    -2.604E+01,
                                    7.298E+01,
                                                   1.206E+02,,
                                                                    -0.216
C,AC-228
           , NO
                     1.028E+01,
                                    1.087E+01,
                                                   1.997E+01,,
                                                                     0.515
C, TH-232
           , NO
                     1.027E+01,
                                                   1.996E+01,,
                                    1.086E+01,
                                                                     0.515
C, U-235
            , NO
                     2.780E+01,
                                    2.352E+01,
                                                   3.663E+01,,
                                                                     0.759
C, U-238
           , NO
                    -1.449E+02,
                                    2.998E+02,
                                                   4.561E+02,,
                                                                    -0.318
```

2.451E+01,

3.883E+01,,

-0.083

C, AM-241

, NO

-3.212E+00,

#### APPENDIX E

DATA VALIDATION MEMORANDUM



45 Farmington Valley Drive Plainville, Connecticut 06062

Telephone: (860) 747-1800 www.CRAworld.com

Fax: (860) 747-1900

#### **MEMORANDUM**

To:

Steve Quigley

Ref. No.:

45136-23

FROM:

Kathy Shaw/ks/7/CT////

DATE:

June 29, 2006

Revision Date:

August 29, 2006

RE:

Data Quality Assessment and Verification

Fleetwide Assessment - Hydrogeologic Investigation

Dresden Generating Station - Morris, Illinois

This memorandum details a data verification of the radiochemical data resulting from the collection of 67 groundwater, six (6) surface water and nine (9) quality control samples from the Dresden Generating Station in Morris, Illinois. The sample summary detailing sample identification, sample location, quality control samples, and analytical parameters is presented in Table 1. Sample analysis was completed at Teledyne Brown Engineering in Knoxville, Tennessee (TBE) in accordance with the methodologies presented in Table 2. The quality control criteria used to assess the data were established by the methods.¹

#### Sample Quantitation

The laboratory reported several radionuclides with activity concentrations above the minimum detectable concentration (MDC) and greater than the three (3) sigma critical level (99% confidence interval), but qualified them as not detected due to the presence of interference preventing identification of the major peaks, with a U* flag. Based on the laboratory qualification definition these concentrations should be qualified as not-detected (U*) above the laboratory reported MDC.

#### Sample Preservation

Samples collected for gamma scan and total strontium analyses are to be preserved to a pH of less than or equal to two (2) during shipment and laboratory storage with nitric acid at the time of collection. The samples were shipped and maintained in accordance with the sample preservation requirements.

#### Method Blank Samples

Contamination of samples contributed by laboratory conditions or procedures was monitored by concurrent preparation and analysis of method blank samples. The method blank samples were reported to be free of radioactive material contamination produced by the laboratory conditions or procedures.





#### Laboratory Control Sample Analysis

The laboratory control sample (LCS) is a sample containing a known amount of a radionuclide that is equivalent to internal or external control samples prepared by the analytical laboratory or a Federal/State agency. The LCS percent recoveries were within the laboratory or agency control limits, indicating that an acceptable level of overall performance was achieved.

#### **Duplicate Sample Analyses**

The laboratory precision of matrix-specific measurement system was monitored by the analyses of duplicate samples. The duplicate relative percent difference (RPD) data were within the acceptance criteria. No targeted analytes were reported as detected in the laboratory duplicate sample sets.

#### Field Quality Assurance/Quality Control

The field quality assurance/quality control consisted of one (1) field blank (rinsate) sample and eight (8) field duplicate sample sets.

To assess the efficiency of field decontamination procedures and cleanliness of sample containers, the rinsate sample identified in Table 1 was collected and analyzed. No target radionuclides were reported as detected in the rinsate samples.

Overall precision for the sampling event and laboratory procedures were monitored using the results of the field duplicate sample sets. Table 3 summarizes the results of the detected analytes in the field duplicate sample set. The data indicate that an adequate level of precision was achieved for the sampling event.

#### Overall Assessment

The data were found to exhibit acceptable levels of accuracy and precision, based on the provided information, and may be used with the qualifications noted.

TABLE 1 Page 1 of 3

## SAMPLE KEY FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Sample Identification	QC Sample	Sample Date	Matrix	Aualysis
DSP-152	WG-DN-DSP-152-052306-JH-001		5/23/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-157M	WG-DN-DSP-157M-052306-JH-002		5/23/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-157S	WG-DN-DSP-157S-052306-JH-003		5/23/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-126	WG-DN-DSP-126-052406-JH-004		5/24/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-153	WG-DN-DSP-153-052406-JH-005		5/24/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-154	WG-DN-DSP-154-052506-JH-006		5/25/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-158M	WG-DN-DSP-158M-052506-JH-007		5/25/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-158S	WG-DN-DSP-158S-052506-JH-008		5/25/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-159M	WG-DN-DSP-1.59M-052506-JH-009		5/25/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-103S	WG-DN-MW-DN-103S-052606-JH-010		5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-103S	WG-DN-MW-DN-103S-052606-JH-011	Duplicate (010)	5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-103I	WG-DN-MW-DN-103I-052606-JH-012		5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-106S	WG-DN-MW-DN-106S-052606-JH-013		5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-121	WG-DN-DSP-121-052606-JH-014		5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-117	WG-DN-DSP-117-052606-JH-015		5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-147	WG-DN-DSP-147-053006-JH-016		5/30/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-148	WG-DN-DSP-148-053006-JH-017		5/30/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-156	WG-DN-DSP-156-053006-JH-018		5/30/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-149R	WG-DN-DSP-149R-053106-JH-019		5/31/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-149R	WG-DN-DSP-149R-053106-JH-020	Duplicate (019)	5/31/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-159S	WG-DN-DSP-159S-053106-JH-022		5/31/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-105	WG-DN-DSP-DN-105-052306-JL-051		5/23/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-106	WG-DN-DSP-DN-106-052306-JL-052		5/23/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-107	WG-DN-DSP-DN-107-052306-JL-053		5/23/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-150	WG-DN-DSP-DN-150-052406-JL-054		5/24/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-151	WG-DN-DSP-DN-151-052406-JL-055		5/24/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-108	WG-DN-DSP-DN-108-052406-JL-056		5/24/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-118	WG-DN-DSP-DN-118-052506-JL-057		5/25/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-155	WG-DN-DSP-DN-155-052506-JL-058		5/25/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-122	WG-DN-DSP-DN-122-052506-JL-059		5/25/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-123	WG-DN-DSP-DN-123-052606-JL-060		5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-123	WG-DN-DSP-DN-123-052606-JL-061	Duplicate (060)	5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-124	WG-DN-DSP-DN-124-052606-JL-062	-r(000)	5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-101S	WG-DN-MW-DN-101S-052606-JL-063		5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-1011	WG-DN-MW-DN-1011-052606-JL-064		5/26/2006	Groundwater	Tritium/Strontium/Gamma Spectrum

TABLE 1 Page 2 of 3

## SAMPLE KEY FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Sample Identification	QC Sample	Sample Date	Matrix	Analysis
MW-DN-108I	WG-DN-MW-DN-108I-052606-JL-065		5/26/2006	Groundwater	Tritium/Strontium/Sr-90/Gamma Spectrum
DSP-127	WG-DN-DSP-DN-127-053006-JL-066		5/30/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-110S	WG-DN-MW-DN-110S-053006-JL-067		5/30/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-110I	WG-DN-MW-DN-110I-053006-JL-068		5/30/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-104S	WG-DN-MW-DN-104S-053006-JL-069		5/30/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-109I	WG-DN-MW-DN-109I-053106-JL-070		5/31/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-1091	WG-DN-MW-DN-109I-053106-JL-071	Duplicate (070)	5/31/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-109S	WG-DN-MW-DN-109S-053106-JL-072	1 , ,	5/31/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-111S	WG-DN-MW-DN-111S-053106-JL-073		5/31/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-107S	WG-DN-MW-DN-107S-053106-JL-074		5/31/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-102I	WG-DN-MW-DN-102I-060106-JL-075		6/1/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-102S	WG-DN-MW-DN-102S-060106-JL-076		6/1/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-105S	WG-DN-MW-DN-105S-060106-JL-077		6/1/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
DSP-125	WG-DN-DSP-DN-125-060106-JL-078		6/1/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
SW-DN-103	WS-DN-SW-103-053106-JH-021		5/31/2006	Surface Water	Tritium/Strontium/Gamma Spectrum
SW-DN-101	WS-DN-SW-101-053106-JH-023		5/31/2006	Surface Water	Tritium/Strontium/Gamma Spectrum
SW-DN-102	WS-DN-SW-102-053106-JH-024		5/31/2006	Surface Water	Tritium/Strontium/Gamma Spectrum
SW-DN-105	WS-DN-SW-105-060106-JH-025		6/1/2006	Surface Water	Tritium/Strontium/Gamma Spectrum
SW-DN-104	WS-DN-SW-104-060106-JH-026		6/1/2006	Surface Water	Tritium/Strontium/Gamma Spectrum
SW-DN-106	WS-DN-SW-106-060106-JH-027		6/1/2006	Surface Water	Tritium/Strontium/Gamma Spectrum
SW-DN-106	WS-DN-SW-106-060106-JH-028	Duplicate (027)	6/1/2006	Surface Water	Tritium/Strontium/Gamma Spectrum
MW-DN-122I	WG-DN-MW-DN-122I-080806-GL-001		8/8/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-122S	WG-DN-MW-DN-122S-080806-GL-002		8/8/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-121S	WG-DN-MW-DN-121S-080806-GL-003		8/8/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-1231	WG-DN-MW-DN-123I-080806-GL-004		8/8/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
	RB-DN-MW-DN-120I-080806-GL-005	Rinsate	8/8/2006	Water	Tritium/Strontium/Gamma Spectrum
MW-DN-120I	WG-DN-MW-DN-120I-080806-GL-006		8/8/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-120S	WG-DN-MW-DN-120S-080806-GL-007		8/8/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-123S	WG-DN-MW-DN-123S-080806-GL-026		8/8/2006	Groundwater	Tritium
MW-DN-113S	WG-DN-MW-DN-113S-080906-GL-008		8/9/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-1131	WG-DN-MW-DN-113I-080906-GL-009	D 1: (000)	8/9/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-113I	WG-DN-MW-DN-113I-080906-GL-010	Duplicate (009)	8/9/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-1161 MW-DN-116S	WG-DN-MW-DN-116I-080906-GL-011 WG-DN-MW-DN-116S-080906-GL-012		8/9/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-1165 MW-DN-112S	WG-DN-MW-DN-112S-081006-GL-013		8/9/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
WINA-DIM-1179	VV G-D1V-1V1VV-D1V-1125-U01UUO-GL-U15		8/10/2006	Groundwater	Tritium/Strontium/Gamma Spectrum

TABLE 1 Page 3 of 3

## SAMPLE KEY FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Sample Location	Sample Identification	QC Sample	Sample Date	Matrix	Analysis
MW-DN-1121	WG-DN-MW-DN-112I-081006-GL-014		8/10/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-117I	WG-DN-MW-DN-117I-081006-GL-015		8/10/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-118S	WG-DN-MW-DN-118S-081006-GL-016		8/10/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-119S	WG-DN-MW-DN-119S-081106-GL-017		8/11/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-119I	WG-DN-MW-DN-119I-081106-GL-018		8/11/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-115I	WG-DN-MW-DN-115I-081106-GL-019		8/11/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-114S	WG-DN-MW-DN-114S-081106-GL-020		8/11/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-114S	WG-DN-MW-DN-114S-081106-GL-021	Duplicate(020)	8/11/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-108I	WG-DN-MW-DN-1081-081406-GL-022		8/14/2006	Groundwater	Tritium/Strontium/Sr-90/Gamma Spectrum
MW-DN-108I	WG-DN-MW-DN-108I-081406-GL-023	Duplicate (022)	8/14/2006	Groundwater	Tritium/Strontium/Sr-90/Gamma Spectrum
MW-DN-115S	WG-DN-MW-DN-115S-081406-GL-024		8/14/2006	Groundwater	Tritium/Strontium/Gamma Spectrum
MW-DN-114I	WG-DN-MW-DN-114I-081406-GL-025		8/14/2006	Groundwater	Tritium/Strontium/Gamma Spectrum

Gamma Spectrum - Barium-140, Cesium-134, Cesium-137, Cobalt-58, Cobalt-60, Iron-59, Lanthanum-140, Manganese-54, Niobium-95, Zinc-65, Zirconium-95

Sr-90 - Strontium-90

Isotopes not listed in Table 1, but typically detected in environmental samples (i.e. Ac-228, K-40, Be-7, Ra-226, Th-228, Th-232, etc.) were reported if detected.

QC - Quality Control

TABLE 2 Page 1 of 1

## SUMMARY OF ANALYTICAL METHODS, HOLDING TIME PERIODS, AND PRESERVATIVES FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Parameter	$Method^{1}$	Matrix	Holding Time	Preservation
Tritium	EPA 906.0	Water	- 6 months	None
Strontium - 89/90 (Total)	EPA 905.0	Water	- 6 months	HNO3 to pH<2
Strontium - 90	EPA 905.0	Water	- 6 months	HNO3 to pH<2
Gamma Spectrum	EPA 901.1	Water	- 6 months	HNO3 to pH<2

¹ EPA-60/40-80-032 August 1980 "Precribed Procedures For Measurement of Radioactivity In Drinking Water

## SUMMARY OF DETECTED ANALYTES IN FIELD DUPLICATE SAMPLE SETS FLEETWIDE ASSESSMENT DRESDEN GENERATING STATION MORRIS, ILLINOIS

Parameter	Original Sample ID	Original Result	Uncertainty @ 2 sigma	Duplicate Sample ID	Duplicate Result	Uncertainty @ 2 sigma	RPD	Units
Tritium	WG-DN-DSP-DN-123-052606-JL-060	13100	+/- 318	WG-DN-DSP-DN-123-052606-JL-061	13200	+/-319	0.76	pCi/L
Tritium	WG-DN-DSP-149R-053106-JH-019	668	+/- 144	WG-DN-DSP-149R-053106-JH-020	694	+/-143	3.8	pCi/L
Tritium	WG-DN-MW-DN-109I-053106-JL-070	3620	+/- 413	WG-DN-MW-DN-109I-053106-JL-071	3750	'+/- 424	3.5	pCi/L
Tritium	WG-DN-MW-DN-114S-081106-GL-020	2770	+/- 336	WG-DN-MW-DN-114S-081106-GL-021	2740	+/-335	1.1	pCi/L
Strontium-89/90 (Total) Strontium-90	WG-DN-MW-DN-108I-081406-GL-022	3.21 4.74	+/- 1 +/- 2.45	WG-DN-MW-DN-108I-081406-GL-023	2.72 2.17	+/- 1.01 +/- 0.783	16.5 74.4	pCi/L pCi/L

RPD - Relative Percent Difference